
Pre-training on Large-Scale Heterogeneous Graph
Xunqiang Jiang1, Tianrui Jia1, Yuan Fang2, Chuan Shi1,3∗, Zhe Lin3, Hui Wang3

1Beijing University of Posts and Telecommunications
2Singapore Management University

3Peng Cheng Laboratory, Shenzhen, China
{skd621, jiatianrui}@bupt.edu.cn, yfang@smu.edu.sg,
shichuan@bupt.edu.cn, {linzh01,wangh06}@pcl.ac.cn

ABSTRACT
Graph neural networks (GNNs) emerge as the state-of-the-art rep-
resentation learning methods on graphs and often rely on a large
amount of labeled data to achieve satisfactory performance. Re-
cently, in order to relieve the label scarcity issues, some works
propose to pre-train GNNs in a self-supervised manner by distill-
ing transferable knowledge from the unlabeled graph structures.
Unfortunately, these pre-training frameworks mainly target at ho-
mogeneous graphs, while real interaction systems usually consti-
tute large-scale heterogeneous graphs, containing different types
of nodes and edges, which leads to new challenges on structure
heterogeneity and scalability for graph pre-training. In this pa-
per, we first study the problem of pre-training on a large-scale
heterogeneous graph and propose a novel pre-training GNN frame-
work, named PT-HGNN. The proposed PT-HGNN designs both
the node- and schema-level pre-training tasks to contrastively pre-
serve heterogeneous semantic and structural properties as a form of
transferable knowledge for various downstream tasks. In addition,
a relation-based personalized PageRank is proposed to sparsify a
large-scale heterogeneous graph for efficient pre-training. Exten-
sive experiments on one of the largest public heterogeneous graphs
demonstrate that our PT-HGNN significantly outperforms various
state-of-the-art baselines.

CCS CONCEPTS
• Information systems→ Data mining.

KEYWORDS
Heterogeneous graph, self-supervised learning, pre-training

ACM Reference Format:
Xunqiang Jiang1, Tianrui Jia1, Yuan Fang2, Chuan Shi1,3[1], Zhe Lin3, Hui
Wang3 . 2021. Pre-training on Large-Scale Heterogeneous Graph. In Pro-
ceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD ’21), August 14–18, 2021, Virtual Event, Singapore. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3447548.3467396

*Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467396

1 INTRODUCTION
In recent years, as an emerging tool for learning on graph-structured
data [33], graph neural networks (GNNs) learn powerful graph rep-
resentations by recursively aggregating messages (i.e., features)
from neighboring nodes. They have been demonstrated to benefit a
wide variety of graph mining tasks from node classification and link
prediction [9, 15] to graph generation and graph classification [18].
However, the training of GNNs generally requires abundant task-
specific labeled data in order to achieve competitive performance
for each downstream task. On one hand, unfortunately, labeled data
for many tasks are usually expensive or infeasible to obtain. On the
other hand, a large amount of unlabeled graph structures are often
readily available in various domains amid the digitization trend.

To alleviate the reliance on task-specific labeled data, inspired
by pre-training techniques from computer version [4, 10] and natu-
ral language processing [6, 16], recent works propose to pre-train
GNNs in a self-supervised manner by distilling transferable knowl-
edge from the unlabeled graph structures [11, 12, 25]. In particular,
the transferable knowledge aims to capture the inherent structural
properties of the unlabeled graphs, which can be flexibly applied
across different tasks to complement task-specific labeled data. The
key differences between existing strategies of GNN pre-training
boil down to the design of the self-supervised pre-training tasks and
corpus. For example, Hu et al. [11] present various strategies which
utilize node- and graph-level self-supervision on multiple graphs
for pre-training the GNNs, while GPT-GNN [12] introduces a self-
supervised attributed graph generation task on one large graph. Al-
though the existing pre-training methods for GNNs achieve promis-
ing results, they are mainly designed for homogeneous graphs, lack-
ing the capacity to capture the rich, heterogeneous semantic and
structural properties of a heterogeneous graph during pre-training.

Heterogeneous graphs [26] have been commonly utilized for
modeling complex systems, in which objects of different types in-
teract with each other via various relations. For example, in an
academic graph, authors can publish papers that appear in various
conferences, and co-author with others; in an e-commerce graph,
users can click or buy products in various shops, and shops can
promote products. To handle the heterogeneous objects and inter-
actions, various complex semantic patterns (e.g., meta-path [27]
and meta-graph [7]) have been proposed to capture the heteroge-
neous semantic and structural properties that are rich, inherent
and vital on heterogeneous graphs. Thus, recent GNNs (without
pre-training) start to utilize such semantic patterns to model het-
erogeneous graphs and achieve promising performance, implying
that self-supervised pre-training tasks should also be designed to
preserve the heterogeneous properties on a heterogeneous graph

https://doi.org/10.1145/3447548.3467396
https://doi.org/10.1145/3447548.3467396

as part of the transferable knowledge. However, existing GNN
pre-training approaches have not attempted to encode such hetero-
geneity. Furthermore, real-world heterogeneous graphs are often
large with million- or billion-scale nodes or edges. Hence, it be-
comes critical and timely to study the pre-training of GNNs on a
large-scale heterogeneous graph.
Challenges and present work. In this paper, we take the first
attempt to pre-train GNNs on a large heterogeneous graph, utiliz-
ing the rich semantic and structural properties as self-supervised
information. However, the problem is non-trivial, presenting us
with two key challenges, as follows.
(1) How to capture the semantic and structural properties on a hetero-

geneous graph during pre-training? Existing pre-training strate-
gies [11, 12, 25, 35] are devised only for homogeneous graphs,
treating all nodes and edges uniformly. However, a heteroge-
neous graph entails a variety of rich semantic and structural
properties, which defines the varying characteristics of different
types of objects. Taking an academic graph as example, a paper
is characterized by not only its keywords but also its authors
and venue, whereas an author is characterized by his/her in-
stitutes and papers. Moreover, different types of objects often
manifest heterogeneous structural properties, e.g., conference
nodes generally have much higher degrees than author nodes.
Thus, it is important to encapsulate such diverse semantic and
structural characteristics in self-supervised pre-training tasks,
in order to learnmore precise and expressive transferable knowl-
edge that can be tailored to different downstream tasks on a
heterogeneous graph.

(2) How to efficiently pre-train GNNs on a large-scale heterogeneous
graph? Real-word heterogeneous graphs can be enormous with
billions of nodes and edges [36]. To ensure scalability to large
graphs, existing work often considers two lines of approach:
sampling [9, 13] and sparsification [3]. Sampling of neighboring
nodes is often conducted online during training, whereas spar-
sification can be regarded as a form of graph compression to
retain the most useful edges in an offline step. On a very large
graph, online sampling still incurs a significant overhead in com-
puting the distribution of nodes [3]. Thus, it is less desirable
than sparsification, which does not introduce any overhead dur-
ing training. In this paper, we resort to sparsification. However,
existing sparsification methods, such as personalized PageRank
and other centrality analysis, ignore the differences between
various node and edge types, which could cause unwanted bi-
ases toward certain type of nodes—e.g., the type of nodes with
higher degrees will be indiscriminately deemed more important.
Thus, it is vital to propose an edge sparsification process for
large-scale heterogeneous graphs for efficient pre-training.
To tackle the above challenges, we present a novel framework of

Pre-Training GNNs on Heterogeneous Graph, named PT-HGNN.
It aims to preserve the inherent semantic and structural proper-
ties efficiently on a large-scale heterogeneous graph. For the first
challenge, inspired by contrastive learning [34], we design a con-
trastive pre-training strategy to model the heterogeneity w.r.t. both
semantics and structures. To be more specific, we introduce two
contrastive strategies at the node and schema levels. At the node
level, to enhance the subtle semantic difference between nodes,

we generate relation-wise negative node samples—two nodes can
form a negative sample if they satisfy the types involved in a spe-
cific relation and do not constitute a positive example under this
relation, e.g., author 𝑎1 and paper 𝑝2 with the “write” relation in
Figure 1(a). At the schema-level, we generate negative subgraph
samples guided by network schema, which effectively preserves
high-order structures on heterogeneous graphs. Although com-
plex semantic patterns (i.e., meta-graph) are often used to capture
higher-order graph heterogeneity, computation of their instances
can be time-consuming. In contrast, as a unique high-order struc-
ture that defines a heterogeneous graph, network schema [27] is
convenient to sample its instances, and schema instances naturally
contain all types of nodes and relations in the graph. To address
the second challenge, inspired by the previous graph sparsification
studies [17, 29], we propose a relation-based personalized PageR-
ank (PPR) to sparsify a large heterogeneous graph, as the original
personalized PageRank [14] does not deal with graph heterogeneity.
Particularly, in our relation-based sparsification, we distinguish var-
ious relations in the computation of personalized PageRank, thereby
alleviating the bias introduced by certain types of nodes (e.g., those
with high degrees). The less biased sparsification can accelerate the
pre-training procedure while preserving the heterogeneous nature
of the graph.
Contributions. To summarize, we make the following major
contributions in this work.

• This is the first attempt to pre-train GNNs on a large-scale het-
erogeneous graph, which is an important and practical problem
with numerous application scenarios.

• We propose a novel pre-training strategy for GNNs, named PT-
HGNN, which leverages both the node- and schema-level pre-
training tasks to contrastively preserve heterogeneous semantic
and structural properties as a form of transferable knowledge
for various downstream tasks. At the same time, we propose a
relation-based sparsification for efficient pre-training on a very
large heterogeneous graph.

• We conduct extensive experiments on one of the largest pub-
lic heterogeneous graphs, namely the Open Academic Graph
(OAG) with more than 178 million nodes, and demonstrate that
our PT-HGNN significantly outperforms various state-of-the-art
baselines. Moreover, experiments validate that PT-HGNN is able
to effectively transfer structural knowledge between different
networks with similar structural properties.

2 RELATEDWORK
Graph neural networks have received significant research interests
due to the prevalence of graph-structure data [33]. They utilize neu-
ral networks to learn node representations on graphs, and belong
to two major categories: spectral methods [2, 5] and message pass-
ing architectures to aggregate neighbors’ features [9, 15]. Besides,
some studies have attempted to deploy the GNNs on heteroge-
neous graphs [13, 32]. Wang et al. [32] have extended the attention
mechanism for different meta-paths. Recently, Hu et al. proposes a
heterogeneous graph transformer [13] that leverages multi-head
attentions for different relation types to achieve better performance.

𝑝1

𝑝2

(c) Node-level pre-training task

𝑎2 𝑎3

GNN
f

𝑓(𝑝1)

Similarity
Contrastive

Loss ℒ𝑛𝑜𝑑𝑒

(d) Schema-level pre-training task

×
×

×

Semantic
Encoder

Contrastive
 Loss ℒ𝑠𝑐ℎ𝑒 Similarity

(a) Heterogeneous graph and
network schema

(b) Pre-processed heterogeneous graph
via edge sparsification

𝑎1 𝑝1

𝑝1

𝑝1

𝑝2

𝑝2
𝑝1

𝑝2

𝑎1

𝑓1

𝑣1

𝑝3
𝑎1

𝑎2

𝑎3

GNN
f

𝑓(𝑎1)
𝑓(𝑎2)

𝑓(𝑎3)

×Pos ：

Neg ：
Pos ：𝑓(𝑎1)

Neg ：𝑓(𝑎3)

GNN
f

𝑓(𝑝1)

Paper Author Venue Field

publish/published

contain/contained

write/written

cite/cited

Figure 1: The overall framework of PT-HGNN.

To enable more effective learning, researchers have explored how
to utilize the abundant unlabeled data for pre-training a GNN. In-
spired by pre-training techniques in natural language processing [6]
and computer vision [4, 10], recent studies [11, 12, 22, 25, 35] have
been proposed to pre-train GNNs with self-supervised information.
Boardly, these work are classified into two categories: contrastive
method and generative method. For instances, Qiu et al. [25] and
You et al. [35] propose various graph data augmentations to con-
struct positive/negative samples for conducting contrastive learn-
ing, while GPT-GNN [12] introduces a self-supervised attributed
graph generation task to pre-train a GNN. However, these methods
usually focus on homogeneous graphs, which can not be directly
applied to heterogeneous graphs.

3 PROPOSED PT-HGNN FRAMEWORK
In this section, we introduce our pre-training framework PT-HGNN
on a large-scale heterogeneous graph. More specifically, we first
elaborate on the design of the pre-training tasks for a heteroge-
neous graph. To preserve the heterogeneity, we propose both node-
and schema-level pre-training tasks to respectively utilize node
relations and the network schema, which encourages the GNN to
capture heterogeneous semantic and structural properties. Second,
we present our edge sparsification strategy on a large-scale het-
erogeneous graph for pre-processing. To avoid unwanted biases
toward certain types of node, we propose a relation-based personal-
ized PageRank to retain the most useful graph structures, in order
to accelerate the pre-training procedure. Figure 1 shows the overall
framework of the proposed PT-HGNN.

3.1 Pre-training Tasks on Heterogeneous
Graph

A heterogeneous graph [26], denoted by G = {V, E,A,R, 𝜙, 𝜑}, is
a form of graph, whereV and E denote the sets of nodes and edges,
respectively. It is also associated with a node-typemapping function
𝜙 : V → A and an edge-type mapping function 𝜑 : E → R,
where A and R denote the sets of node and edge types such that

|A| + |R| > 2. Moreover, the network schema 𝑇G = (A,R) of a
heterogeneous graph specifies the type constraints on the nodes and
their relations, which can guide the exploration of heterogeneous
structural contexts on the graph. Figure 1(a) shows an example of
heterogeneous graph and its network schema with four types of
node and edge.

For the design of pre-training tasks, our goal is to encode the in-
herent heterogeneity of nodes and edges in the transferable knowl-
edge. In contrast to previous pre-training strategies [11, 12, 22,
25, 35], we need to consider the subtle semantic differences and
complex heterogeneous structures. Thus, we employ both node
instances and network schema instances as self-supervision, to dif-
ferentiate the rich semantic relations and high-order heterogeneous
structural contexts, respectively. Inspired by contrastive learning
[25], we generate the positive and negative samples from two levels,
to learn transferable knowledge for downstream tasks.

3.1.1 Node-level Pre-training Task. In existing methods, positive
and negative samples are differentiated only by network structures,
such as through a perturbation of the original graph structures
and node features. However, a heterogeneous graph embodies rich
semantics manifested in terms of multiple types of node and their
relation (i.e., edge), and thus it is crucial for the transferable knowl-
edge to encode such semantics. Here, we design a node-level pre-
training task to encode the semantics, which allows us to model
pairwise relations between different types of node.

A relation between two nodes conveys important semantic in-
formation about them. On one hand, a positive triple ⟨𝑢, 𝑅, 𝑣⟩ in a
heterogeneous graph G means that nodes 𝑢 ∈ V and 𝑣 ∈ V are
linked via a specific relation 𝑅 ∈ R on G. On the other hand, nega-
tive samples are obtained by replacing the nodes in a corresponding
positive sample, as follows.
Negative Samples Selection. In previous contrastive learning [25,
35], the negative samples are only selected based on homogeneous
graph structures (i.e., two unlinked nodes), ignoring two important
aspects. First, they do not constrain node types for a specific re-
lation. For instance, for the “write” relation, the negative samples

should only be sampled from author-paper node pairs. Second, they
do not consider the similarity of nodes themselves, in contradiction
to the alignment principle [31]. Specifically, two nodes that are
too similar should not simultaneously appear in the corresponding
positive and negative samples under the same relation. For instance,
consider a positive sample ⟨𝑎1, “write”, 𝑝1⟩ shown in Figure 1(c). 𝑎2,
though not linked to 𝑝2, should not form a negative example with
𝑝2 under the “write” relation, as 𝑎2 and 𝑎1 are too similar in their
representations to serve as a good contrast. Instead, 𝑎3, which is
not linked to 𝑝2 and is dissimilar to 𝑎1, can form a more reasonable
negative sample ⟨𝑎3, “write”, 𝑝1⟩. Accounting for both of the above
aspects, we construct the negative samples in a relation-specific
manner and consistent with the alignment principle. In specific, for
a given positive triplet ⟨𝑢, 𝑅, 𝑣⟩, we define the negative samples for
a relation 𝑅 as:

N𝑛𝑜𝑑𝑒
⟨𝑢,𝑅,𝑣⟩ = {⟨𝑢, 𝑅, 𝑣−⟩ | 𝜙 (𝑣) = 𝜙 (𝑣−), (𝑢, 𝑣−) ∉ E, 𝑆𝑖𝑚(𝑣, 𝑣−) ≤ 𝛿} ,

(1)
where 𝑆𝑖𝑚 is a function to measure the similarity between the node
representations, and 𝛿 is a threshold for filtering out too similar
nodes in violation of the alignment principle. Note that, to avoid
getting only very easy negative samples, 𝛿 is set to a relatively large
number.
Node-level Loss. Given a positive triple ⟨𝑢, 𝑅, 𝑣⟩ and its corre-
sponding negative samples that replace node 𝑣 , we optimize the
following InfoNCE loss [28] for node 𝑢:

L𝑛𝑜𝑑𝑒
𝑢,𝑅 = − log

exp
(
h⊤𝑢W𝑅h𝑣/𝜏

)∑
𝑖∈{𝑣 }∪{𝑤 | ⟨𝑢,𝑅,𝑤 ⟩∈N𝑛𝑜𝑑𝑒

⟨𝑢,𝑅,𝑣⟩ }
exp

(
h⊤𝑢W𝑅h𝑖/𝜏

) , (2)

where W𝑅 ∈ R𝑑×𝑑 is a learnable relation matrix for relation 𝑅

and 𝜏 is a temperature hyper-parameter. Here, h𝑢 indicates the
representation vector of node 𝑢, which can be generated by any
existing GNN architecture.

The above node-level pre-training tasks only capture the first-
order semantics involving direct relations between nodes. To cap-
ture high-order semantic and structural properties, we resort to the
schema-level pre-training, as follows.

3.1.2 Schema-level Pre-training Task. In order to incorporate the
high-order heterogeneous semantic and structural contexts in a het-
erogeneous graph, a natural idea is to utilize high-order semantic
patterns such as meta-structures [7, 27] and motifs. However, there
are threemajorweakness of these semantic patterns for pre-training
GNNs on a heterogeneous graph. (1) Meta-paths are relatively lim-
ited in the ability to express more complex high-order structures,
due to its path-only structure, whereas motifs only capture high-
order structures but limited in semantics. (2) For meta-graph or
motif, it is intractable to find their instances especially when the
meta-graph or motif is large. (3) The choice of meta-path and meta-
graph relies on domain knowledge. However, for a heterogeneous
graph, its network schema [27] is a unique defining structure that
captures both high-order semantic and structural properties, and
does not require any domain knowledge. Moreover, as network
schema is essentially a template for the heterogeneous graph, its
instances can be sampled easily.

Therefore, we utilize the network schema to strike a balance
between capturing the heterogeneity and achieving efficiency on

a large-scale heterogeneous graph. We generate schema instances
to construct the positive and negative samples, to complement the
first-order node-level samples.
Positive Network Schema Samples. Given a network schema
𝑇𝐺 = (A,R), we can generate its instances. However, if we directly
generate instances randomly following the network schema, the
instances will be extremely imbalanced w.r.t. different node types,
due to the fact that the degree of nodes for each type can vary
dramatically (e.g., the degree of a conference is much larger than a
paper). To address the imbalance problem, we control the number
of sampled schema instances of each type of node.

We consider the association between a node and a network
schema instance. Formally, given a schema instance containing
node 𝑢, let 𝑢 be the target node and the other nodes in the instance
be the context nodes of 𝑢. For example, for a schema instance
s = {𝑝1, 𝑎1, 𝑓1, 𝑣1, 𝑝3} as shown in Figure 1(a), we say that node 𝑝1
is a target node with context nodes {𝑎1, 𝑓1, 𝑣1, 𝑝3}, or 𝑎1 is a target
node with context nodes {𝑝1, 𝑓1, 𝑣1, 𝑝3}, and so on. Based on this
definition, we consider the context nodes of target node 𝑢 as the
schema-level positive samples for 𝑢, denoted P𝑠𝑐ℎ𝑒

𝑢 , given by

P𝑠𝑐ℎ𝑒
𝑢 =

⋃
s∈𝐼 (𝑢)

s\{𝑢}, (3)

where 𝐼 (𝑢) denotes the set of all schema instances containing node
𝑢. Intuitively, the context nodes capture not only the structural
contexts of the target node, but also semantic properties of different
types of node and edge.
Negative Network Schema Samples. To construct the schema-
level negative samples for target node 𝑢, we follow two approaches:
1) if two network schema instances are generated from two different
target nodes of the same type, we treat them as negative schema
samples of each other; and 2) we design a dynamic queue [10] for
storing the negative network schema samples.

In the first approach, for the nodes in a batch denoted asV𝐵 , we
obtain the negative schema instances N1

𝑢 for target node 𝑢 as

N1
𝑢 = {P𝑠𝑐ℎ𝑒

𝑢− | 𝑢− ∈ V𝐵, 𝑢 ≠ 𝑢−, 𝜙 (𝑢) = 𝜙 (𝑢−)}. (4)

In the second approach, for the sake of getting more negative
schema samples, a direct idea is to randomly select the nodes for
each type to construct the network schema instances. However,
negative instances generated from this method will be easily dis-
tinguishable from the positive schema samples, in which nodes in
such negative samples are more likely to be unrelated. Thus, to
avoid randomly generated negative samples, we resort to actual
schema instances from the previous batch by designing a dynamic
queue to store the network schema instances for more representa-
tive instances. Then, we have the negative schema instances N2

𝑢

from the dynamic queue as:

N2
𝑢 = {P𝑠𝑐ℎ𝑒

𝑣 | 𝜙 (𝑢) = 𝜙 (𝑣), 𝑣 ∈ V𝑡−1
𝐵 }, (5)

whereV𝑡−1
𝐵

is the node set of the previous batch. It is worth noticing
that the queue is initialized as an empty set in the beginning and
updated during the training procedure. Therefore, we obtain the
overall schema-level negative samples as follows:

N𝑠𝑐ℎ𝑒
𝑢 = N1

𝑢 ∪ N2
𝑢 . (6)

Encoding Context Nodes and Schema-Level Loss. Directly
predicting the proximity between target node 𝑢 and its context
nodes {𝑣1, 𝑣2, · · · } cannot capture the heterogeneity of nodes. To
account for nodes of different types, we devise one encoder for each
type of nodes to learn node representations. Specifically, we learn
the node embedding of target node 𝑣𝑖 with an encoder Enc𝜙 (𝑣𝑖) for
node type 𝜙 (𝑣𝑖):

e𝑣𝑖 = Enc𝜙 (𝑣𝑖) (h𝑣𝑖), (7)

where each encoder Enc(·) represents an MLP. Then, for the target
node 𝑢, we generate its context embedding via a pooling function
over the context nodes {𝑣1, 𝑣2, · · · }, denoted as c𝑠𝑢 :

c𝑠𝑢 = Pool(e𝑣1 , e𝑣2 , · · ·), (8)

where Pool(·) averages the embeddings of context nodes.
Given the schema-level samples, we optimize the likelihood that

the target node 𝑢 associates with context nodes in the positive
samples and does not related to those in the negative samples:

L𝑠𝑐ℎ𝑒
𝑢 =

∑
s+∈P𝑠𝑐ℎ𝑒

𝑢

log
exp

(
h⊤𝑢 cs

+/𝜏
)

∑
s∈{s+ }∪N𝑠𝑐ℎ𝑒

𝑢
exp

(
h⊤𝑢 cs/𝜏

) , (9)

where 𝜏 is a temperature hyper-parameter.

3.2 Sparsification of Large-Scale
Heterogeneous Graph

To pre-train a better GNN, the key is to leverage a large-scale het-
erogeneous graph. Existing scalable GNNs utilize sampling and
sparsification in the online and offline steps, respectively. However,
on large-scale graphs, online sampling still incurs a significant over-
head in computing the distribution of nodes [3]. Thus, we resort to
offline sparsification to retain themost important edges in the graph.
Inspired by previous studies [1, 17, 29], personalized PageRank can
be utilized to preserve more effective neighborhood. However, due
to the heterogeneity of graph, existing personalized PageRank on
homogeneous graphs is not applicable. Thus, we propose a relation-
based personalized PageRank for edge sparsification.

3.2.1 Personalized PageRank on Heterogeneous Graph. As we men-
tioned above, personalized PageRank (PPR) is a good tool to obtain
more meaningful neighbors for a node. To evaluate the personal-
ized PageRank for a certain node, it relies on the node degree and
adjacency matrix to calculate the transition probability. However,
on a heterogeneous graph, the transition probability can be highly
skewed toward certain types of node. For example, the transition
probability from conference node (high out-degree) and paper node
(low out-degree), will be extremely different due to their distinct
structural role in an academic graph, which leads to unwanted
biases in the PageRank scores.

To alleviate the biases caused by the heterogeneous structures,
we design a power-iteration method to compute the personalized
PageRank score for a relation 𝑅. For the sake of simplicity, we take

𝐴1
𝑅−→ 𝐴2 for illustration, which defines a relation 𝑅 between

nodes with types 𝐴1 and 𝐴2. We obtain personalized PageRank Π𝑅

for a relation 𝑅 by iteratively updating the following:

Π𝑅 = 𝛼I + (1 − 𝛼)𝑆Π𝑅−1

Π𝑅−1
= 𝛽I + (1 − 𝛽)𝑆𝑇Π𝑅

(10)

where 𝑆 = 𝐷
− 1

2
𝐴1

𝐴𝑅𝐷
− 1

2
𝐴2

, 𝐷𝐴𝑖
denotes a diagonal matrix whose

diagonal contains the degrees of all nodes of𝐴𝑖 type,𝐴𝑅 represents
the adjacency matrix for nodes with type 𝐴1 and 𝐴2 under the
relation 𝑅, Π𝑅 denotes a matrix for pairwise personalized PageRank
scores under the relation 𝑅, 𝑅−1 is the inverse relation of 𝑅, and 𝛼, 𝛽
are hyper-parameters for controlling the convergence. Thus, the
relation-based personalized PageRank can handle different node
and edge types without skewing to a particular type.

However, the computation of Eq. 10 depends on matrix multi-
plication, which is infeasible for a large-scale graph. Inspired by
previous studies [1], we obtain the personalized PageRank for a
relation 𝑅 using a equivalent random walk formulation. Further
details are provided in Appendix A.

3.2.2 Edge Sparsification. Through the above process, we can ob-
tain a dense matrix Π𝑅 with pairwise personalized PageRank scores
for each relation 𝑅, in contrast to the sparse adjacency matrix 𝐴𝑅

under the same relation. Note that the values in Π𝑅 represent the
pairwise influence between all pairs of nodes in relation 𝑅, which
typically are highly localized [23]. Spatial localization allows us to
simply truncate small values of Π𝑅 and recover sparsity. Similar to
previous studies [1], we use the top-k entries with the highest mass
per column and set all other entries to zero in Π𝑅 . Subsequently, as
shown in Figure 1(b), for each relation 𝑅, we define a new adjacency
matrix �̃�𝑅 as follows:

�̃�𝑅
𝑢 𝑗 =

{
1, if Π𝑅

𝑢 𝑗
> 0 and (𝑢, 𝑗) ∈ E

0, otherwise
. (11)

The edge sparsification for the heterogeneous graph G will be done
as a pre-processing step. Subsequently, we obtain the sparsified
graph G′

for pre-training, which can accelerate the aggregation
operation of GNNs.

3.3 Pre-training Pipeline
Figure 1 shows the overall pipeline of the pre-training framework
(PT-HGNN). Given a large-scale heterogeneous graph G, PT-HGNN
first conducts the edge sparsification via the relation-based person-
alized PageRank to obtain a more representative and sparsified
graph G′

, as show in Figure 1(b). Then, PT-HGNN employs the
pre-training tasks at both the node and relation levels on the spar-
sified G′

, in which the two pre-training tasks are jointly optimized
to capture the heterogeneous semantic and structural properties
as the transferable knowledge. In other words, we minimize the
following loss on G′

:

L = L𝑛𝑜𝑑𝑒 + 𝜆L𝑠𝑐ℎ𝑒 , (12)

where 𝜆 is a balancing coefficient. At last, we optimize the model
via the AdamW optimizer [21] with Cosine Annealing Learning
Rate Scheduler [20]. The detailed algorithm and time complexity
of the pre-training pipeline are provided in Appendix B.

Table 1: Statistics of Open Academic Graph Dataset

Dataset #nodes #edges #venues #papers #fields #authors #institutes #P-V #P-P #P-F #P-A #A-I
CS 11,918,983 107,263,811 27,433 5,597,605 289,930 5,985,759 18,256 5,597,606 31,441,552 47,462,559 15,571,614 7,190,480

Mater 4,552,941 42,161,581 15,141 2,442,235 79,305 2,005,362 10,898 2,442,235 13,011,272 19,119,947 5,582,765 2,005,362
Engin 5,191,920 36,146,719 19,867 3,239,504 99,444 1,819,100 14,005 3,239,504 4,848,158 22,498,822 3,741,135 1,819,100
Chem 12,158,967 159,537,437 19,142 7,193,321 183,782 4,748,812 13,910 7,193,321 74,018,600 57,162,528 16,414,176 4,748,812
OAG 178,663,987 2,236,196,802 53,073 89,606,257 615,288 88,364,081 25,288 89,606,258 1,021,237,518 657,049,405 300,853,688 167,449,933

4 EXPERIMENTS
In this section, we first conduct experiments on large heterogeneous
graphs to evaluate model performance, and then investigate the
knowledge transferability of PT-HGNN on different graphs and the
underlying mechanism with two ablated models. Lastly, we explore
the impact of different model settings on task performance.

4.1 Experiment Settings
Datasets and Tasks. We conduct experiments on Open Academic
Graph (OAG) [36], which is consitituted by papers (P), authors (A),
venues (V), institutes (I), fields (F) and their relations with 178 mil-
lion nodes and 2.236 billion edges. As far as we know, this is the
largest publicly available heterogeneous graph. To test the gener-
alization ability and transferability of the proposed pre-training
framework, we also construct four representative domain-specific
subgraphs from OAG: Computer Science (CS), Material Science
(Mater), Engineering (Engin) and Chemistry (Chem). These graphs
have diverse statistics listed in Table 1, which also exhibit large
differences in graph properties as shown in Appendix C. We con-
sider the prediction of Paper–Field, Paper–Venue, and Author Name
Disambiguation (Author ND) as three downstream tasks used in
prior works [12, 13]. The model performance is evaluated by NDCG
and MRR, which are widely adopted performance metrics [19].
Pre-Training and Fine-Tuning Setting. We pre-train a GNN
model and use its output node embeddings as input features for the
downstream tasks. Then we fine-tune the GNNmodels according to
the specific downstream tasks on an unseen fine-tuning dataset and
evaluate the model performance. In OAG dataset, the publication
data of papers ranges from 1900 to 2019. Accordingly, we use the
data with publication information before 2014 for pre-training. In
contrast, the data since 2014 are used for fine-tuning on different
downstream tasks. To be more specific, in the fine-tuning stage, we
use 10% data from 2014 to 2016 for training and 10% data in 2017
for validation. The data after 2018 are used for testing.
Baselines. We compare our proposed PT-HGNN with a series of
state-of-the-art baselines, as follows.
• No pre-train method trains a GNN model for the downstream
tasks on the fine-tuning graph directly.

• EdgePred [9] predicts whether there exists a link between two
nodes, which is an unsupervised method that forces linked nodes
to have similar node embedding.

• DGI [30] maximizes local mutual information across the graph’s
patch representations.

• ContextPred [11] maps nodes appearing in similar structural
contexts to nearby embeddings.

• GraphCL [35] proposes four graph data augmentation method
to conduct contrastive learning, in which node dropping and

subgraphs are employed as the pre-training strategies in the
experiment.

• GPT-GNN [12] is generative pre-training model for GNNs, which
reconstructs the attributes and the structure of the input graph
to learn the transferable knowledge from the input graph.

Implementation details. We employ the state-of-the-art hetero-
geneous GNN method HGT [13] as the base model for our method
PT-HGNN and other baselines. We implement the base model with
PyTorch Geometric (PyG) package [8]. We set the hidden dimension
as 400, the number of heads as 8, and the number of layers as 3.
Besides, we optimize the model via AdamW optimizer [21] with
Cosine Annealing Learning Rate Scheduler [20] with 200 epochs
and choose the model parameters with the lowest validation loss
as the pre-trained model in the pre-training procedure. For fair
comparison, the above parameters follow the setting of previous
study [12]. For the implementation of our pre-training framework
PT-HGNN, we set 𝛿 in Eq.(1) as 0.99. The maximum number of
negative samples in Eq. (1) and Eq. (4) are set to 256 and 512, respec-
tively. In the pre-training procedure, we will remove some negative
samples randomly if the number of negative samples exceeds the
maximum setting. For the balancing coefficient 𝜆 in Eq. (12), we
set it as 0.1 in the pre-training procedure. The temperature hyper-
parameter 𝜏 in Eq.(2) and Eq.(9) are set to 0.2. In the fine-tuning
stage, for fair comparison, we fine-tune the model using the same
optimization setting on the downstream tasks for ten times and
report the mean and standard deviation of the test performance.
More experiment details can be found in Appendix D.

4.2 Performance Comparison on Downstream
Tasks

In this experiment, we compare PT-HGNN to baseline methods
in the downstream tasks on the whole OAG graph and the four
domain-specific subgraphs, respectively. We evaluate the model
performance by pre-training and fine-tuning on the same graphs
but with different time periods as described in Section 4.1. Table 2
demonstrates the link prediction and node classification perfor-
mance on the five datasets.

Overall, PT-HGNN achieves relative performance gains of 22.02%
over the base model (i.e., HGT) without pre-training on OAG. More-
over, our PT-HGNN consistently yields the best performance among
all methods, leading to an average improvement of 4.98% compared
to the second best baseline method. These improvements indicate
that our proposed pre-training strategy is capable of exploiting
transferable information and graph properties on heterogeneous
graphs, which are beneficial to the downstream tasks. We also ob-
serve that GPT-GNN achieves the second best performance due
to the fact that its edge generation pre-training task can also be

Table 2: Performance comparison between our method and baselines (best result in bold, and second best underlined).

Dataset Downstream Task No pre-train EdgePred DGI ContextPred GraphCL GPT-GNN PT-HGNN Improv.

CS

Paper–Field NDCG 27.42±0.42 31.37±0.32 32.82±0.67 33.15±0.71 32.64±0.65 35.24±0.47 36.04±0.37 2.27%
MRR 23.17±0.45 32.13±0.52 33.43±0.81 33.24±0.57 33.24±0.67 33.57±0.71 37.76±0.42 12.48%

Paper–Venue NDCG 27.76±0.56 35.77±0.59 34.23±0.71 34.30±0.92 32.11±0.69 36.15±0.53 38.81±0.51 7.35%
MRR 11.39±0.37 16.34±0.47 16.21±0.62 17.66±0.81 16.29±0.49 19.13±0.65 21.19±0.45 10.76%

Author ND NDCG 76.27±0.53 79.41±0.68 81.38±0.93 79.22±0.72 79.95±0.89 80.20±0.51 82.19±0.60 2.48%
MRR 54.82±0.49 59.06±0.74 58.98±0.79 60.23±0.83 60.55±0.74 60.94±0.52 63.38±0.38 4.00%

Mater

Paper–Field NDCG 37.44±0.77 44.47±0.67 43.32±0.66 41.94±0.32 43.89±0.54 44.77±0.47 46.61±0.64 4.01%
MRR 35.56±0.54 47.69±0.75 46.21±0.81 44.11±0.69 46.24±0.80 48.24±0.35 51.11±0.51 5.94%

Paper–Venue NDCG 37.94±0.56 43.73±0.59 43.32±0.68 43.26±0.49 42.76±0.44 44.23±0.63 47.88±0.52 8.25%
MRR 18.78±0.49 23.23±0.33 26.77±0.42 27.32±0.44 24.68±0.34 28.39±0.52 29.54±0.41 4.05%

Author ND NDCG 71.45±0.84 71.52±0.82 70.49±0.71 71.44±0.89 71.52±0.66 72.75±0.58 71.99±0.72 -1.04%
MRR 47.46±0.63 48.49±0.56 47.38±0.42 46.32±0.49 48.22±0.59 49.92±0.40 51.57±0.47 3.31%

Engin

Paper–Field NDCG 28.44±0.32 34.33±0.46 34.40±0.56 34.88±0.60 35.20±0.60 35.94±0.44 37.78±0.53 5.12%
MRR 23.90±0.42 36.86±0.45 36.43±0.55 37.42±0.46 35.74±0.49 38.28±0.39 40.24±0.44 5.12%

Paper–Venue NDCG 41.44±0.67 47.25±0.88 47.53±0.53 46.81±0.69 45.29±0.93 47.96±0.71 50.27±0.65 4.81%
MRR 23.67±0.76 27.65±0.59 29.29±0.78 30.14±0.88 29.13±0.92 29.79±0.65 31.12±0.64 4.46%

Author ND NDCG 73.77±1.02 73.92±0.96 74.78±0.74 74.32±0.89 74.56±0.75 75.22±0.82 76.71±0.70 1.94%
MRR 49.37±0.52 50.87±0.57 51.29±0.63 50.23±0.72 50.37±0.51 52.66±0.64 54.47±0.59 3.44%

Chem

Paper–Field NDCG 31.74±0.46 36.53±0.49 38.45±0.66 39.27±0.49 39.90±0.42 41.76±0.39 42.85±0.50 2.61%
MRR 23.90±0.37 44.66±0.39 46.25±0.47 47.02±0.42 45.39±0.58 46.70±0.49 48.70±0.62 4.11%

Paper–Venue NDCG 30.39±0.60 42.23±0.57 43.56±0.53 44.11±0.51 42.73±0.59 43.05±0.62 46.81±0.43 6.12%
MRR 13.68±0.32 22.13±0.33 23.27±0.35 22.85±0.44 21.84±0.56 24.19±0.62 27.64±0.49 14.26%

Author ND NDCG 75.19±0.94 76.71±0.82 75.69±0.69 77.60±0.76 77.65±0.86 78.31±0.85 80.09±0.87 2.27%
MRR 55.61±0.62 58.33±0.59 57.00±0.44 59.20±0.59 57.57±0.38 60.30±0.55 62.91±0.50 6.48%

OAG

Paper–Field NDCG 32.33±0.36 38.03±0.33 37.12±0.42 38.40±0.49 39.32±0.30 40.76±0.40 42.33±0.62 3.85%
MRR 28.15±0.48 44.23±0.56 42.96±0.43 43.15±0.55 45.65±0.60 45.70±0.41 47.29±0.49 3.48%

Paper–Venue NDCG 42.28±0.50 43.25±0.61 44.23±0.53 43.07±0.74 42.66±0.66 44.05±0.75 47.13±0.68 6.56%
MRR 22.76±0.37 23.40±0.35 24.38±0.35 24.12±0.42 25.03±0.48 25.19±0.45 26.75±0.57 6.19%

Author ND NDCG 76.52±1.13 78.01±0.86 77.98±0.93 77.88±0.72 78.11±0.93 79.33±0.87 79.99±0.92 0.83%
MRR 54.65±0.53 58.00±0.63 58.30±0.48 57.49±0.60 58.22±0.53 59.08±0.52 61.32±0.55 3.79%

adopted for heterogeneous graphs, while its performance is signifi-
cantly worse than our PT-HGNN. This demonstrates the superiority
of our proposed pre-training tasks in capturing the heterogeneity
on graphs. In addition, among the baselines, different pre-training
methods work well on different datasets, e.g., EdgePred for Material
Science and ContextPred for Chemistry. This difference implies
that those baselines may only capture a portion of local informa-
tion and structural contexts which make their performance vary
dramatically in different datasets. In all, the proposed node- and
schema- level pre-training tasks enable our PT-HGNN to make
full use of heterogeneous semantic and structural properties on
heterogeneous graphs, which accounts for the performance gain of
PT-HGNN over the other baselines.

4.3 Knowledge Transfer on Different Graphs
We investigate how the network structures affect the ability of
knowledge transfer from pre-training to fine-tuning, and examine

the applicability of our proposed pre-training strategies. In order
to exploit diverse network structures, in this experiment, we add
the Art graph with unique network structures from the art field
of OAG, whose details can be found in Appendix C. We compute
the correlation between graphs using a series of commonly used
graph property metrics [24] listed in Table 6 in Appendix C, so as
to quantify the structural difference between graphs. In all, a higher
correlation value between two graphs means the higher similarity
of their network structures. Figure 2(a) shows a heatmap of the
pairwise correlation among five representative graphs, from which
we observe that the four graphs out of a total number of five, namely,
CS, Chemistry, Engineering and Materials, have similar network
structures, whereas the Art graph is significantly different in its
network structures compared to the other graphs. This difference
in network structures is also verified by the citation coefficient [36],
which measures the percentage of publications in graph Y that have
citations in graph X, as shown in Figure 2(b).

CS Mater Engin Chem Art
Graph X

Art

Chem

Engin

Mater

CS

Gr
ap

h
Y

-0.49 -0.35 -0.22 -0.17 1.00

0.83 0.72 0.70 1.00 -0.17

0.88 0.89 1.00 0.70 -0.22

0.70 1.00 0.89 0.72 -0.35

1.00 0.70 0.88 0.83 -0.49 −0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

(a) Correlation based on graph properties

CS Mater Engin Chem Art
Graph X

Art

Chem

Engin

Mater

CS

Gr
ap

h
Y

0.23 0.1 0.34 0.07 26

1.1 13 1.9 57 1.3

10 6.9 42 0.98 4.1

2.7 68 13 15 1.9

63 2.6 23 0.82 3.8 10

20

30

40

50

60

(b) Citation coefficient (%)

CS Mater Engin Chem Art
Pre-training Graph

Art

Chem

Engin

Mater

CS

Fi
ne

-tu
ni

ng
 G

ra
ph

-2.43 -4.71 -5.64 -3.41 6.41

4.12 3.12 3.45 11.60 -2.31

8.14 4.53 9.36 5.14 0.81

3.17 7.97 2.57 5.43 -5.17

13.51 2.45 5.23 6.71 -7.21 −5

0

5

10

(c) MRR gain (%) over no pre-training

Figure 2: Visualization of pairwise correlation and knowledge transfer among five graphs.

Table 3: Analysis of different ablated models on various
downstream tasks on the CS graph.

Downstream Task No pre-train PT-HGNN𝑛𝑜𝑑𝑒 PT-HGNN𝑠𝑐ℎ𝑒 PT-HGNN

Paper–Field NDCG 27.42 35.80 35.16 36.04
MRR 23.17 36.82 36.21 37.76

Paper–Venue NDCG 27.76 36.23 35.24 38.81
MRR 11.39 20.42 18.92 21.19

Author ND NDCG 76.27 80.41 81.25 82.19
MRR 54.82 60.57 62.02 63.38

Next, we evaluate the model performance by pre-training with
one graph and fine-tuning with another for the Author ND task. The
MRR improvement of our proposed method over the one without
pre-training is shown in Figure 2(c), which leads to the following
findings. Knowledge transferring from pre-training to fine-tuning
does not guarantee a gain in performance, and generally speaking,
a positive correlation value between graphs results in positive trans-
ferring and vice versa. Moreover, a higher similarity of network
structures between graphs tend to give rise to larger performance
improvement. From the above observations, we can come to the
conclusion that the proposed pre-training strategy is applicable if
the two graphs for pre-training and fine-tuning, respectively, have
similar network structures with a positive correlation value.

4.4 Ablation Study
We experimentally evaluate the effect of node- and schema-level
pre-training tasks on heterogeneous graphs. Hence, we conduct
an ablation study and consider two ablated variants of PT-HGNN
named PT-HGNN𝑛𝑜𝑑𝑒 and PT-HGNN𝑠𝑐ℎ𝑒 . Here, PT-HGNN𝑛𝑜𝑑𝑒

only includes the node-level pre-training task, while PT-HGNN𝑠𝑐ℎ𝑒

only incorporates the schema-level pre-training task. Specifically,
we consider the prediction of Paper–Field, Paper–Venue, and Au-
thor ND as three downstream tasks on the CS graph.

In Table 3, the two ablated variants achieve significant improve-
ment over the no pre-train model, while they still perform worse
than the complete pre-training strategy, i.e., PT-HGNN. These re-
sults illustrate the benefits of the node- and schema-level pre-
training tasks. In particular, PT-HGNN𝑛𝑜𝑑𝑒 models the pairwise
node interaction with semantic information, which obtains better
performance than PT-HGNN𝑠𝑐ℎ𝑒 in the link prediction experiments

(i.e., Paper-Field and Paper-Venue). Compared to PT-HGNN𝑛𝑜𝑑𝑒 ,
the PT-HGNN𝑠𝑐ℎ𝑒 significantly improves the node classification
performance by focusing on modeling the structure context in a
heterogeneous graph. Putting it all together, the combination of PT-
HGNN𝑛𝑜𝑑𝑒 and PT-HGNN𝑠𝑐ℎ𝑒 offers strong capability in learning
both the link prediction and node classification tasks.

4.5 Model Analysis
Lastly, we investigate the performance of PT-HGNN with different
fine-tuning strategies, as well as the impact of edge sparsification.
Freezing vs. Full Fine-tuning. The main goal of pre-training is
to learn transferable weights. Thus, we evaluate two different train-
ing modes for downstream tasks, named freezing mode and full
fine-tuning mode. In the freezing mode denoted by PT-HGNN(FE),
we freeze the parameters of the pre-trained model during fine-
tuning stage, and treat it as a feature extractor (FE) only. Then,
we just train the downstream classifier with the output embed-
dings from the base GNN. In the full fine-tuning mode (i.e., our
PT-HGNN), we train the base GNN with the downstream classifier
in an end-to-end manner. We compare the performance of freezing
mode, full fine-tuning mode and the no pre-train mode. As shown
in Table 4, PT-HGNN(FE) achieves better performance than the
no pre-train model, which demonstrates that the proposed pre-
training strategies are able to capture the transferable knowledge.
Moreover, the performance of PT-HGNN in freezing mode exhibits
competitive performance to that of the full fine-tuning mode. In all,
the experimental results indicate that our pre-training strategies
can capture transferable knowledge.
Impact of edge sparsification. We conduct further experiments
to examine the efficiency of the PPR-based edge sparsificaiton op-
eration. Specifically, we evaluate the three downstream tasks on
the CS graph with and without the sparsification method. Table 5
demonstrates that pre-training on the pre-processed heterogeneous
graph G′

achieve competitive performance to that on the origi-
nal input heterogeneous graph G. This is mainly because the PPR
strategy in PT-HGNN can preserve more meaningful edges and
reduce some noisy edges in the pre-processing stage. Moreover,
with the edges sparsification based on personalized PageRank, the
training efficiency is increased by 41.97% on average, showing that
this strategy effectively expedites the pre-training process.

Table 4: Performance of PT-HGNN in freezing and full fine-
tuning modes on the CS graph.

Downstream Task No pre-train PT-HGNN (FE) PT-HGNN

Paper–Field NDCG 27.42 32.81 36.04
MRR 23.17 32.50 37.76

Paper–Venue NDCG 27.76 35.93 38.81
MRR 11.39 18.45 21.19

Author ND NDCG 76.27 81.41 82.19
MRR 54.82 62.15 63.38

Table 5: Performance and time efficiency of our model with
PPR and without PPR-based sparsification on the CS graph.

Downstream Task No PPR PPR Improv.

Paper–Field NDCG 36.54 36.04 -1.38%
MRR 38.12 37.76 -0.95%

Paper–Venue NDCG 37.82 38.81 2.62%
MRR 20.42 21.19 3.77%

Author ND NDCG 80.87 82.19 1.63%
MRR 60.09 63.38 5.48%

Efficiency Time per batch (s) 64.2 37.9 41.97%

5 CONCLUSION
In this work, we take the first attempt to pre-train GNNs on a large-
scale heterogeneous graph, and introduce a pre-training framework
named PT-HGNN. First, to preserve the heterogeneity, we propose
both node- and schema-level pre-training tasks to utilize node re-
lations and the network schema, respectively, which enables the
GNN to capture heterogeneous semantics and structural proper-
ties. Second, to pre-train on large-scale heterogeneous graphs, we
present an edge sparsification strategy via relation-based personal-
ized PageRank, which retains meaningful graph structures while
accelerating the pre-training procedure. Extensive experiments on
one of the largest heterogeneous graphs, OAG, demonstrate the
superior ability of our PT-HGNN to transfer knowledge to various
downstream tasks via pre-training.

6 ACKNOWLEDGMENTS
This work is supported in part by the National Natural Science Foun-
dation of China (No. U20B2045, 61772082, 61702296, 62002029), Key
fields R&D project Of Guangdong Province (No. 2020B0101380001).
All opinions, findings, conclusions and recommendations are those
of the authors and do not reflect the views of the funding agencies.

REFERENCES
[1] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin

Blais, Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. 2020.
Scaling graph neural networks with approximate pagerank. In KDD. 2464–2473.

[2] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral
Networks and Locally Connected Networks on Graphs. In ICLR.

[3] Julian Busch, Jiaxing Pi, and Thomas Seidl. 2020. PushNet: Efficient and Adaptive
Neural Message Passing. In ECAI. 1039–1046.

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020.
A simple framework for contrastive learning of visual representations. In ICML.
PMLR, 1597–1607.

[5] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-
lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In
NeurIPS. 3837–3845.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT. 4171–4186.

[7] Yuan Fang, Wenqing Lin, Vincent Wenchen Zheng, Min Wu, Kevin Chen-Chuan
Chang, and Xiaoli Li. 2016. Semantic proximity search on graphs with metagraph-
based learning. In ICDE. 277–288.

[8] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop.

[9] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS. 1024–1034.

[10] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-
mentum contrast for unsupervised visual representation learning. In CVPR. 9729–
9738.

[11] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S.
Pande, and Jure Leskovec. 2020. Strategies for Pre-training Graph Neural Net-
works. In ICLR.

[12] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020.
GPT-GNN: Generative Pre-Training of Graph Neural Networks. In KDD. 1857–
1867.

[13] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
Graph Transformer. In TheWebConf. 2704–2710.

[14] Glen Jeh and Jennifer Widom. 2003. Scaling personalized web search. In WWW.
271–279.

[15] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. In ICLR.

[16] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2020. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. In ICLR.

[17] Jure Leskovec and Christos Faloutsos. 2006. Sampling from large graphs. In KDD.
631–636.

[18] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter W Battaglia. 2018.
Learning Deep Generative Models of Graphs. In ICLR.

[19] Tie-Yan Liu. 2011. Learning to rank for information retrieval. (2011).
[20] Ilya Loshchilov and Frank Hutter. 2016. SGDR: Stochastic gradient descent with

warm restarts. arXiv preprint arXiv:1608.03983 (2016).
[21] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.

arXiv preprint arXiv:1711.05101 (2017).
[22] Yuanfu Lu, Xunqiang Jiang, Yuan Fang, and Chuan Shi. 2021. Learning to Pre-train

Graph Neural Networks. In AAAI. 4276–4284.
[23] Huda Nassar, Kyle Kloster, and David F Gleich. 2015. Strong localization in

personalized PageRank vectors. In International Workshop on Algorithms and
Models for the Web-Graph. 190–202.

[24] Mark EJ Newman. 2003. The structure and function of complex networks. SIAM
Rev. 45, 2 (2003), 167–256.

[25] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. GCC: Graph Contrastive Coding for Graph
Neural Network Pre-Training. In KDD. 1150–1160.

[26] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and Philip S. Yu. 2017. A Survey
of Heterogeneous Information Network Analysis. In TKDE. 17–37.

[27] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2011. Path-
Sim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information
Networks. In VLDB. 992–1003.

[28] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation Learning
with Contrastive Predictive Coding. arXiv preprint arXiv:1807.03748 (2018).

[29] Andrea Vattani, Deepayan Chakrabarti, and Maxim Gurevich. 2011. Preserving
Personalized Pagerank in Subgraphs.. In ICML. 793–800.

[30] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,
and R. Devon Hjelm. 2019. Deep Graph Infomax. In ICLR.

[31] TongzhouWang and Phillip Isola. 2020. Understanding contrastive representation
learning through alignment and uniformity on the hypersphere. In ICML. 9929–
9939.

[32] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S.
Yu. 2019. Heterogeneous Graph Attention Network. In WWW. 2022–2032.

[33] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. 2020. A Comprehensive Survey on Graph Neural Networks. IEEE
TNNLS 32, 1 (2020), 4–24.

[34] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. 2018. Unsupervised
feature learning via non-parametric instance discrimination. In CVPR. 3733–3742.

[35] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. In NeurIPS.
5812–5823.

[36] Fanjin Zhang, Xiao Liu, Jie Tang, Yuxiao Dong, Peiran Yao, Jie Zhang, Xiaotao
Gu, Yan Wang, Bin Shao, Rui Li, et al. 2019. OAG: Toward linking large-scale
heterogeneous entity graphs. In KDD. 2585–2595.

A RELATION-BASED PERSONALIZED
PAGERANKWITH RANDOMWALK

The algorithm of relation-based personalized PageRank (PPR) with
random walk is described in Algorithm 1. The core idea of this algo-
rithm is to compute an approximate personalized PageRank vector
per node per relation type using random walk, and then assemble
the resulted vectors into personalized PageRank matrices according
to the relation types. Note that in Algorithm 1, we distinguish the
relations by both their types and directions, e.g., a relation denoting
that an author writes a paper is different from the relation showing
that a paper is written by an author.

Algorithm 1 Relation-Based PPR with Random Walk
Require: Heterogeneous graph G, node 𝑡 , source type 𝐴1, target

type 𝐴2, relation 𝑅, max residual 𝜖 , out-degree vector d and
teleport prob 𝛼 , 𝛽

1: Initialize the approximate pagerank vector 𝝅𝑅 , the residual
vector for source type r𝐴1 = 𝛼 · e𝑡 and target type r𝐴2 = 0

2: while ∃𝑣 s.t. r
𝐴1
𝑣

d𝑣
≥ 𝛼 · 𝜖 or r𝐴2

𝑣

d𝑣
≥ 𝛽 · 𝜖 do

3: if 𝜙 (𝑣) = 𝐴2 then
4: 𝝅𝑅 += r𝐴2

𝑣

5: for 𝑢 ∈ 𝑁𝑏𝑟𝑅
−1

G (𝑣) do
𝑟
𝐴1
𝑢 += (1 − 𝛽) · 𝑟𝐴2

𝑣 /
√
𝑑𝑢𝑑𝑣

6: end for
7: r𝐴2

𝑣 = 0
8: else
9: for 𝑢 ∈ 𝑁𝑏𝑟𝑅G (𝑣) do

𝑟
𝐴2
𝑢 += (1 − 𝛼) · 𝑟𝐴1

𝑣 /
√
𝑑𝑢𝑑𝑣

10: end for
11: r𝐴1

𝑣 = 0
12: end if
13: end while
14: return 𝝅𝑅 for node 𝑡 in relation 𝑅

B PRE-TRAINING PIPELINE AND TIME
COMPLEXITY

The training algorithm for PT-HGNN is outlined in Algorithm 2.
We analyze the time complexity of our pre-training pipeline from
the following two aspects.
Time complexity of conducting pre-training tasks. This time
complexity is mainly induced by the message passing and aggrega-
tion mechanism of GNNs, node-level pre-training task and schema-
level pre-training task. The time for the message passing and ag-
gregation mechanism depends on the base GNN architecture. The
time for the node-level pre-training task and the schema-level pre-
training task is linearly related to the number of samples. To be
more specific, the time complexity of pre-training is determined
by the pre-defined number of negative samples collected for each
positive sample. The overall time complexity for pre-training is
described by 𝑂

(
𝑋 + |V| (|E |𝑘1 +

��P𝑠𝑐ℎ𝑒
��𝑘2)𝑑2) , where 𝑋 denotes

the time used for message passing and aggregation, |E | and
��P𝑠𝑐ℎ𝑒

��
denote the size of positive samples for node- and schema-level

Algorithm 2 The training algorithm of PT-HGNN
Require: Heterogeneous graph G, a GNN model 𝑓𝜃
1: Initialize model parameters 𝜃 with Xavier initialization
2: Obtain compressed graph G′

via edge sparsification
3: for each batch node V𝐵 in G′

do
4: Prepare the negative samples with Eq. (1)
5: Prepare the negative schema samples with Eq. (4)
6: for each node 𝑢 inV𝐵 do
7: Prepare the negative samples N2

𝑢 with Eq. (5)
8: for each relation 𝑅 ∈ R do
9: Calculate the L𝑛𝑜𝑑𝑒

𝑢,𝑅
by Eq. (2)

10: end for
11: for each positive schema instance 𝑠+ ∈ P𝑠𝑐ℎ𝑒

𝑢 do
12: Calculate L𝑠𝑐ℎ𝑒

𝑢 by Eq. (9)
13: end for
14: end for
15: Calculate L by Eq. (12)
16: Update parameters 𝜃
17: end for
18: return Pre-trained GNN model 𝑓𝜃 ∗ for downstream tasks

tasks, 𝑘1 and 𝑘2 denote the number of negative samples per positive
sample at the node- and schema-level, and 𝑑 means the embedding
dimension.
Time complexity of offline edge sparsification. The time used
in the offline edge sparsification stage is linear w.r.t. the number

of nodes in the graphs, which is given by 𝑂

(
|V |

𝜖
√
𝛼𝛽

)
, in which

|𝑉 | denotes the number of nodes in the graph, and 𝜖 , 𝛼 and 𝛽 are
parameters related to the random walk as shown in Algorithm 1.
The value 1

𝜖
√
𝛼𝛽

is less than 1000 in practice.

Putting it all together, the overall time complexity of the pre-
processing and pre-training is 𝑂

(
𝑋 + |V| (|E |𝑘1 +

��P𝑠𝑐ℎ𝑒
��𝑘2)𝑑2)

+ 𝑂

(
|V |

𝜖
√
𝛼𝛽

)
. However, according to the implementation details

in Section 4.1, 𝑂
(
(|E |𝑘1 +

��P𝑠𝑐ℎ𝑒
��𝑘2)𝑑2) ≫ 𝑂

(
1

𝜖
√
𝛼𝛽

)
. Therefore,

the time overhead is mainly induced by the pre-training procedure,
and the execution time of pre-processing is negligible.

C STRUCTURAL PROPERTY OF GRAPHS
We extract eight commonly used graph property metrics [24] as
shown in Table 6, each of which quantifies a specific structural
property of graphs. Regarding the five graphs we used in the exper-
iments, the Art graph has a large difference in most of the graph
properties from the others. We compute the correlation matrix of
different graphs using these graph properties, as shown in Fig-
ure 3(a). The correlation value between two graphs indicate the
similarity of their network structures. In addition, Figure 3(b) shows
the citation coefficient1 between different fields, which is the per-
centage of publications in a field X that cites papers in field Y. A

1https://academic.microsoft.com/topics/

Table 6: Structural properties of Open Academic Graph (OAG)

Density Attribute Degree Degree Eigenvector Triangle Average Transitivity
Field (1e-5) assortativity assortativity(1e-2) centrality (1e-5) centrality (1e-4) num clustering (1e-4)
CS 2.280 -0.156 -3.304 2.280 4.749 98.903 0.127 5.341

Materials 2.794 -0.184 -4.423 2.794 5.475 44.702 0.096 9.223
Engineering 1.496 -0.288 -4.395 1.496 4.689 27.424 0.100 2.849
Chemistry 1.069 -0.157 -3.676 1.069 3.236 70.976 0.112 3.197

Art 11.720 -0.465 -10.180 11.720 18.087 9.981 0.129 4.415
Sociology 4.585 -0.336 -6.504 4.585 9.0255 24.193 0.113 3.673
Psychology 3.879 -0.121 -4.102 3.878 6.399 66.911 0.112 9.583
Politics 29.626 -0.224 -8.940 29.626 25.712 13.314 0.106 32.064

Mathematics 5.380 -0.223 -5.446 5.379 8.648 57.533 0.157 9.539
Geology 6.771 -0.125 -3.445 6.770 8.134 93.157 0.127 21.458

Geography 21.299 -0.101 -6.338 21.299 19.659 9.709 0.092 45.714
Environmental 4.092 -0.305 -5.704 4.092 8.908 9.796 0.074 4.614
Economics 7.833 -0.153 -3.750 7.832 10.369 44.071 0.110 15.748
Business 17.854 -0.114 -6.000 17.854 15.967 36.176 0.100 31.982
Physics 3.433 -0.243 -2.947 3.433 18.911 82.106 0.111 12.896
History 32.909 -0.273 -9.838 32.908 28.972 10.640 0.118 20.680

Philosophy 8.671 -0.465 -9.017 8.671 14.826 14.845 0.132 4.061
Medicine 0.739 -0.177 -3.664 0.739 2.795 57.734 0.099 2.143
Biology 0.744 -0.106 -2.876 1.069 2.577 80.870 0.134 2.176

So
cio

lo
gy

Ps
yc
ho

lo
gy

Po
lit
ics

M
at
he

m
at
ics

M
at
er
ia
ls

Ge
ol
og

y
Ge

og
ra
ph

y
En

vi
ro
nm

en
t

En
gi
ne

er
in
g

Ec
on

om
ics

Bu
sin

es
s

Ar
t

CS
Ph

ys
ics

Hi
st
or
y

Ph
ilo
so
ph

y
M
ed

ici
ne

Bi
ol
og

y
Ch

em
ist
ry

Sociology
Psychology

Politics
Mathematics

Materials
Geology

Geography
Environment
Engineering
Economics
Business

Art
CS

Physics
History

Philosophy
Medicine
Biology

Chemistry

fie
ld

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

(a) Correlation matrix

Ar
t

Bi
ol

og
y

Bu
sin

es
s

Ch
em

ist
ry

Co
m

pu
te

r s
cie

nc
e

Ec
on

om
ics

En
gi

ne
er

in
g

En
vi

ro
nm

en
ta

l s
cie

nc
e

Ge
og

ra
ph

y
Ge

ol
og

y
Hi

st
or

y
M

at
er

ia
ls

sc
ie

nc
e

M
at

he
m

at
ics

M
ed

ici
ne

Ph
ilo

so
ph

y
Ph

ys
ics

Po
lit

ica
l s

cie
nc

e
Ps

yc
ho

lo
gy

So
cio

lo
gy

Field X

Art
Biology

Business
Chemistry

Computer science
Economics

Engineering
Environmental science

Geography
Geology
History

Materials science
Mathematics

Medicine
Philosophy

Physics
Political science

Psychology
Sociology

Fi
el

d
Y

10

20

30

40

50

60

70

(b) The percentage fields Y referencing fields X

Figure 3: Correlation matrix and citation between fields

larger citation coefficient generally means the higher similarity
between two fields.

D IMPLEMENTATION OF BASE GNN MODEL
AND BASELINES

We utilize Intel(R) Xeon(R) Platinum 8268 CPU and Tesla V100 to
run experiments with both the pre-training and downstream tasks.
In the sampling stage, we follow the settings of the HGSampling
sampler in previous studies [12] for fair comparison. The parameter
settings of the baseline models are as follows: (1) EdgePred [9]
is simply used to predict whether there exists a link between two
nodes; (2) DGI [30]: we apply mean pooling to the whole graphs
for the generation of the global graph summary embeddings, and

we shuffle the graphs to construct the negative sample set for
conducting contrastive learning; (3) ContextPred [11]: we cap-
ture the 2∼5-hop neighbors to generate the context embedding; (4)
GraphCL [35]: we remove 20% of the nodes in the node dropping
stage, and in the pre-training task, we utilize the 3-hop neighbors to
generate subgraphs in context embedding for contrastive learning;
(5) GPT-GNN [12]: we utilize the attribute generation and edge
generation tasks for pre-training GNNs, in which the parameter
settings follow the code2.

2https://github.com/acbull/GPT-GNN

	Abstract
	1 Introduction
	2 Related work
	3 Proposed PT-HGNN framework
	3.1 Pre-training Tasks on Heterogeneous Graph
	3.2 Sparsification of Large-Scale Heterogeneous Graph
	3.3 Pre-training Pipeline

	4 Experiments
	4.1 Experiment Settings
	4.2 Performance Comparison on Downstream Tasks
	4.3 Knowledge Transfer on Different Graphs
	4.4 Ablation Study
	4.5 Model Analysis

	5 Conclusion
	6 ACKNOWLEDGMENTS
	References
	A Relation-Based Personalized PageRank with Random Walk
	B Pre-Training Pipeline and Time Complexity
	C Structural Property of Graphs
	D Implementation of base GNN model and baselines

