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1. FEATURE EXTRACTION FOR FEATURE-BASED METHODS

For feature-based methods, we extracted 8 pair-wise features from different genres of biological
data and 10 node-wise network features from PPI network. Specifically, we first downloaded the
ontology and annotation files from http://geneontology.org/. Then we calculated three semantic
similarity matrices for genes based on the sub-ontologies “biological process (BP)”, “molecular
function(MF)” and “cellular component (CC)", using the method proposed by Wang et al. [1].
We further downloaded the PPI data from BioGrid to construct a PPI network. Note that we
removed all the SL pairs curated in this PPI network constructed from BioGrid [2]. Besides, we
also constructed 4 features for each SL pair, derived from four sources: Pathway Co-membership,
using the Canonical pathway database from Broad Institute’s Molecular Signatures Database
(MSigDB) [3]; Protein Complex Co-membership, using the CORUM protein complex database
[4]; Protein interaction scores, using human protein-protein interaction database (Hippie) [5];
Protein top similarity, using human protein reference database (HPRD) [6]. Node-wise network
features were calculated based on the PPI network constructed from BioGrid. They included
degree, closeness, betweenness, eigenvector centrality and clustering.

Table S1. Names and descriptions of the features of genes.
Name Type Description

BP Pairwise The number of biological process GO annotations shared between the source and target node.

CC Pairwise The number of molecular function GO annotations shared between the source and target node.

MF Pairwise The number of cellular component GO annotations shared between the source and target node.

Co-pathway Pairwise The number of protein pathways shared between the source and target node.

Co-complex Pairwise A value to measure how well associated a given node is with the other node.

Protein top similarity pairswise A value to measure the structure similarity between the source and target node.

PPI pairwise A binary matrix recording whether a give node is confirmed to be associated with the other node.

Degree Node-wise The number of edges coming in to or out of the node.

Closeness Node-wise The number of steps required to reach all other nodes from a given node.

Betweenness Node-wise The number of shortest paths in the entire graph that pass through the node.

Eigenvector Node-wise A measure of how well connected a given node is to other well-connected nodes.

Clustering Node-wise The clustering coefficient of the node.

2. PARAMETER SETTING FOR THE EXPERIMENTS ON SYNLETHDB-BC

In the experiment on SynLethDB-BC, we also used a 2-layer GCN for all the GCN-based methods.
In order to avoid overfitting, we reduced the training epochs and the size of hidden layers. The
parameter settings of GCN-based methods are summarized in Table S2. In addition, we used the
same hyper parameter setting in our SLMGAE, where the learning rate η, dropout rate γ, the
parameters α, β and C are set to 0.001, 0.3, 0.5, 2.0 and 1.0.

In CMFW, the dimension of latent representation k is set to 50. In BLM-NII, we set the value
of the linear combination weight as 0.79 and used the max function to generate the prediction
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Table S2. Parameter settings for GCN based methods on SynLethDB-BC.

Parameters SLMGAE GAE DDGCN MVGCN A-MVGAE

Learning rate η 0.001 0.01 0.01 0.001 0.001

Dropout rate γ 0.2 0.3 0.5 0.2 0.4

# training epochs 200 2,000 2,000 200 200

early stop threshold – 1e-5 1e-5 – –

# GCN layers 2 2 2 2 2

# units in layer1 128 128 128 128 64

# units in layer2 64 64 64 64 64

scores. In SL2MF, the parameter c is set to 50. In GRSMF, the parameters λ is set to 27. The weight
coefficients of each support view for the above two methods are summarized in the Table S5.

Table S3. Weight parameters for each support view in SL2MF and GRSMF on SynLethDB-BC.

Support view SL2MF GRSMF

Co-expression 2−7 2−5

Mutual Exclusivity 2−6 2−7

Pathway 2−6 2−1

Protein Complex 2−6 2−5

PPI 2−5 2−7

Following the setting as Liany et al. [7], we didn’t built KNN graph for the support views.

3. PARAMETER SETTING FOR THE EXPERIMENTS ON GIS DATA

In the experiment on GIs data, we also used a 2-layer GCN for all the GCN-based methods. The
parameter settings of GCN-based methods are summarized in Table S4. The hyper parameter in
our SLMGAE are set to the learning rate η = 0.0006, dropout rate γ = 0.6, the parameters α = 4.0,
β = 0.125 and C = 4.0.

Table S4. Parameter settings for GCN based methods on Gis data.

Parameters SLMGAE GAE DDGCN MVGCN A-MVGAE

Learning rate η 0.0006 0.001 0.006 0.001 0.0006

Dropout rate γ 0.4 0.3 0.5 0.5 0.25

# training epochs 800 800 1,000 800 800

early stop threshold – – 1e-5 – –

# GCN layers 2 2 2 2 2

# units in layer1 128 128 128 128 128

# units in layer2 64 64 64 64 64

In CMFW, the dimension of latent representation k is set to 30. In BLM-NII, we set the value of
the linear combination weight as 0.82 and used the max function to generate the prediction scores.
In SL2MF, the parameter c is set to 50. In GRSMF, the parameters λ is set to 2−1. The weight
coefficients of each support view for the above two methods are summarized in the Table S5.
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Table S5. Weight parameters for each support view in SL2MF and GRSMF on GIs data.

Support view SL2MF GRSMF

GO BP 2−1 22

GO CC 2−2 21

PPI 2−1 22

4. ROC AND PRC OF VARIOUS METHODS

In this section, we summarized the ROC and PRC of various methods in figure S1. We can see that
the results in Figure S1 verify with the results in Tables IV, V and VI of the paper that comparable
results can be obtained for our SLMGAE. From Figure S1 we can visually observe that the ROC
curve and PR curve of our model are mostly above the other methods, which means that our
method can achieve a larger area under the ROC curve and area under the PR curve, indicating a
better performance of our method.

(a) Results on SynLethDB (b) Results on SynLethDB-BC (c) Results on GIs data

Fig. S1. ROC and PRC of various methods

5. COMPARISON OF MODEL PERFORMANCE ON THE PRECISION@N AND RECALL@N

For better comparison, we have also used both Precision@N and Recall@N metrics to evaluate our
model and baseline approach. Figure S2 show the performance of each method on the different
datasets. The results in Figure S2 can also validate the results in our paper. Specifically,in the
experiments on the SynLethDB dataset, we can observe that all methods have almost the same
precision and recall when N ≤ 2000, and that our method outperforms the other methods when
N ≥ 2000. In summary, although our method does not outperform the other methods in all the
value of N, our method also achieves comparable results in both Precision@N and Recall@N. We
have included the evaluation results for various methods in terms of Precision@n and Recall@n
in our supplementary materials.
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(a) Results on SynLethDB (b) Results on SynLethDB-BC (c) Results on GIs data

Fig. S2. Precision@N and Recall@N of various SL prediction methods

6. HOW THE ATTENTION LAYER WORKS

We averaged the attention scores of all positive and negative edges in each view to get the average
attention scores a1, a2, ..., an of each support view, then we use so f tmax function normalize them
to get the normalized attention scores a = so f tmax(a1, a2, ..., an), so f tmax defined as follows:

Si =
evi

∑j evj
(S1)

Where vi represents the i-th element in vector V , then the softmax value of this element is Si.
The normalized attention scores of our model are summarized in Fig.S4. As shown in the

figure, in our model, the distinction between positive and negative edges is very obvious. In
the attention score of the positive edges, there will be some views that contribute particularly
prominently (i.e. BP and CC in SynLethDB and Pathway in SynLethDB-BC). In the attention
score of the negative side, the contribution of each perspective is similar, and there is no obvious
difference. It is this difference that distinguishes the prediction of the positive and negative edges
in our model and improves the performance of the model.

(a) Attention score in SynLethDB (b) Attention score in SynLethDB-BC

Fig. S3. Attention score
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7. FEATURE ANALYSIS

Following the experiment setting as Cai et al. [8], we also consider using identity matrix I,
adjacency matrix A and adjacency matrix with self-loop A + I as input feature matrix for our
SLMGAE model. The results summarized in Table. S6.

Table S6. SLMGAE with different feature matrix

Features
SynLethDB SynLethDB-BC

AUROC AUPR F1 AUROC AUPR F1

I 0.8445 ± 0.0096 0.8907 ± 0.0048 0.8574 ± 0.0068 0.9286 ± 0.0405 0.9379 ± 0.0242 0.9375 ± 0.0381

A 0.9174 ± 0.0045 0.9428 ± 0.0033 0.8717 ± 0.0074 0.9192 ± 0.0600 0.9279 ± 0.0377 0.9231 ± 0.0490

A+I 0.9145 ± 0.0039 0.9418 ± 0.0024 0.8726 ± 0.0054 0.9342 ± 0.0453 0.9414 ± 0.0259 0.9444 ± 0.0348

From the experimental results of SynLethDB, when we use the identity matrix I as the initial
feature, the performance of the model will be poor. As mentioned by kpif et al, the identity matrix
is a very weak initial feature [9]. Our model can learn more information from adjacency matrix to
improve the accuracy of prediction.

But judging from the experimental results of SynLethDB-BC, it is another situation.The perfor-
mance of using the identity matrix as the initial feature is the best. This is because too few samples
in SynLethDB-BC, coupled with the rich information provided by the adjacency matrix, caused
the model to over-fit. From Figure.S5(b), we can see that when our model use A as the initial
feature, the final training loss is smaller than when I is used, but the performance of the model is
worse, which also shows that the model is over-fitting. From Figure.S5(a), in the experiments on
SynLethDB, we can see that the loss of the model converges to a similar position, indicating that
in the BC dataset with more samples, the model does not appear to over-fit.

Fig. S4. Training loss of SLMGAE with different feature matrix

(a) Training loss in SynLethDB (b) Training loss in SynLethDB-BC

8. EVALUATION BY MODIFIED F-SCORE

In the Positive and Unknown (PU) learning problem, using standard metrics such as AUROC
and AUPR to evaluate models is somewhat biased. This is because these negative examples are
likely to be sampled very far away from the true decision boundary which we are trying to learn.
To further validate the effectiveness of our model, we followed these two references [10, 11], we
used the modified F-score to evaluate our model against the baseline algorithms. Specifically,
we followed the setting from the experiments on the SynlethDB dataset and searched for the
best F-score after sorting the predicted values. The modified F-score is defined by the following
equation.

F − score =
r × r

Pr[ f (X) = 1]
, (S2)

where r denotes Recall, and Pr[ f (X) = 1] denotes the probability that a sample in the test set is
predicted to be positive.
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Table S7. Performance comparison of various SL prediction methods under 5-fold cross-
validation.

Methods AUROC AUPR F1 Modified F-score

BLM-NII 0.6116 ± 0.0157 0.6507 ± 0.0281 0.6319 ± 0.0469 0.9998 ± 0.0003

SL2MF 0.8631 ± 0.0053 0.9106 ± 0.0026 0.8176 ± 0.0053 1.3760 ± 0.0058

CMFW 0.8209 ± 0.0030 0.8798 ± 0.0017 0.7795 ± 0.0021 1.2503 ± 0.0062

g-CMF 0.5536 ± 0.0057 0.5646 ± 0.0057 0.6469 ± 0.0049 0.7527 ± 0.0086

GRSMF 0.8642 ± 0.0046 0.8989 ± 0.0039 0.8220 ± 0.0032 1.3629 ± 0.0290

GAE 0.8664 ± 0.0043 0.9028 ± 0.0045 0.8307 ± 0.0065 1.4371 ± 0.0329

DDGCN 0.8783 ± 0.0040 0.9152 ± 0.0022 0.8204 ± 0.0048 1.3969 ± 0.0133

MVGCN 0.8556 ± 0.0049 0.9036 ± 0.0046 0.8326 ± 0.0039 1.4456 ± 0.0139

A-MVGAE 0.8796 ± 0.0036 0.9128 ± 0.0029 0.8489 ± 0.0048 1.4469 ± 0.0144

SLMGAE 0.9174 ± 0.0045 0.9428 ± 0.0032 0.8717 ± 0.0074 1.5363 ± 0.0101

Table S7 summarized the F-scores for each algorithm. As we can observe from the Table R1,
SLMGAE achieves the best performance in terms of the modified F-score. Overall, the results for
various algorithms in terms of the modified F-score are similar to those of the other metrics. For
example, MVGCN and A-MVGAE have an modified F-score of approximately 1.44, and they also
have comparable AUROC, AUPR and F1 scores. We calculated the spearman correlation between
the modified F score and other metrics and the results are summarised in Table S8. As table S8
shows, the spearman correlation between the modified F score and the AUROC and AUPR scores
is above 0.85, and the correlation with the F1 score is even higher, at 0.95. Although these metrics
(i.e. AUROC, AUPR and F1) are biased, the consistency between several metrics shows that they
are still informative.

Table S8. Spearman correlation between modified F-score and other metrics

AUROC AUPR F1

Modified F-score 0.8545 0.8667 0.9515
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9. CASE STUDY

We summarized 30 SL pairs supported by existing publications in Table.S9. In addition, we also
summarized top 5000 prediction of our SLMGAE model, a total of 123 SL pairs can be supported
by existing literature. You can find these data on https://github.com/DiNg1011/SLMGAE.

Table S9. Top predicted SL pairs with literature support
# Rank Gene1 Gene2 PubMed ID Evidence Prediction score
1 21 MAPK1 TP53 23728082 in-silico prediction 0.5742
2 25 PIK3CA TP53 26427375 in-silico prediction 0.5323
3 50 JUN TP53 23728082 in-silico prediction 0.4120
4 90 RAD51 TP53 23728082 in-silico prediction 0.3685
5 137 AR TP53 23728082 in-silico prediction 0.3357
6 143 BRCA1 KRAS 24104479 shRNA screening 0.3322
7 174 CCT5 KRAS 28700943 CRISPR and shRNA screens 0.3147
8 176 BRCA1 PIK3CA 26427375 in-silico prediction 0.3146
9 182 BIRC5 KRAS 28700943 CRISPR and shRNA screens 0.3100
10 198 HDAC9 MYC 29764852 HDAC inhibition 0.3055
11 234 MCL1 PARP1 31300006 in-silico prediction 0.2952
12 289 ADK KRAS 27655641 in-silico prediction 0.2829
13 296 SRC TP53 23728082 in-silico prediction 0.2813
14 335 KRAS UNC13B 24104479 shRNA screening 0.2741
15 352 BRAF TP53 24025726 in-silico prediction 0.2712
16 402 KRAS TRIP11 25407795 Combinatorial RNAi 0.2643
17 428 BCL2L1 PIK3CA 31300006 in-silico prediction 0.2594
18 438 CALM1 KRAS 27655641 in-silico prediction 0.2585
19 506 KRAS LATS1 27655641 in-silico prediction 0.2501
20 507 BCL2 BCL2L1 29251726 CRISPR screening 0.2500
21 522 KRAS WBP11 24104479 shRNA screening 0.2481
22 566 BRCA1 BRCA2 31300006 in-silico prediction 0.2440
23 641 KRAS PCNT 28700943 CRISPR and shRNA screens 0.2376
24 666 SMAD3 TP53 23728082 in-silico prediction 0.2351
25 757 EGLN3 KRAS 27655641 in-silico prediction 0.2276
26 758 KRAS NOP2 28700943 CRISPR and shRNA screens 0.2275
27 840 KRAS RPS16 24104479 shRNA screening 0.2216
28 841 AKT1 CHEK1 28319113 CRISPR-Cas9 0.2214
29 927 BCL2L1 CDKN1A 31300006 in-silico prediction 0.2160
30 998 JAK2 KRAS 25407795 Combinatorial RNAi 0.2122
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