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Abstract—Synthetic lethality (SL) is a very important concept
for the development of targeted anticancer drugs. However,
experimental methods for SL detection often suffer from various
issues like high cost and low consistency across cell lines. Hence,
computational methods for predicting novel SLs have recently
emerged as complements for wet-lab experiments. In addition,
SL data can be represented as a graph where nodes are genes
and edges are the SL interactions. It is thus motivated to
design advanced graph-based machine learning algorithms for
SL prediction. In this paper, we propose a novel SL prediction
method using Multi-view Graph Auto-Encoder (SLMGAE). We
consider the SL graph as the main view and the graphs from
other data sources (e.g., PPI, GO, etc.) as support views. Multiple
Graph Auto-Encoders (GAEs) are implemented to reconstruct
the graphs for different views. We further design an attention
mechanism, which assigns different weights for support views,
to combine all the reconstructed graphs for SL prediction. The
overall SLMGAE model is then trained by minimizing both the
reconstruction error and prediction error. Experimental results
on the SynLethDB dataset show that SLMGAE outperforms
state-of-the-arts. The case studies on novel predicted SLs also
illustrate the effectiveness of our SLMGAE method. The source
codes, data, and supplementary materials for our SLMGAE are
available via https://github.com/DiNg1011/SLMGAE.

Index Terms—Synthetic lethality, graph neural network, graph
auto-encoder, multi-view, human cancers.

I. INTRODUCTION

Synthetic lethality, as an important concept for developing
anti-cancer drug targets, has drawn great attention in the field
of cancer therapeutics [1]. Specifically, a pair of genes form
a synthetic lethality (SL) interaction if simultaneous defects
of both genes result in cell death, while the defect of a
single gene is not lethal. Given a gene with cancer-specific
mutations, we can target its SL partners to selectively kill
the cancer cells without harming normal cells [2]. Therefore,
cancer therapeutics based on the SL concept can have less side
effects compared with traditional chemotherapies [3]. Success-
ful stories about the SL-based drugs include PARP-inhibitors
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Olaparib and Niraparib for ovarian and breast cancers [4].
These two drugs are based on the well-known SL interactions
between genes PARP and BRCA1/BRCA2, as illustrated in
Figure 1.
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Fig. 1: PARP-inhibitor as an anti-cancer drug based on the SL
interaction between PARP and BRCAL.

Wet-lab experiments have been developed to detect SL
interactions. RNAIi screening using siRNA or shRNA libraries
can generate genome-wide SL data [5]. In addition, CRISPR-
based genome editing technology can also be used for SL
screening [6]. However, wet-lab experiments for SL detection
have different challenges. For example, RNAi screening is
lack of consistency across different cell lines and has off-
target effects, while CRISPR-based genome editing technology
is very expensive and also has off-target effects. Therefore,
computational methods for human SL prediction have recently
emerged as useful complements to the wet-lab experiments.

Graph neural network (GNN) is a powerful neural network
architecture on graphs that can effectively capture the graph
structures [7]. We are thus motivated to customize GNN to
predict novel SLs in the SL graph. However, there remain
some challenges using GNN for SL prediction. First, various
data sources for genes (e.g., protein-protein interactions, gene
ontology, etc.) would be useful for SL prediction. It is a
challenge to integrate these data sources in a GNN-based
framework for SL prediction. Second, different data sources
may play different roles for SL prediction. Therefore, how to
differentiate each data source would be another challenge in
GNN-based SL prediction.

To address the above issues, we proposed a supervised
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multi-view graph auto-encoder denoted as SLMGAE to in-
tegrate various data sources for human SL prediction. First,
we model the SL data and the other data sources (e.g., PPI,
GO, etc.) as graphs. Second, we implement multiple Graph
Auto-Encoders (GAEs) to reconstruct these graphs. Third, we
further design an attentive merging process to combine all
the reconstructed graphs for SL prediction. In particular, we
derive the overall loss for both graph reconstruction and SL
prediction and then train the SLMGAE model by minimizing
this loss. We summarize our contributions as follows.

e We proposed a multi-view framework based on graph
neural networks (i.e., graph auto-encoder) for human SL
prediction.

« We designed an attention mechanism to effectively inte-
grate the data from different views for SL prediction.

o Experimental results demonstrated that our proposed
SLMGAE outperform the state-of-the-arts. Our qualita-
tive case studies on novel predictions also illustrate the
effectiveness of our proposed method.

The rest of the paper is organized as follows. Section II
surveys the related works on SL prediction methods and graph
neural networks. In Section III, we introduce the preliminaries
for the SL prediction problem and describe the details of the
SLMGAE model. Section IV presents the experimental setting
and evaluation results. Finally, we conclude in Section V.

II. RELATED WORK

In this section, we first introduce existing methods for hu-
man SL prediction. We also introduce the recent development
of graph convolutional network techniques for bioinformatics
applications.

A. SL Prediction Methods

Recently, various methods have been proposed for human
SL prediction. We can divide these methods into two cat-
egories, namely, knowledge-based methods and supervised
machine learning methods.

Knowledge-based methods utilize the knowledge or hy-
potheses to predict potential SL interactions. The hypotheses
include that SL genes tend to (1) be co-expressed, (2) have
similar functions, (3) have similar network properties, (4)
exhibit mutual exclusivity with respect to specific genetic
events [8], etc. For example, DAISY [9] predicts SLs from
copy number variation data, gene expression data and shRNA
data, based on the assumption that SL genes are often co-
expressed and seldom co-mutated. MiSL [10] also predicts SLs
by analyzing the data for mutation, copy number alternation
and gene expression. Jacunski et al. [11] predicted human
gene pairs with similar network parameters/characteristics (i.e.
connectivity homology) to existing yeast SL pairs, as SL
interactions. Pairs of genes that are altered in a mutually
exclusive manner in cancers are observed to be likely to form
SL interactions [8]. Knowledge-based methods are usually ex-
plainable for novel predictions. However, they do not explore
the underlying patterns in the known human SL interactions.

Human SL data has recently been well curated in pub-
lic databases, such as BioGRID [12] and SynLethDB [13].

Therefore, supervised machine learning techniques have been
applied for human SL prediction. DiscoverSL [14], based
on random forest classifier, predicts and visualizes novel
human SLs using multi-omics cancer data (i.e., mutation, copy
number alternation and gene expression data from TCGA) as
features. SLant [15] extracts gene features from PPI and GO,
and then predicts human SL using random forest classifier.
Hence, DiscoverSL and SLant can be considered as traditional
feature-based methods, which require to manually extract
various gene features from different data sources. In fact,
some feature-based methods, which are proposed for yeast
SL prediction including MNMC [16] and MetaSL [17], can
also be applied for human SL prediction. In addition, several
matrix factorization methods, e.g., SL2MF [18], GRSMF [19]
and CMF [?], have been proposed to predict human SL
interactions. For example, SL2MF employs a logistic matrix
factorization (LMF) based method and also integrates PPI and
GO data for human SL prediction. Different from DiscoverSL
and SLant, matrix factorization methods aim to automatically
learn gene embeddings/features for SL prediction. However,
matrix factorization, as a direct encoding [20], does not fully
explore the graph structural information (e.g., neighborhoods)
for human SL prediction.
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Fig. 2: Multi-view graph auto-encoder with GCN as encoder

B. Graph Neural networks

Graph Neural Networks (GNN) extend the existing neural
networks for modeling the graph data [7]. GNN, such as
graph convolutional network (GCN) and graph auto-encoder
(GAE), has been used for drug discovery [?], disease pre-
diction [21], microbe-drug association prediction [22], etc.
Recently, a method called DDGCN [23] has been proposed for
human SL prediction based on graph convolutional network. In
particular, they employ both coarse-grained node dropout and
fine-grained edge dropout to learn accurate gene embeddings
for SL prediction. However, DDGCN predicts novel human
SL pairs based solely on the known SL pairs and does not
utilize any other data sources for genes.

Multi-view methods [24]-[26] have been proposed to in-
tegrate multiple data sources that are modelled as graphs.
In particular, MVGCN [24] was proposed to fuse multiple
modalities of brain images with multi-view graph convolu-
tional network for Parkinson’s disease prediction. As shown
in Figure 2, MVGCN learns the node embedding from each
individual view and then concatenates them to form the
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combined embedding for the prediction task. Similarly, an
attention based multi-view graph auto-encoder was proposed
for drug-drug interaction prediction [25]. However, so far there
are no existing studies that use multi-view GNN to address the
SL prediction task.

III. METHODS

In this section, we first describe the notations and formulate
the problem, then we introduce our SLMGAE model in details.

A. Preliminary

Based on the known SL interactions, we can construct a SL
graph G5 = (V, E). The nodes in V = {v;}I_, are genes,
where n is the total number of genes in the graph, and the
edges in E are SL interactions. Moreover, GSL is equivalent
to an adjacency matrix A5 € R"*" where AST is 1 if
(vi,v;) is a SL pair and O otherwise. We denote G5~ or AL
as our main view for SL prediction.

We also utilize multi-omics data as additional inputs for
SL prediction, e.g., gene ontology (GO) data, protein-protein
interaction (PPI) data, etc. We denote these multi-omics data
as support views. They can also be modelled as graphs, e.g.,
A" is the graph for the support view u, 1 < u < n, and n,
is the total number of support views.

In this paper, we leverage the data from both main view and
support views for SL prediction. Specifically, we define O as
the upper triangular array of A%. Furthermore, we denote
the set of known SL interactions as Ot = {(v;,v;)|4;; =
1,1<i<n,i<j<n},and thus O7 = O/OT is the set of
unknown SL pairs. Our task is to build a model and predict
the likelihood of gene pairs in O~ to form SL interactions.
Table I lists the mathematical notation used in the paper.

B. Overview of SLMGAE

Figure 3 shows the overall framework of the proposed
SLMGAE method.

First, we consider the SL graph as main view and the
graphs constructed for other data sources (e.g., PPI, GO, etc.)
as support views. Second, multiple GAEs are implemented
to reconstruct the graphs from different views. In particular,
GCN is used as the encoder to learn gene embeddings, while
the decoder is used for graph reconstruction from the learned
embeddings. We can then derive the reconstruction losses for
both main view and support views. Third, we further design
an attentive merging process to combine all the reconstructed
graphs for SL prediction. Lastly, the overall SLMGAE model
is then trained by minimizing both the reconstruction loss and
prediction loss. Next we introduce each step of our SLMGAE
model in details.

C. Graph reconstruction using GAE

As shown in Figure 3, GCN is used as the encoder in
SLMGAE. Here, we use the standard propagation rule for the
GCN [27], as shown in Equation 1.

TABLE I: List of notations

Symbol Description

Gg=(V,E) gene interactions graph

V={v:}, nodes, i=1,...,.N

E = {eij }Zj:l edges, i=1,...,.N

A € RnX™ an adjacency matrix

D e R"*" an degree matrix

ASL adjacency matrix of SL interactions

{Au}7s adjacency matrices of support views, u=1,...,ns
@ the upper triangular of A5

ot {(vi,vj)|A¢j=1,1§i<n,i<j<n}
(O {(’Ui,’l)j)|Aij =0,1§i<n,i<j§n}

Z node embedding matrix

F initial node features

w trainable weight matrix

a¥ € RnxXn attention matrix, u=1,...,ns

Wsupp support view weighted matrix

S reconstruction graph

()ym™ superscript m denotes main view specific

() superscript u denotes support view specific, u = 1,2, ..., ns
(‘) subscript I denotes I*P-layer GCN specific, I = 1,2, ...
()a subscript d denotes decoder specific

L main view reconstruction loss

Ls support view reconstruction loss

Lp SL prediction reconstruction loss

Zay = o(AZy_y W), (1)
A=D2AD =, )
A=T1+A, (3)

where Z(;_1) and Z(;) are the inputs and outputs for the [the
layer, when [ = 1, the input Z; of GCN is the initial node
features F' as shown in Figure 3. W(;) is a layer-specific
trainable weight matrix, o(-) denotes activation function (e.g.,
sigmoid or ReLU), D is diagnonal matrix with ﬁ“ =5 j flij
and A is the graph adjacency matrix with self-loop.

In this paper, we use 2-layer GCN and we can thus compute
the node embedding matrix Z with Equations 4 and 5. F' in
Equation 4 is the initial feature matrix (F' is Z, as mentioned
above), while Z; is the node embedding matrix learned in the
first layer. Following DDGCN [23], we also take the SL graph
adjacency matrix A" as node features F' for all the graph
convolutional networks (i.e., encoders) as shown in Figure 3.
In addition, W3 and W5 are the weight matrices, and oy and
o9 are the activation functions in the 15 and 24 GCN layers.

Zy =
Zy =

O’l(Ale),
UQ(AZIWQ).

“4)
(&)

Using LeakyReLU as the activation function, we can com-
pute the node embedding matrix Z3* for the main view in
Equation 7. We further reconstruct the graph S™ for the main
view using the weighted inner-product decoder in Equation 8§,
and W} is a view-specific trainable matrix in the decoder.
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Fig. 3: The overall framework of our proposed SLMGAE method

Z" = LeakyReLU (ASYFW™), (6)
Zy = LeakyReLU (ASF ZmwWim), (7)
S™ = ZmWirzm (8)

Here LeakyReLU () is defined as follows:

LeakyReLU () = max(0.2z, z). )

Similarly, we can also compute the node embedding matrix
73 and the reconstructed graph S™ for each support view
u (1 < u < ng, ng is the number of support views) in
Equations 11 and 12. As our eventual goal is to predict novel
SL interactions, we need to link the support views with SL so
that the learned node embeddings are useful for SL prediction.
Therefore, we also use the SL matrix AS” as the initial feature
matrix F' in Equation 10 for learning the node embeddings.

Z = LeakyReLU (A*FW), (10)
Z% = LeakyReLU (A" Z W3, (11)
SY = ZPWeZL (12)

Given a reconstructed graph S and its original graph Y,
we define the reconstruction loss as their mean square error
(MSE) in Equation 13.

2 n n
MSE(Y,S) = o5 YO>Syt (13

i=1 j=it1
We set Y as AT, and obtain S™ and S* by Equations 8

and 12. We can thus derive the reconstruction loss £, for the
main view and Lg for the support views as follows.

Ly = MSE(Y,S™),
Ls=) MSE(Y,S").

(14)
15)

Note that our reconstructed graphs in Equations 8 and 12 are
asymmetric matrices, while the SL matrix Y is symmetric. In
order to avoid predicting two different values for the same SL
pair, we only consider the upper triangle of the reconstructed
matrices in Equation 13 when we calculate the above losses.

D. Attentive merging layer for SL prediction

In the section above, we have reconstructed the score
matrices (or graphs) for both main view and support views.
Next, we introduce the attentive merging layer, which merges
the reconstructed score matrices for SL prediction.

First, we implement an edge-level attention mechanism to
combine all the reconstructed score matrices from the support
views. In particular, we randomly initialize a weight aff
R™" (1 <i,j <mand 1 < u < ny) for the node pair (v;,
v;) under the view u. We then normalize the weight across
different views using the softmax function in Equation 16. As
such, we can obtain the normalized edge-level attention matrix
a" € R™*" for the view wu.

u €
E %
r=1

Based on the above attention scheme, we can derive a
weighted similarity matrix W, as Equation 17. In particular,
o is Hadamard product (i.e., the element-wise multiplication).
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Wsupp = Zauosu (17
u
And then, we derive the final score matrix S by combining
our main view matrix S™ and the weighted score matrix
Wupp from the support views in Equation 18.

SP =57+ CWSUppv (18)

where C' is a hyper-parameter to control the contribution
of Wsypp for final prediction. We leverage the final score
matrix ST for SL prediction. Therefore, we can also use the
mean square error to measure the final prediction loss Lp in
Equation 19.

Lp = MSE(Y,S?) (19)

E. Overall loss and optimization

We combine the reconstruction losses (i.e., £,; and Lg) and
the prediction loss L£p and obtain the the overall loss Lro¢q;
as follows.

£Total = ACM + OOCS + ﬁ[‘Pv (20)

where « and (8 are hyper-parameters, controlling the con-
tributions from Lg and Lp, respectively.

Let © denotes all the trainable parameters and it includes
GCN weight matrices and attention matrices. Our SLMGAE
model is then trained by minimizing the overall 1oss L1,¢4:(©)
as follows. We use the Adam optimizer [28] for optimization
and the training process of our SLMGAE model is illustrated
in Algorithm 1.

arg min Lr,141(0) 21
S]

Algorithm 1 Proposed SLMGAE Model

Input: The adjacency matrix of known SL interaction A%,
the adjacency matrix of each support view A(*), learning
rate 7, dropout rate «, main view score weight C, and
number of iterations n_iter

Output: Predicted matrix S¥

1: Initialize parameter © randomly;
2: for t =1 to n_iter do

3: Compute Z3* and Z3' using Equations 7 and 11;

4: Compute the score matrices S and S" using Equa-
tions 8 and 12;

5: Compute the weighted matrix for support views

Wupp as shown in Equation 17;
Compute the final matrix S* using Equation 18;
Compute total loss Lr,:q; using Equation 20;

8: Update the parameter © to minimize L74:4; by Adam
with learning rate 7;
9: end for

10: return S,

IV. RESULTS AND DISCUSSIONS

In this section, we first introduce the experimental setup.
Then, we demonstrate the performance of our proposed SLM-
GAE. Last, we present the case studies and show the top SL
pairs predicted by our method.

A. Experimental Setup

1) Data: We downloaded SynLethDB [13], the most com-
prehensive up-to-date database for human SL interactions,
to evaluate the performance of our SLMGAE method. Syn-
LethDB contains 19,667 human SL pairs among 6,375 genes.
Therefore, the graph for this SL data is very sparse, with less
than 0.1% of the elements in its adjacency matrix are known
SL pairs. We also utilized various data sources as support
views in SLMGAE, including GO and PPI. GO has three sub-
ontologies, namely, biological process (BP), molecular func-
tion (MF), and cellular component (CC). We downloaded the
latest version of ontology file from http://geneontology.org/,
where we extracted 28,747 BP terms, 11,153 MF terms and
4,184 CC terms. Given two proteins, we calculated their
functional similarity using the method proposed by Wang et
al. [29]. As such, we can obtain a gene similarity matrix for
each sub-ontology. After we derived the similarity matrices,
we used the k-nearest neighbour algorithm to build the GO
graphs. For each gene, we selected its top-k neighbors (i.e., the
k genes with the highest similarities with the given gene) and
discarded the other neighbors. Hence, we can build a GO graph
for each sub-ontology. In our experiments, we used two GO
graphs (i.e., BP and CC) as the support views. For PPI data, we
downloaded the latest version of BioGRID [12]. We removed
the SL interactions from BioGRID and obtained a PPI graph
with 98,581 protein-protein interactions among 6,375 genes.

Following Liany et al. [?], we obtained the second SL
dataset with 245 SL interactions related to breast cancer in
SynLethDB. We denoted this sub-dataset for breast cancer as
SynLethDB-BC. In particular, these 245 SL pairs involve 332
genes and thus the main view graph has 332 nodes. As for the
support views, we adopted the same five data sources as Liany
et al. [?], including co-expression, mutual exclusivity scores,
pathway co-membership, protein complex co-membership and
PPI scores from the Hippie database [30]. The matrices for all
the five support views have the same number of genes as the
main view (i.e., matrices for the main view and support views
have the same dimension of 332x332).

To conduct independent validation experiments, we down-
loaded the Gene Interactions (GIs) data [31] as our third SL
dataset, which was collected by CRISPR interference in 2
leukemia cancer cell lines “K562” and “Jurkat”. First, we
extracted the gene pairs with GI scores less than -3 as positive
SL pairs, while the gene pairs with GI scores close to 0 as
negative pairs. Second, we used the data from K562 as the
training set, and the data from Jurkat as the test data. We
built the main view SL graph based on the 1,429 positive SL
pairs in K562. Following the same setting for SynLethDB and
SynLethDB-BC datasets, we leveraged these 1,429 positive SL
pairs and all the unknown pairs in K562 to train the model,
while the test data in Jurkat consists of 280 positive SL pairs
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and the same number of sampled negative pairs. Third, we
also extracted the gene feature matrices from GO (i.e., BP and
CC) and PPI as support views for this GIs data. The details
of above three datasets SynLethDB, SynLethDB-BC and GIs
are summarized in Table II.

TABLE II: Summary of three SL datasets

SynLethDB ~ SynLethDB-BC  GIs data
# human genes 6,375 332 449
# SL pairs 19,677 245 1,719
Average degree 6.17 1.47 8.90
Density 0.097% 0.0044% 0.020%
# support views 3 5 3

2) Baselines: In our experiments, we mainly compared the
methods for SL prediction by learning latent representations
of genes, namely BLM-NII [32], SL2MF [18], GRSMF [19],
CMF [?], GAE [33], DDGCN [23], MVGCN [24] and A-
MVGAE [25]. We summarize the above baselines as follows.

o SL2MF was proposed for human SL prediction based on
logistic matrix factorization (LMF). It can also integrate
GO semantic similarities and PPI topological similarities
between genes in the LMF framework.

e GRSMF was proposed for human SL prediction based
on matrix factorization. It can leverage graph regularized
from different source data to improve SL prediction.

e« CMF was proposed by liany et al. [?], which used to
integrate different data sources and learn gene represen-
tation through collective matrix factorization (CMF) for
human SL prediction. We used both the variants CMFW
and g-CMF as the baselines.

o BLM-NII was proposed for drug-target interaction (DTI)
prediction and Liu et al. [18] customized it as a baseline
for SL prediction.

o GAE was proposed for link prediction and Cai et al. [23]
customized it as a baseline for SL prediction.

e MVGCN was proposed to fuse multiple modalities of
brain images for Parkinson’s Disease prediction [24]. We
customized it for SL prediction.

e A-MVGAE was proposed for drug-drug interaction
(DDI) prediction using multi-view graph auto-encoder
with an attention mechanism [25]. In our experiments,
we adopted it for SL prediction.

o« DDGCN was a graph convolutional network framework
with a dual-dropout mechanism, namely, coarse-grained
node dropout and fine-grained edge dropout for human
SL prediction.

3) Parameter setting: On SynLethDB dataset, we used a
2-layer GCN for our SLMGAE model and the dimensions of
trainable weight matrix in the first and second layers were
set to 512 and 256, respectively. The learning rate ), dropout
rate 7y, the parameters «, 8 and C' were set to 0.001, 0.2,
2.0, 4.0 and 2.0. We adapted Adam optimizer to train our
model for 300 epochs. In addition, we built KNN graphs for
the support views and the k£ for both BP and CC were set to
45. We also empirically tuned the parameter setting for the
baselines on SynLethDB dataset. In SL2MF, the parameters
c,v,a, 3,0 were set to 50,27°,271,272 271 respectively,
where «, 5 and 6 were the weights for the three support views.

In GRSMEF, the parameters A and weight coefficient «, 3,y for
each view were set to 27,21, 271 27, Tn CMFW, the dimension
of latent representation k& was set to 128. In BLM-NII, we
set the value of the linear combination weight as 0.75 and
used the max function to generate the prediction scores. GCN
based methods including GAE, DDGCN, MVGCN and A-
MVGAE have parameter settings similar to our model, which
are summarized in Table III.

TABLE III: Parameter settings for GCN based methods

Parameters SLMGAE GAE DDGCN MVGCN A-MVGAE
Learning rate n 0.001 0.01 0.01 0.001 0.001
Dropout rate ~ 0.2 0.3 0.5 0.4 0.3

# training epochs 300 2,000 2,000 300 300
early stop threshold - le-5 le-5 - -
# GCN layers 2 2 2 2 2

# units in layerl 512 512 512 512 512

# units in layer2 256 256 256 256 256

On SynLethDB-BC and GIs datasets, most of the param-
eter settings were the same as those on SynLethDB dataset.
Considering that the above two datasets is much smaller than
SynLethDB, we modified some parameters in our SLMGAE
and baselines. For example, we reduced the number of units
from 512 to 128 in layer-1 and 256 to 64 in layer-2 respec-
tively. Please refer to our supplementary materials for more
details about parameter setting on SynLethDB-BC and GIs
datasets.

4) Evaluation metrics: For the experiments on SynLethDB
and SynLethDB-BC, we conducted 5-fold cross-validation
to evaluate various models for SL prediction. In particular,
we equally split the known SL interactions into five non-
overlapping subsets. We iteratively chose one subset as pos-
itive samples and sampled the same number of unknown
pairs as negative samples. We put these positive and negative
samples together for testing. The remaining unknown pairs
and four subsets of known SL pairs were used for training.

We used three metrics for performance evaluation, including
the area under ROC(receiver operating characteristic) curve
(AUROQC), the area under Precision-Recall curve (AUPR) and
the best F1 score achievable on the Precision-Recall curve.

For ROC curve, the true positive rate (TPR) and the false
positive rate (FPR) are first defined in Equation 22.

TPR=TP/(TP + FN),
FPR=FP/(FP+TN),

where TP, TN, FP and FN are the number of true positives,
true negatives, false positives and false negatives, respectively.
The ROC curve is then created by plotting the true positive rate
(TPR) against the false positive rate (FPR) at various threshold
settings, and AUROC is the area under the ROC curve.

Similarly, the Precision and Recall are defined in Equation
23 (Recall is the same as true positive rate, TPR, in Equation
22). Then, the Precision-Recall curve (PRC) is created to show
the trade-off between Precision and Recall at various threshold
settings, and AUPR is the area under the Precision-Recall
curve.

(22)

Recall = TP/(TP + FN),

23
Precision =TP/(TP + FP). 23)
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Lastly, F1 score is defined as the harmonic mean of pre-
cision and recall. In this work, we have adopted the best
value of F1 score achieved on the Precision-Recall curve. In
addition, SL prediction is a typical Positive and Unlabeled
(PU) learning task. Therefore, we also used a modified version
of F1 score for performance evaluation under PU setting [34],
[35]. Detailed results in terms of the modified F1 score can
be found in our supplementary materials.

B. Results on SynLethDB and SynLethDB-BC

We show the performance comparison among various meth-
ods for SL prediction on both SynLethDB and SynLethDB-BC
datasets in this section.

Table IV shows the performance comparison among various
methods on SynLethDB in terms of AUROC, AUPR and FI.
Based on the results in Table IV, we can have the follow-
ing three observations. First, SLMGAE clearly outperforms
the matrix factorization methods including SL2MF, CMF
and GRSMF. Considering that they all used additional data
sources (e.g., GO and PPI), SLMGAE’s superior performance
demonstrates the advantage of GCN-based method over matrix
factorization methods. Second, SLMGAE, which integrates
multiple support views, also achieves higher performance than
GCN-based methods including GAE and DDGCN. Third,
SLMGAE outperforms multi-view GCN-based methods (i.e.,
MVGCN and A-MVGAE) indicates that our model can aggre-
gate information from multiple perspectives more effectively.
In particular, DDGCN as the state-of-the-art method prior
to this work achieves the second best AUPR as shown in
Table IV, while SLMGAE further achieves improvements over
DDGCN by 4.45%, 3.02% and 6.25% in terms of AUROC,
AUPR and F1, respectively.

Figure 4 shows the ROC and PRC for the various methods.
In order to make the picture more readable, we only plotted
the performance curves for six methods in the figure, including
SLMGAE, SL2MF, GAE, DDGCN, CMFW and A-MVGAE.
For more comparison on various datasets, please refer to our
supplementary materials.

ROC PRC
1.00
0.75
o T
a 0.50 AMVGAE | § (. A-MVGAE
= — CMFW () — CMFW
DDGCN o DDGCN
0.25 — GAE 0.25{ — cae
— sL2mF — SL2mF
0.00 —— SLMGAE 0.00! — stmaaE
0.0 0.5 1.0 0.0 0.5 1.0

FPR Precision

Fig. 4: ROC and PRC of various methods on SynLethDB

Table IV also shows the performance of various meth-
ods on the SynLethDB-BC dataset. We can observe that
our SLMGAE model still achieves superior performance on
this SynLethDB-BC dataset. In particular, SLMGAE achieves
the highest AUROC and F1 scores, and the second best
AUPR (slightly lower than SL2MF). In addition, we noticed
that g-CMF performed very well on the small-scale dataset

(SynLethDB-BC). However, it was not generalized well to the
larger datasets and achieved poor performance on SynLethDB.
Although we adjusted the model parameters, we still observed
insignificant changes in model loss during training g-CMF
on SynLethDB, leading to a poor performance on this larger
dataset.

C. Independent validation on Gls dataset

Table V shows the results of independent validation per-
formed on the GIs data (i.e., trained on K562 cell line and
tested on Jurkat cell line). From Table V it can be observed
that our model performs better than all baseline algorithms
in terms of three metrics. It can also be observed that the
multi-view GCN-based methods (i.e., SLMGAE, MVGCN,
and A-MVGAE) outperforms the single-view GCN-based
methods (i.e., GAE and DDGCN), indicating that additional
data sources can be helpful for SL prediction. In conclusion,
independent validation experiments on the GIs data also illus-
trate the effectiveness of our method.

D. Comparison with feature-based methods on SynLethDB

We also compared our method with 10 state-of-the-art
feature-based classification methods on SynLethDB. They
include K-Nearest Neighbors (KNN), Support Vector Machine
(SVM), Random Forest (RF), Decision Tree (DT), Naive
Bayesian (NB), AdaBoost, GradientBoost, Bootstrap aggregat-
ing (Bagging), MNMC [16] and MetaSL [17]. We extracted
18 features from various data sources, e.g., GO, PPI and etc.
Please refer to our supplementary materials for more details
about features. On SynLethDB dataset with 6,375 genes, we
have over 20,000,000 unknown pairs as negatives to train
our SLMGAE model. Hence, the number of negative samples
is too big to run traditional feature-based methods (such as
SVM and Random Forest). Therefore, we adopted a new
experimental setting so that we can compare our model with
traditional feature-based methods. In particular, we sampled
the same numbers of negative samples as positives for both
training and testing (i.e., 1:1 positive and negative pairs). For
example, we conducted 5-fold cross validation on SynLethDB
dataset with 19,677 positive SL pairs. We first sampled 19,677
unknown pairs as negative samples. We divided the positive
and negative samples into 5 groups, where 1 group for testing
and the remaining 4 groups for training.

Table VI shows the performance of various feature-based
methods on the SynLethDB dataset under 1:1 positive and
negative pairs training. From Table VI, we can observe that our
model outperforms all feature-based methods. Compared to
the best performing feature-based method (i.e., MetaSL), our
method also showed significant superiority, with improvements
of 5.40%, 5.64% and 9.98% in AUROC, AUPR and FI
respectively.

To summarize, we can conclude from the above compar-
isons that our SLMGAE model outperforms the state-of-the-
art methods (representation learning methods and traditional
feature-based methods) on both the large and small datasets.
Thereafter, we will show the results of the model ablation
study and parameter analysis only on the larger dataset, i.e.,
SynLethDB dataset.
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TABLE IV: Performance comparison of various SL prediction methods under 5-fold cross-validation

SynLethDB-BC

AUROC

AUPR

F1

0.8692 + 0.0559
0.8920 + 0.0424
0.6174 + 0.0527
0.9043 + 0.0423
0.7577 £ 0.0468
0.8653 + 0.0708
0.8713 + 0.0563
0.9103 + 0.0337
0.9106 + 0.0469

0.8261 + 0.0746
0.9310 + 0.0293
0.7327 £ 0.0615
0.9228 + 0.0381
0.6967 £+ 0.0693
0.8989 + 0.0476
0.9256 + 0.0280
0.9251 + 0.0342
0.9291 + 0.0533

SynLethDB

Methods AUROC AUPR I
BLM-NIT 06116 £ 00157 0.6507 = 00281 0.6319 & 0.0460
SLOMF 08631 & 00053 09106 + 0.0026  0.8176 % 0.0053
CMFW 08209 + 0.0030  0.8798 + 0.0017  0.7795 + 0.0021
o-CMF 05536 + 00057 0.5646 + 0.0057  0.6469 + 0.0049
GRSMF  0.8642 + 0.0046  0.8989 + 0.0039  0.8220 + 0.0032
GAE 0.8664 + 0.0043  0.9028 + 0.0045  0.8307 + 0.0065
DDGCN 08783 + 0.0040 09152 & 0.0022  0.8204 + 0.0048
MVGCN  0.8556 + 0.0049  0.9036 + 0.0046  0.8326 + 0.0039
A-MVGAE  0.8796 + 0.0036  0.9128 & 0.0029  0.8489 + 0.0048
SLMGAE 09174 £ 0.0045 0.9428 + 0.0032 0.8717 £ 0.0074

0.9192 + 0.0599

0.9279 + 0.0377

0.8665 + 0.0688
0.8716 £ 0.0497
0.7056 + 0.0272
0.8968 + 0.0529
0.7671 £ 0.0416
0.8926 + 0.0524
0.9112 + 0.0359
0.8818 + 0.0226
0.8819 £ 0.0455
0.9231+ 0.0490

TABLE V: Independent validation results on GIs dataset

0.93 0.96 0.91
Methods  AUROC _ AUPR ___ FI
BLM-NII  0.6971 _ 0.7039 _ 0.6809 o091 g 0-94 0.88
SL2MF 0.6154  0.6765 0.6534 < 5 T
GRSMF  0.6884 07344  0.7254 2089 I <0.92 I 0.85 1
CMFW 0.6609 07113  0.6675
¢-CMF 0.5939  0.6279  0.5934 0.87 0.90 0.82
GAE 0.6031  0.6563  0.6468
|| s Fulll
DDGCN  0.6089  0.6589 0.6613 wio Lu & Ls wio £s wio Lu uitloss
MVGCN 07202 0.7465 0.7038 N :
AMVGAE 07172 07347  0.6901 Fig. 5: Loss ablation study for our SLMGAE
SLMGAE  0.7834  0.7984 0.7372

TABLE VI: Comparison with feature-based methods on Syn-

LethDB under 1:1 positive and negative training pairs

Methods AUROC AUPR F1
RF 0.8536 + 0.0049  0.8810 4+ 0.0043  0.7766 + 0.0048
DT 0.7277 4+ 0.0034  0.7959 4+ 0.0024  0.7309 + 0.0028
NB 0.7278 4+ 0.0038  0.7542 4+ 0.0039  0.6893 =+ 0.0028
SVM 0.7578 4+ 0.0076  0.7840 4+ 0.0083  0.7007 £ 0.0045
KNN 0.7256 4+ 0.0031  0.7543 4+ 0.0048  0.6908 + 0.0020
Bagging 0.8514 4+ 0.0042  0.8796 4+ 0.0034  0.7753 £ 0.0030
AdaBoost 0.7987 + 0.0024  0.8274 4+ 0.0040  0.7271 4 0.0031
GradientBoost  0.8378 + 0.0032  0.8654 £ 0.0041  0.7595 + 0.0043
MNMC 0.8279 4+ 0.0024  0.8396 4+ 0.0026  0.7600 £ 0.0023
MetaSL 0.8704 4+ 0.0032  0.8931 4+ 0.0016  0.7948 + 0.0045
SLMGAE 0.9174 + 0.0041  0.9434 + 0.0023 0.8741 + 0.0046

E. Model Ablation Study

Recall that we have three loss components in our SLMGAE
model as shown in Figure 3, namely main view loss £, sup-
port view loss Lg and the prediction loss Lp. In this section,
we conducted ablation study to investigate the impact of each
individual loss. Specifically, we evaluated the performance of
variants (1) without both £y, and Lg (i.e., with only Lp);
(2) without Lg; (3) without L,s; and (4) full loss (i.e., our
SLMGAE model).

Figure 5 shows the performance of different variants. We
can clearly observe that two variants without L£g achieve
significantly lower scores, indicating that the support view loss
is critical in our SLMGAE for SL prediction. In addition,
the variant without L£j; can still achieve relatively good
performance (i.e., good AUROC and F1). The reason behind
is that our final score matrix in Equation 18 is somehow
determined by the matrix from the main view, and thus the
two losses L£3; and Lp have overlaps. However, L), is still
important as the full loss can achieve higher AUPR and make
the model more stable as shown in Figure 5.

Note that our SLMGAE integrates three support views,

namely BP, CC and PPI, for SL prediction. Here, we also
examined the contribution of each support view. As shown
in Figure 6, the main view together with any support view
can achieve higher scores than without support views, demon-
strating that support views can enhance the performance of
SL prediction. Moreover, the attention mechanism can further
integrate multiple support views in an effective manner. As
such, our SLMGAE with all the support views can achieve
the best performance as shown in Figure 6.

0.93 0.96 0.90
0 0.90 I o« 0.93 I I 0.86 1 I
Q a
o —
> 2 \ - |
< 0.87{t 0.90 0.82

0.84 0.87 0.78

SL SL+BP Em SL+CC SL+PPI B SL+ALL

Fig. 6: Support view ablation study for our SLMGAE

Moreover, we show the impact of the designed attention
mechanism in Figure 7. Firstly, Figure 7(a) shows the perfor-
mance of our SLMGAE with or without the designed attention
layer. We assigned equal weights for support views when we
removed the attention layer from our SLMGAE model. As
shown in Figure 7, the designed attention mechanism can
help SLMGAE to achieve higher performance in terms of all
the three metrics. Secondly, we averaged the attention scores
for all the known SL pairs and unknown pairs in each view
as shown in Figure 7(b). We can observe that BP and CC
views are assigned with higher attention scores for known
SL pairs than the PPI view. Such attention scores indicate
that functional similarities based on GO information are more
important than PPI data for SL prediction.

As mentioned above, SL prediction can also be treated as
a Positive and Unlabeled (PU) learning problem [36], [37],
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Fig. 7: Impact of the designed attention mechanism

which can be solved by minimising some ranking losses.
We conducted experiments using a ranking loss [36], [37]
in Equation 24 instead of MSE in our loss function, where
F(-) =log(1+exp(:)), Ot and O~ denote the positive and
unknown pairs respectively. We denote the model using this
ranking loss as SLMGAE-R.

1 1
o7 2 o X s -5e) e

eteO+ e €0~

RL(S) =

Table VII shows the comparison between the ranking loss
(SLMGAE-R) and the MSE loss (SLMGAE). We can observe
that both losses work well for the SL prediction task. In partic-
ular, MSE loss performs better on the large-scale SynLethDB
dataset, while the ranking loss performs slightly better on the
small-scale SynLethDB-BC dataset.

TABLE VII: Comparison between ranking loss and MSE loss.

. SynLethDB

Methods AUROC AUPR 3
SCMGAE-R 09700 £ 0.0048 09281 £ 0.0044 08579 £ 0.0065

SLMGAE 09174 + 0.0045 0.9428 + 0.0032  0.8717 + 0.0074

SynLethDB-BC

Methods AUROC AUPR I
SIMGAE-R  0.9236 £ 00276 0.9358 £ 0.0167 09191 & 0.0261

SLMGAE 09192 + 00599 09279 + 0.0377  0.9231+ 0.0490

E. Parameter Sensitivity Analysis

In this section, we performed the sensitivity analysis for the
dropout probability ~, two loss coefficients o and 5 and the

parameter C'.

Figure 8(a) shows the performance of SLMGAE with dif-
ferent dropout rates. We can observe that the performance of
SLMGAE is relatively stable when v < 0.5 and it becomes

unstable (scores keep decreasing) when v > 0.6. Overall, we
would recommend to set y in the range [0.1,0.4] and we
reported the performance of SLMGAE by setting v as 0.2.

« and B control the contribution of losses Lg and Lp,
respectively. In Figure 8(b), we tune « while 3 is fixed as
4. We can observe that the performance of SLMGAE is poor
when o = 0 (i.e., w/o Lg in Figure 5), and both AUPR and
F1 are optimal when « is 2. In Figure 8(c) with « fixed as 2.0,
AUROC and AUPR of SLMGAE are stable when we increase
B, while F1 slightly increases. Overall, SLMGAE achieves
relatively good performance when 5 € [4, 16] as shown in
Figure 8(c). Eventually, we set o as 2 and 3 as 4 in our
experiments.

Parameter C controls the contribution of W, in Equation
18 for final prediction. Figure 8(d) shows the performance
of SLMGAE with different values for C. It is clear that the
performance of SLMGAE is poor when C' = 0, and then
the performance remains stable when C' € [271,23]. In our
experiments, we set the parameter C' as 2.
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Fig. 8: Sensitivity analysis for v, «, 8 and C' in SLMGAE

G. Case Studies for Top Predicted SL Pairs

We further trained our SLMGAE model using all the known
SL pairs in SynLethDB and applied SLMGAE to predict novel
SL interactions. We ranked these unknown pairs based on their
scores predicted by SLMGAE, and subsequently searched for
those top-ranked pairs in biomedical literature.

Among the top 1000 predicted SL pairs, we found 30 pairs
supported by existing publications. In particular, 13 out of
these 30 pairs have been validated by wet-lab experiments
(e.g., CRISPR screening, siRNA screening, etc) and the re-
maining 17 pairs have been predicted by in-silico methods.
More details about these 30 predicted SLs can be found in
Table S4 in our supplementary materials. We further select 10
from the above 30 predicted SL pairs as shown in Table VIII.
Column 2 and column 3 are two genes of the predicted SL
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pairs. Column 4 provides the PubMed ID of the publications
supporting our predictions, while the last column shows the
specific evidence for each predicted SL.

TABLE VIII: Top predicted SL pairs with literature support

#  Gene | Gene 2 PubMed ID  Evidence

1 BRCAl  KRAS 24104479 shRNA screening

2 CCT5 KRAS 28700943 CRISPR and shRNA screens
3 BRCAl  PIK3CA 26427375 in-silico prediction

4 HDACY9 MYC 29764852 HDAC and BRD inhibition
5 SRC TP53 23728082 in-silico prediction

6  KRAS UNC13B 24104479 shRNA screening

7 BRAF TP53 24025726 in-silico prediction

8 KRAS TRIP11 25407795 Combinatorial RNAi

9 SMAD3  TP53 23728082 in-silico prediction

10 AKTI1 CHEK1 28319113 CRISPR-Cas9

As shown in Table VIII, several pairs have been verified
by wet-lab experiments. KRAS is one of the most frequently
mutated oncogenes in human cancers and many SL pairs
involving KRAS have been detected by different techniques.
Particularly, row 1 (BRCA1 and KRAS) and row 6 (KRAS
and UNCI13B) are validated by shRNA screening [38], row
2 (CCT5 and KRAS) is validated by combined CRISPR
and shRNA sceens [39] and row 8 (KRAS and TRIPI11)
is detected by Combinatorial RNAi [40]. In addition, row
4 (HDACY9 and MYQC) is verified by combined HDAC and
bromodomain protein (BRD) inhibition [41] while row 10
(AKT1 and CHEK]) is verified by CRISPR-Cas9 [42].

Meanwhile, 4 SL pairs predicted by our SLMGAE in
Table VIII are also predicted by other in-silico methods. For
example, row 3 (BRCA1 and IK3CA) is also predicted in
[8] based on the mutual exclusivity information. Row 5 (SRC
and TP53) and row 9 (SMAD3 and TP53) are predicted by a
network centrality-based method in [43], while row 7 (BRAF
and TP53) is pre-screened in [44] using gene expression
profiles. Given that these methods predict SL pairs based
on the principles different from our SLMGAE method, we
would consider that they still provide strong supports for our
predictions.

V. CONCLUSION

SL interactions are important for cancer therapy and the
computational methods for SL prediction can further provide
potential targets in drug development for cancers. In this
paper, we propose a Multi-view Graph Auto-Encoder based
model named SLMGAE for predicting novel SL interactions.
Experimental results show that our model outperforms other
graph neural network methods and matrix factorization meth-
ods. Case studies also demonstrate that our proposed model is
promising for predicting novel SLs.

Currently, our SLMGAE selects random gene-pairs as neg-
ative samples for model training and testing, which may
have bias. In the future, we plan to extract negative SL
pairs from DepMap [45] (https://depmap.org/), where the co-
dependencies between genes are evaluated based on their
effects in different cell lines of various cancers. With these
meaningful negative SL pairs, we can thus generate unbiased
decision boundary for better SL prediction. We also plan to
integrate the gene knowledge graph with graph convolutional

networks and graph attention networks for SL prediction. With
various gene relationships in the knowledge graph, we aim to
explain the underlying interacting mechanisms for predicted
SL pairs. In addition, we will also work on the drug response
screen data [46] to validate the predicted SL pairs in the future.
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