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Abstract
Graph neural networks have shown widespread
success for learning on graphs, but they still face
fundamental drawbacks, such as limited expres-
sive power, over-smoothing, and over-squashing.
Meanwhile, the transformer architecture offers a
potential solution to these issues. However, ex-
isting graph transformers primarily cater to homo-
geneous graphs and are unable to model the in-
tricate semantics of heterogeneous graphs. More-
over, unlike small molecular graphs where the
entire graph can be considered as the receptive
field in graph transformers, real-world heteroge-
neous graphs comprise a significantly larger num-
ber of nodes and cannot be entirely treated as such.
Consequently, existing graph transformers strug-
gle to capture the long-range dependencies in these
complex heterogeneous graphs. To address these
two limitations, we present Poly-tokenized Het-
erogeneous Graph Transformer (PHGT), a novel
transformer-based heterogeneous graph model. In
addition to traditional node tokens, PHGT intro-
duces a novel poly-token design with two more
token types: semantic tokens and global tokens.
Semantic tokens encapsulate high-order hetero-
geneous semantic relationships, while global to-
kens capture semantic-aware long-range interac-
tions. We validate the effectiveness of PHGT
through extensive experiments on standardized het-
erogeneous graph benchmarks, demonstrating sig-
nificant improvements over state-of-the-art hetero-
geneous graph representation learning models.

1 Introduction
In recent years, graph neural networks (GNNs) have
emerged as a powerful tool for learning on graph-structured
data [Scarselli et al., 2008; Kipf and Welling, 2017; Hamilton
et al., 2017; Veličković et al., 2018]. They typically adopt
a message-passing architecture that learns node representa-
tions by aggregating messages (i.e., features) from neigh-
boring nodes in a recursive manner. Despite their effective-
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ness, message-passing GNNs still face several challenging
problems. One major limitation is their expressive power,
which is bounded by the 1-Weisfeiler-Lehman test [Xu et
al., 2019]. Moreover, they often suffer from the so-called
“over-smoothing” [Chen et al., 2020] and “over-squashing”
[Alon and Yahav, 2021] issues as more message-passing lay-
ers are stacked. Given more layers, the receptive field of a
node grows exponentially. Thus, node representations tend
to become similar or overly smooth across the graph; at the
same time, messages from the entire receptive field get overly
compressed or squashed into fixed-length node vectors, lead-
ing to a loss of important information across the graph.

Meanwhile, the transformer architecture [Vaswani et al.,
2017] has revolutionized natural language processing [De-
vlin et al., 2019; Brown et al., 2020] and computer vision
[Dosovitskiy et al., 2021; Liu et al., 2021], achieving state-
of-the-art performance. This success has inspired the design
of transformer architectures for graphs [Ying et al., 2021;
Chen et al., 2022; Kreuzer et al., 2021] as an appealing
alternative to conventional message-passing GNNs. Graph
transformers have demonstrated promising results, particu-
larly on molecular prediction tasks [Ying et al., 2021], own-
ing to their fully-connected self-attention mechanism which
can overcome the limitations of message-passing GNNs such
as over-smoothing and over-squashing [Müller et al., 2023].
However, most existing graph transformers are designed for
homogeneous graphs, which cannot preserve the rich and
complex semantics in heterogeneous graphs. Furthermore,
the quadratic complexity of self-attention hinders the abil-
ity to handle a broader receptive field beyond the very small
molecular graphs.

In particular, heterogeneous graphs or heterogeneous infor-
mation networks (HIN) [Shi et al., 2016] have become a pop-
ular choice for modeling complex real-world systems such
as bibliographic and e-commerce networks. For example, as
shown in Figure 1(a), in a bibliographic network there exist
many nodes of diverse types, e.g., papers (P), authors (A),
conferences (C). These heterogeneous nodes often interact
via various relations, e.g., writing (A–P) or collaborating (A–
P–A). To effectively capture such rich semantic information,
heterogeneous graph neural networks (HGNNs) [Wang et al.,
2019; Hu et al., 2020; Zhang et al., 2019] have been pro-
posed, but they boil down to the message-passing architecture
and thus suffer from the same problems including limited ex-



pressive power, over-smoothing and over-squashing. Hence,
it becomes natural to consider transformers for heterogeneous
graphs. Specifically, we need to address the following two
challenges on heterogeneous graphs.

First, how do we integrate the complex semantics on a het-
erogeneous graph into transformers? The fundamental in-
put blocks of transformers are tokens, e.g., words in language
tasks or nodes in graph tasks, where the attention mechanism
operates on. It is still unclear how the rich node types and
relations on a heterogeneous graph can seamlessly integrate
with the token-based input. A recent study [Mao et al., 2023]
introduced a transformer-based heterogeneous graph model
called HINormer, but it only adjusts the attention scores be-
tween node tokens based on their heterogeneous types, ig-
noring explicit interactions between them and high-order se-
mantic relations. For example, in a bibliographic network, an
author node not only attends to different paper or conference
nodes based on topical interest, but also focuses on different
“strategies” that can be abstracted using semantic relations,
e.g., seeking collaboration (A–P–A) or benchmarking com-
petitors (A–P–C–P–A). Hence, we need to learn fine-grained
attention between nodes and semantic abstractions, in addi-
tion to the traditional attention between nodes only.

Second, how do we expand the receptive fields for graph
transformers to capture long-range interactions on a hetero-
geneous graph? Unlike small molecular graphs where the
entire graph can be the receptive field, real-world heteroge-
neous graphs extend beyond the capacity to be treated en-
tirely within a single receptive field. For instance, HINormer
[Mao et al., 2023] uniformly samples the neighbors around
each node up to a predefined maximum depth. The sam-
pled subgraphs are fed into the transformer, effectively re-
ducing the number of input tokens. However, this also lim-
its the receptive field of a node to its sampled subgraph,
which ignores long-range dependencies and complex patterns
in heterogeneous graphs [Li et al., 2022; Li et al., 2021;
Li et al., 2023]. Alternatively, linear transformer blocks
[Rampášek et al., 2022; Wu et al., 2022] apply a linear kernel
approximation to calculate the otherwise quadratic pairwise
attention. Nevertheless, modeling the interaction for every
pair of nodes is susceptible to noises, as most nodes can be ir-
relevant or unimportant to the query node. On the other hand,
graph coarsening-based transformer models [Zhang et al.,
2022] attempt to compress a graph using its spectral features,
which can be a computationally expensive process. Further-
more, except for HINormer, existing approaches are designed
for homogeneous graphs without accounting for the abundant
semantics on heterogeneous graphs.

To address these two challenges, we propose Poly-
tokenized Heterogeneous Graph Transformer (PHGT), a
transformer-based approach designed specifically for hetero-
geneous graphs. It boils down to the notion of poly-tokens,
where distinct types of tokens are integrated into the trans-
former input to address both the heterogeneity and receptive
field challenges. For the first challenge, we introduce a new
type of token called the semantic token, in addition to the
commonly used node token in existing graph transformers. A
semantic token encodes a specific semantic detail and enjoys
the same status as the node token in the transformer input,

allowing fine-grained attention between not only nodes, but
also nodes and heterogeneous semantics. Concretely, we ma-
terialize a semantic token as a meta-path [Sun et al., 2011] in-
stance embedding, which can be regarded as a basic semantic
unit in heterogeneous graphs. For instance, a meta-path like
A–P–A can signify a collaborator relationship, while A–P–
C–P–A represents a peer relationship in the same field, ab-
stracting the heterogeneous semantics into well-defined se-
mantic units. The semantic tokenization essentially elevates
the treatment of rich semantics as first-class citizens in the
transformer architecture, enabling us to better exploit the se-
mantics on a heterogeneous graph.

To tackle the second challenge, we utilize another type of
token called semantic-aware global token. Each global token
attempts to encode a structure- and semantic-coherent part of
the global information on a graph, to complement the tradi-
tional node tokens that only capture local information. Con-
cretely, we employ a fast, heterogeneous graph clustering al-
gorithm aimed at grouping structurally and semantically re-
lated nodes into a set of global tokens, where each global to-
ken represents a cluster on the graph. This formulation allows
the transformer to also model the interactions between each
node and the global tokens across the entire graph. This ef-
fectively expands the receptive field of each node to capture
the semantic-aware long-range interactions, yet without suf-
fering from quadratic complexity.

Together, our ploy-token design with three distinct types
of tokens, namely, node tokens, semantic tokens and global
tokens, is well-suited to realize the transformer architecture
for node-level tasks in heterogeneous graphs. Our major
contributions are summarized as follows. (1) We introduce
poly-tokens for heterogeneous graph transformers: the se-
mantic token captures semantic relationships and the global
token incorporates semantic-aware long-range information,
to complement the traditional node tokens. (2) We further
present Poly-tokenized Heterogeneous Graph Transformer or
PHGT, which captures both semantic and global information
in a unified manner through the poly-token design. (3) We
perform extensive experiments on four benchmark hetero-
geneous graph datasets, and demonstrate the advantages of
PHGT over state-of-the-art heterogeneous graph models.

2 Related Works
Heterogeneous Graph Neural Networks. GNNs have
emerged as a powerful framework for analyzing structured
data represented as graphs, as demonstrated in seminal works
such as GCN [Kipf and Welling, 2017], GAT [Veličković
et al., 2018] and GraphSAGE [Hamilton et al., 2017].
HGNNs [Yang et al., 2020] have gained prominence as an
extension to traditional GNNs, specifically tailored to han-
dle graphs with diverse node and edge types. HAN [Wang
et al., 2019] relies on manually designed meta-paths and hi-
erarchical aggregation to capture rich semantics. MAGNN
[Fu et al., 2020] further leverages node content features by
using a relational rotation encoder to aggregate meta-path in-
stances. Most HGNNs follow the message-passing paradigm,
which makes them susceptible to the ongoing challenges of
the paradigm, including restricted expressive power, over-



smoothing, and over-squashing. It is worth noting that, al-
though Heterogeneous Graph Transformer (HGT) [Hu et al.,
2020] appears to explore the transformer architecture for het-
erogeneous graphs, it essentially utilizes an attention mecha-
nism solely for neighborhood information aggregation. Con-
sequently, HGT fundamentally remains a message-passing
framework, and thus retains the associated limitations.

Transformers for Graph. For graph-structured data, the
transformer architecture emerges as a promising alternative
to address the limitations of the message-passing mecha-
nism [Liu et al., 2023]. Given the transformer’s inherent
lack of awareness about the underlying graph structure, re-
searchers have focused on methods to integrate graph topo-
logical information into the transformer architecture. For
instance, Graphormer [Ying et al., 2021] employs pairwise
shortest path distances to define relative positional encodings
of the nodes. SAT [Chen et al., 2022] leverages GNNs to
extract subgraph structures and utilizes structural similarity
for calculating attention weights. Meanwhile, other stud-
ies have attempted to expand the application of transformer
architectures beyond the scope of small molecular graphs.
NodeFormer [Wu et al., 2022] employs a kernelized Gumbel-
Softmax operator to transform the self-attention operation
with quadratic complexity into one with linear complexity.
Meanwhile, ANS-GT [Zhang et al., 2022] adaptively sam-
ples informative nodes and captures long-range dependen-
cies through graph coarsening algorithms. In a recent study
[Mao et al., 2023], researchers introduced a transformer-
based model for heterogeneous graph representation learning,
named HINormer, which demonstrates state-of-the-art per-
formance in node classification tasks. However, HINormer
does exhibit two notable limitations. First, its context sam-
pling strategy leads to a constrained receptive field, resulting
in the loss of global information. Second, HINormer only
leverages heterogeneous types to modulate attention scores
among node tokens, thereby overlooking explicit interactions
between node tokens and high-order semantic information.

3 Notations and Preliminaries
Heterogeneous Graph. A heterogeneous graph or hetero-
geneous information network [Shi et al., 2016], denoted as
G = (V, E ,A,R, ϕ, ψ), is a graph with a set of nodes V , a
set of edges E , a node type mapping function ϕ : V → A
and an edge type mapping function ψ : E → R. Here A and
R denote the sets of predefined node types and edge types,
respectively, such that |A|+ |R| > 2.

Meta-Path. A meta-path [Sun et al., 2011] P is defined as
a sequence in the form of A1

R1−→ A2
R2−→ · · · Rl−→ Al+1

(abbreviated as A1A2 · · ·Al+1 when there is only one unique
relation type betweenAi andAi+1), forAi ∈ A andRi ∈ R.
It describes a composite relation R = R1 ◦ R2 ◦ · · · ◦ Rl

between A1 and Al+1.

Transformer. The original transformer architecture has
been designed for sequence data, employing a series of trans-
former layers [Vaswani et al., 2017]. The self-attention mech-
anism is at the core of the transformer architecture. Given
a sequence of input embeddings H = [h1,h2, ...,hm]⊤ ∈

Rm×d, the self-attention mechanism computes the weighted
sum of embeddings:

Attention(Q,K,V) = Softmax
(

QK⊤
√
dK

)
V, (1)

where Q = HWQ,K = HWK ,V = HWV are known
as the queries, keys and values, respectively, WQ, WK and
WV are projection matrices, and dK is the dimension of the
queries/keys.

4 Methodology
In this section, we present the Poly-tokenized Heterogeneous
Graph Transformer (PHGT) model, capitalizing on three dis-
tinct types of tokens to capture different grains of information
in a heterogeneous graph. We start with an overview of the
PHGT framework, followed by a detailed exposition of the
different types of tokens.

4.1 Overall Framework
We illustrate the overall framework of our proposed PHGT
in Figure 1. Given an input heterogeneous graph G, we first
employ a structure encoder to capture the local structures of
the graph. Subsequently, a poly-tokenization mechanism is
employed to model information from different perspectives.

Structure Encoder. The self-attention mechanism of the
transformer calculates all pairwise interactions in a receptive
field, ignoring the local structures in a graph (i.e., explicit
neighborhood connectivity). Hence, we insert several graph
convolutional layers before the transformer layers, utilizing
the message-passing mechanism to encode local structures.
As abstracted by Eq. (2), a structure encoder is applied to a
graph G with adjacency matrix A and node feature matrix X,
to obtain an embedding matrix Z ∈ R|V|×d for all nodes in
the graph:

Z = StructureEnc(A,X). (2)

Z contains the preliminary node representations to con-
struct the poly-token input for the transformer. Note that
Z = [z1, z2, . . . , z|V|]

⊤ where each row corresponds to a d-
dimensional embedding of a node in the graph.

Poly-Tokenization Mechanism. The key idea behind our
approach lies in the utilization of distinct types of tokens to
model different grains of information. Specifically, each node
i is represented by a sequence of T token vectors Hi ∈ RT×d,
which forms the input of the instance i to the transformer. In
our poly-token design, Hi comprises three types of tokens:

Hi = [Hi
[node],H

i
[sem],H[global]]

⊤. (3)

Here, Hi
[node] is a node token sequence to capture pairwise

interactions in the local receptive field of node i. Next, Hi
[sem]

is a semantic token sequence to preserve high-order seman-
tic relations associated with node i on the heterogeneous
graph. Moreover, H[global] is a semantic-aware global token
sequence that effectively expands the receptive field to model
long-range interactions.

Among the poly-tokens, node token has been a traditional
design in graph transformers. Due to the inherent quadratic
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Figure 1: The overall framework of PHGT.

complexity of the self-attention mechanism, it is infeasible
to treat the whole graph as the receptive field except on very
small graphs (e.g., molecular graphs). Following previous
work [Mao et al., 2023], for each target node i, we sam-
ple a subgraph Gi around i. Suppose Gi consists of a set of
nodes Vi = {vi1, vi2, . . . , vi|Vi|}. This subgraph serves as a
local receptive field of vi with |Vi| nodes only. Then, we
can use these nodes to form a node token sequence, denoted
by Hi

[node] ∈ R|Vi|×d, that characterizes the target node i, as
follows.

Hi
[node] = [zi1, z

i
2, ..., z

i
|Vi|]

⊤, (4)

where zik is the preliminary representation of node vik from
the structure encoder in Eq. (2). Note that although we call
Hi

[node] a “sequence” following NLP convention, the order of
the node tokens is irrelevant in graph domains1.

Beyond the standard node tokens, we also propose the se-
mantic and global tokens among the poly-tokens. As they
form our key contributions, we defer their discussions to
Sect. 4.2 and 4.3, respectively.

Transformer Block. The resulting poly-token sequence,
Hi in Eq. (3), is used as the input of node i to the transformer
layers, as shown in Figure 1(c). The computation formula of
a transformer layer is provided in Appendix A. By stacking L
transformer layers, PHGT can encode the node i and obtain
its output embedding Ei, followed by a task-specific layer
such as a classifier for node classification.

4.2 Semantic Token
As part of the poly-token formulation, we introduce our se-
mantic token to capture the rich semantic information on a
heterogeneous graph. In this regard, previous work [Mao et

1To achieve permutation invariance, our implementation re-
moves the positional encoding from the transformer architecture.

al., 2023] merely uses graph heterogeneity as side informa-
tion to adjust self-attention. In contrast, our proposed seman-
tic token stands as a first-class citizen in the transformer ar-
chitecture, enabling the modeling of explicit interactions be-
tween nodes and high-order semantic relations. Specifically,
we resort to the tool of meta-path [Sun et al., 2011] to build
our semantic tokens.
Meta-Path Instance as Semantic Token. Intuitively, a
meta-path is a semantic pattern to describe a high-order re-
lation in the heterogeneous graph (see Sect. 3). For example,
in Figure 1(a), APA describes co-author relations and APCPA
describes researchers in the same field. Each meta-path has
a set of instances on the graph, e.g., 7–i–8 is an instance
of APA which implies nodes 7 and 8 are co-authors. Natu-
rally, a target node is associated with instantiations of various
high-order semantic relations, which can be formulated into
semantic tokens to characterize the semantic context of the
target node.

Specifically, consider a pre-defined set of meta-paths P .
For each subgraph Gi surrounding a target node i, we extract
a set of N meta-path instances Si

[sem] = {pi1, pi2, . . . , piN},
where each pik is an instance of some meta-path in P , and
N is a hyperparameter. For example, Figure 1(b) illustrates
an example of a subgraph centered on node i, where pi1 : 7–
2–8 is an instance of APA and pi2 : i–9–1 is an instance of
PAP. Each instance pik is regarded as a semantic token, and
we derive its embedding in the next step to form a semantic
token sequence as part of the input to the transformer.
Semantic Token Embedding. For each semantic token
pik ∈ Si

[sem], its embedding zipk
is aggregated from that of

every node in the corresponding meta-path instance using a
readout function:

zipk
= ReadOut({zu | u ∈ pik}), (5)

where u is a node in pik, and zu is the preliminary represen-
tation of node u obtained via the structure encoder in Eq. (2).



The choice of ReadOut is flexible, including sum or mean
pooling and recurrent neural networks, among others. In our
implementation, we opt for a simple mean pooling which
shows strong empirical performance.

Finally, gathering all the semantic tokens for a target node
i, we obtain a semantic token sequence for i:

Hi
[sem] = [zip1

, zip2
, ..., zipN

]⊤, (6)

which forms part of the input representing node i to the trans-
former, as shown in Eq. (3).

4.3 Global Token
To cope with the size of the receptive field, the traditional
node tokens are taken from a small subgraph around each
target node. Hence, the receptive field of the target node is
limited, preventing it from receiving long-range interactions
with nodes outside the subgraph.

To expand the receptive field, yet without incurring a
quadratic overhead, we propose the concept of semantic-
aware global token. In particular, the global token aims to
extract global information on the graph in a semantic-aware
manner, enabling a target node to attend to parts of the graph
beyond its local receptive field. Thus, the inclusion of global
tokens effectively expands the receptive field on a hetero-
geneous graph. More specifically, we resort to a heteroge-
neous graph clustering algorithm, where each cluster can be
regarded as a global token.
Heterogeneous Cluster as Global Token. To extract
global information from a graph, we perform clustering to
group structurally and semantically related nodes. Each
group or cluster of nodes can serve as a semantic-aware
global token, and the set of global tokens provides a summary
of the global information on the graph.

An efficient approach to cluster nodes in a graph is
pseudo-label propagation [Gregory, 2010]. However, it is
not designed for heterogeneous graphs, in which different
node/edge types may entail significantly different roles in the
graph. On the other hand, several clustering methods [Zhou
and Liu, 2013; Zhang et al., 2019] designed for heteroge-
neous graphs focus solely on clustering nodes of a specific
type, which diverges from the goal of our global token to cap-
ture global information across the graph. Hence, we adapt
the pseudo-label propagation algorithm to handle heteroge-
neous graphs. The high-level idea is to differentiate the edge
weights based on node/edge types, and use these semantic-
aware weights to guide the pseudo-label propagation process.
Specifically, inspired by [Yang et al., 2022], we introduce
a heterogeneous variant of GAT [Veličković et al., 2018],
which learns the weight αi,j of the edge (i, j) based on a
type-wise projection of the node features. That is,

αi,j =
exp(Wϕ(i)hi,Wϕ(j)hj)∑

k∈Ni
exp(Wϕ(i)hi,Wϕ(k)hk)

, (7)

where Wϕ(i) is a project matrix specific to the node type of i,
and Ni is the set of neighbors of node i. After getting the edge
weight αi,j , we use it to guide the label-propagation process.

As the heterogeneous graph clustering method is not the
primary focus of our contribution, we provide its details in
Appendix B.

Global Token Embedding. After clustering the graph G,
we obtain a set of M clusters {c1, c2, . . . , cM}, where M is
a hyperparameter. Each cluster is regarded as a global token,
and we aggregate the embeddings of nodes in each cluster
as the global token embedding. Specifically, the embedding
of the global token corresponding to the cluster ck can be
calculated as

zck = ReadOut({zu | u ∈ ck}), (8)
where u is a node in ck, and zu is the preliminary represen-
tation of node u obtained via the structure encoder in Eq. (2).
Again, we utilize mean pooling as the ReadOut function.

Finally, all the global tokens form a sequence:

H[global] = [zc1 , zc2 , ..., zcM ]⊤, (9)
which is concatenated with the node and semantic token se-
quences of each node as the input to the transformer, as shown
in Eq. (3).

4.4 Training Objective
Lastly, we demonstrate the training of PHGT for the clas-
sic node classification task on graphs. Given the embedding
EL obtained by the model, we adopt a multi-layer perceptron
(MLP) with parameter θ to predict the label distribution of
node i:

ŷi = MLP(EL; θ). (10)
where ŷi ∈ RC is the predicted label distribution and C is
the number of classes. In the training process, we optimize
the cross entropy loss of the node i:

L =
∑

i∈Vtrain
CrossEntropy(ŷi,yi) (11)

where Vtrain is the training node set, and yi is the ground-
truth one-hot label vector of node i.

5 Experiments
In this section, we first evaluate PHGT on the node classifica-
tion task, and then perform ablation studies, parameter anal-
ysis, and efficiency studies.

5.1 Experimental Setup
Datasets. Our experiments encompass four widely-used
heterogeneous graph datasets: DBLP and ACM (academic
networks), IMDB (movie network), and Freebase (knowledge
graph). Among these datasets, DBLP, ACM, and IMDB are
sourced from a standardized benchmark called the Hetero-
geneous Graph Benchmark (HGB) [Lv et al., 2021]. The
preprocessing and data splitting procedures follow the guide-
lines established by HGB. For Freebase, we have employed
the version provided by a recent state-of-the-art work [Mao
et al., 2023]. A summary of the statistics of each dataset is
provided in Table 1.

Our proposed semantic tokenization requires a pre-defined
meta-path set. For the DBLP dataset, we extract instances
of APA, APT and APC (A: Author, P: Paper, T: Term, C:
Conference). For the ACM dataset, we extract instances of
PAP and PSP (P: Paper, A: Author, S: Subject). For the IMDB
dataset, we extract instances of MDM, MAM and MKM (M:
Movie, D: Director, A: Actor, K: Keyword). For the Freebase
dataset, we extract the instances of MAM, MDM and MWM
(M: Movie, A: Actor, D: Director, W: Writer).



Table 1: Statistics of the datasets

Dataset Nodes # Node
types #Edges # Edge

types Target #Classes

DBLP 26,128 4 239,566 6 author 4
IMDB 21,420 4 86,642 6 movie 5
ACM 10,942 4 547,872 8 paper 3

Freebase 43,854 4 151,034 6 movie 3

Baselines. To comprehensively evaluate the proposed
PHGT against state-of-the-art approaches, we consider a va-
riety of baseline models that fall into two major categories.
In the first category, we focus on message-passing-based
HGNNs. This category encompasses the following mod-
els: RGCN [Schlichtkrull et al., 2018], HAN [Wang et al.,
2019], GTN [Yun et al., 2019], HetGNN [Zhang et al., 2019],
HGT [Hu et al., 2020], MAGNN [Fu et al., 2020], and
Simple-HGN [Lv et al., 2021]. The second category in-
volves transformer-based models. Within this category, we
consider ANS-GT [Zhang et al., 2022], a coarsening-based
model; NodeFormer [Wu et al., 2022], a linear transformer-
based model; HINormer [Mao et al., 2023], a model specif-
ically tailored for heterogeneous graphs. We have excluded
certain other graph transformer models [Ying et al., 2021;
Chen et al., 2022; Hussain et al., 2022] from our experimen-
tal results. The reason is that these models are designed for
small molecular graphs, and they run out of memory when
applied to our datasets.

For the baseline results that were already reported in the
original HGB paper [Lv et al., 2021], we directly quote the re-
ported results. For results that were not included in the HGB
paper, we conducted our experiments using authors’ code and
the OpenHGNN library [Han et al., 2022].

Experimental Settings. We performed multi-class node
classification experiments on three datasets, namely, DBLP,
Freebase and ACM, and multi-label node classification on
IMDB. For DBLP, IMDB and ACM, we used the same data
split from HGB for training, validation, and testing on each
dataset. For the Freebase dataset, we use the split provided
by HINormer [Mao et al., 2023]. Classification performance
was evaluated using micro-F1 and macro-F1 metrics. For ro-
bustness, all experiments were repeated three times, and we
report the average results along with their corresponding stan-
dard deviations. For detailed hyperparameter settings, please
refer to Appendix C.3.

5.2 Performance Evaluation
We present the node classification results in Table 2. Based
on the results reported, we make the following observations.

First, our proposed PHGT model demonstrates superior
performance in most scenarios, outperforming other baseline
models. The only exception is the macro-F1 metric on the
Freebase dataset, where HINormer performs the best but the
performance of PHGT remains competitive, and PHGT still
achieves the best micro-F1 score. This observation suggests
that local structures may be relatively more important on the
Freebase dataset, which is a knowledge graph constructed
from a collection of individual facts or triples. As HINormer

limits its receptive field to a local subgraph, it may have an
advantage on this dataset.

Second, PHGT consistently outperforms ANS-GT and
NodeFormer. This is noteworthy because both ANS-GT and
NodeFormer possess a global receptive field, which empha-
sizes the effectiveness of our proposed semantic token and
global token.

Third, PHGT surpasses all the message passing-based
HGNN baselines in almost all cases. This finding suggests
that the incorporation of a pairwise self-attention mechanism
beyond a local receptive field is beneficial in enhancing the
performance on heterogeneous graphs.

5.3 Ablation Studies
To assess the effectiveness of each component in our PHGT
model, we conduct an ablation study, examining three ablated
variants: (1) w/o semantic token: In this variant, the semantic
token is removed to gauge its impact on performance; (2) w/o
global token: In this variant, the global token is removed to
assess its contribution; (3) w/o both: In this variant, both the
semantic tokens and the global tokens are removed, retaining
only the node tokens.

The micro-F1 results are reported in Table 3. From the re-
sults, we observe that removing the semantic tokens causes
the performance to drop across all datasets, underscoring the
significance of the semantic tokens in capturing heteroge-
neous high-order relations. A similar trend is observed when
global tokens are removed, indicating their effectiveness in
capturing long-range dependencies. Finally, when both se-
mantic tokens and global tokens are removed, the perfor-
mance becomes the lowest, which implies that the two types
of tokens complement each other and play their own distinct
role in the full PHGT model.

5.4 Parameter Analysis
We assess the impact of three key hyperparameters in PHGT:
(1) the number of node tokens, (2) the number of semantic
tokens N , and (3) the number of global tokens M (which is
equivalent to the number of heterogeneous clusters).

Our experiments are conducted on the DBLP and ACM
datasets, and the effect of these hyperparameters are depicted
in Figure 2. We observe that the performance trends for the
number of node tokens and the number of semantic tokens
display a similar pattern. Initially, the performance expe-
riences a notable improvement, which stabilizes afterward.
This pattern suggests that with too few tokens, their con-
tribution to performance is limited, while beyond a certain
threshold, their impact plateaus. In terms of the number of
global tokens, the performance initially improves before de-
clining. This trend might be attributed to the possibility that
excessively fine-grained long-range information could intro-
duce additional noise, adversely affecting the overall perfor-
mance. Overall, opting for 64–128 node tokens and semantic
tokens as well as 64 global tokens appears to be an optimal
and robust setting.

5.5 Efficiency Studies
First, an idea parallel to our global tokenization method
is to use a graph coarsening algorithm to aggregate nodes



Table 2: Performance evaluation (%). Vacant positions (“-”) mean that the model runs out of memory on the corresponding dataset.

Methods DBLP IMDB ACM Freebase

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

RGCN 92.07±0.50 91.52±0.50 62.05±0.15 58.85±0.26 91.41±0.75 91.55±0.74 60.82±1.23 59.08±1.44
HAN 92.05±0.62 91.67±0.49 64.63±0.58 57.74±0.96 90.79±0.43 90.89±0.43 61.42±3.56 57.05±2.06
GTN 93.97±0.54 93.52±0.55 65.14±0.45 60.47±0.98 91.20±0.71 91.31±0.70 - -

HetGNN 92.33±0.41 91.76±0.43 51.16±0.65 48.25±0.67 86.05±0.25 85.91±0.25 62.99±2.31 58.44±1.99
MAGNN 93.76±0.45 93.28±0.51 64.67±1.67 56.49±3.20 90.77±0.65 90.88±0.64 64.43±0.73 58.18±3.87

HGT 93.49±0.25 93.01±0.23 67.20±0.57 63.00±1.19 91.00±0.76 91.12±0.76 66.43±1.88 60.03±2.21
Simple-HGN 94.46±0.22 94.01±0.24 67.36±0.57 63.53±1.36 93.35±0.45 93.42±0.44 67.49±0.97 62.49±1.69

ANS-GT 93.15±0.51 92.75±0.43 66.65±0.35 62.52±0.61 92.55±0.54 93.67±0.62 67.33±0.61 61.24±0.57
NodeFormer 93.68±0.42 93.05±0.38 65.86±0.42 62.15±0.77 91.89±0.31 92.72±0.84 67.01±0.52 60.83±1.41
HINormer 94.94±0.21 94.57±0.23 67.83±0.34 64.65±0.53 93.15±0.36 93.28±0.43 67.78±0.39 62.76±1.10

PHGT 95.33±0.18 94.96±0.17 68.81±0.08 65.91±0.30 93.72±0.40 93.79±0.39 68.74±1.42 61.73±1.86

Table 3: Micro-F1 (%) for ablation studies.

DBLP IMDB ACM Freebase

w/o both 94.80 68.35 93.34 67.58
w/o semantic token 94.94 68.58 93.41 67.73

w/o global token 94.91 68.54 93.55 68.06
PHGT 95.33 68.81 93.72 68.89
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Figure 2: Impact of key hyperparameters.
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Figure 3: Efficiency evaluation. × denotes that the model runs out
of memory at the corresponding graph size.

into super nodes, and convert these super nodes to trans-
former tokens. However, graph coarsening methods of-
ten involve the computation of spectral features, rendering
them less efficient in comparison (besides, existing graph
coarsening-based transformers are only designed for homo-
geneous graphs). To evaluate the efficiency, we conducted
a comparison of time costs between our method and two
graph coarsening algorithms, namely, Variation Neighbor-
hood [Loukas, 2019] and Algebraic JC [Ron et al., 2011]. As
illustrated in Figure 3(a), the time consumption of our method
exhibits a drastically slower growth rate as the graph size ex-
pands. Notably, when processing a graph of 120,000 nodes,
our approach achieves a speedup of about 7–11 times com-
pared to the two graph coarsening methods. This highlights
the superior computational efficiency of our method.

Second, we evaluate our advantage in memory efficiency
over conventional graph transformer models in which the en-
tire graph is treated as the receptive field. We present a visu-
alization of the memory consumption for PHGT, Graphormer
[Ying et al., 2021], and SAT [Chen et al., 2022] in Fig-
ure 3(b). Evidently, both conventional graph transformer
models run out of memory when the graph size reaches 8,000
nodes, whereas our method continues to exhibit relatively low
memory consumption. This demonstrates that our approach
is practical beyond small molecular graphs.

6 Conclusion
In this paper, we proposed a novel Poly-tokenized Heteroge-
neous Graph Transformer (PHGT) to address the two limita-
tions of existing graph transformer models in handling com-
plex heterogeneous graphs: (1) the inability to capture het-
erogeneous semantics; (2) the incapacity to model intricate
long-range dependencies. In PHGT, we introduced two novel
token types, namely, semantic tokens and global tokens, in
addition to the traditional node tokens. Semantic tokens are
designed to encapsulate high-order semantic relations, while
global tokens facilitate the incorporation of semantic-aware
long-range dependencies. Through comprehensive experi-
ments on four benchmark datasets, we demonstrate the ef-
ficacy of our PHGT approach.
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A The Transformer Layer
Formally, the computation of a transformer layer follows the
equations:

X̂l = Norm(MHA(Xl−1) +Xl−1),

Xl = Norm(FNN(X̂l) + X̂l),
(12)

where Norm(·) denotes the layer-norm function. And X0 =
Hi in PHGT.

B Details of the Heterogeneous Graph
Clustering Technique

We make a simple modification to the pseudo-label propa-
gation algorithm. We use an attention-based graph neural
network to learn the edge weights and use these weights to
guide the pseudo-label propagation process. For this purpose,
we introduce a simple heterogeneous variant of GAT called
GAT-Hete. It calculates the weight α(i, j) for the edge (i, j)
by employing a type-wise projection of the node features, as
demonstrated in Eq. (7). Then, the embedding of node i can
be aggregated by

h
′

i = σ(
∑

j∈Ni
αi,jWhj), (13)

where σ is a nonlinear function.
By Eq. (7), we can obtain the edge weights αi,j for every

edge (i, j) in G, reflecting the importance of different edges
in the graph. We use the obtained edge weight information to
guide the label propagation process. Since label propagation
can be seen as a type of message passing, we write the label
propagation process in a message passing manner:

li = σ(
∑

j∈Ni
αi,j lj), (14)

where αi,j is directly acquired from the GAT-Hete model and
li is the pseudo-label of node i. To train the GAT-Hete model,
we follow the approach outlined by [Yang et al., 2022]. Ini-
tially, we perform random initialization of the pseudo-labels
as L = [l0, l1, ..., l|V|]

⊤. Next, we utilize the GAT-Hete
model to predict these pseudo-labels L and calculate edge
weights for each edge in the set E . Subsequently, we exe-
cute label propagation based on Eq. (14). After updating the
values in L, we retrain the GAT-Hete model to predict the up-
dated pseudo-labels L. This iterative process continues until
the pseudo-labels L converge. The final L indicates the clus-
ter of every node in G.

The pseudo-code for our proposed heterogeneous graph
clustering technique is provided in Algorithm 1.

Algorithm 1 Heterogeneous Graph Clustering
Input: A heterogeneous graph G.
Output: The pseudo-label L.

1: Randomly initialize L.
2: while L not converge do
3: Train GAT-Hete to fit L
4: Update the edge weight according to Eq. (7)
5: Label propagation according to Eq. (14)
6: end while

C Experiment Details
C.1 Details of Datasets
We employ a comprehensive collection of four real-world
heterogeneous graph datasets, encompassing both academic
and movie-related networks. Specifically, the academic
datasets comprise DBLP and ACM, while the movie-related
datasets encompass IMDB and Freebase.

• DBLP constitutes a bibliographic dataset in the realm
of computer science, encompassing papers disseminated
from 1994 to 2014 across 20 conferences within four
distinct research domains. The dataset encompasses four
primary node types: authors (A), papers (P), terms (T),
and venues (V). We have directly employed the par-
titioned dataset as provided by Heterogeneous Graph
Benchmark (HGB) [Lv et al., 2021].

• IMDB is an online platform dedicated to movies and
associated information. The sole multi-label dataset
consists of movies categorized into Action, Comedy,
Drama, Romance, and Thriller genres. This dataset en-
compasses four primary node types: movies (M), direc-
tors (D), actors (A), and keywords (K). We use the split
provided by HGB.

• ACM is a bibliographic dataset containing papers pub-
lished in renowned conferences such as KDD, SIG-
MOD, SIGCOMM, MobiCOMM, and VLDB. This het-
erogeneous graph encompasses 3025 papers (P), 5835
authors (A), and 56 subjects (S). For our analysis, we
rely on the partitioning provided by HGB.

• Freebase constitutes a subset of the broader Freebase
knowledge graph, encompassing entities categorized
into four distinct types: movies (M), actors (A), direc-
tors (D), and writers (W). In our study, we adopt the par-
titioning scheme provided by [Mao et al., 2023].

C.2 Details of Baselines
In order to conduct a comprehensive comparison between our
PHGT model and state-of-the-art counterparts, we incorpo-
rate baseline models from two primary categories: (1): mes-
sage passing-based HGNNs; (2): transformer-based graph
models.

(1) Message passing-based HGNNs

• RGCN [Schlichtkrull et al., 2018] employs a se-
ries of distinct weight matrices to project node em-
beddings into various relation spaces, capturing the
inherent heterogeneity within the graph.

• HAN [Wang et al., 2019] represents a pioneering
effort in extending GNNs to accommodate hetero-
geneous graphs. It introduces a novel hierarchical
attention mechanism that adeptly captures both the
structural and semantic aspects of the graph.

• GTN [Yun et al., 2019] devises an aggregation
function capable of autonomously identifying ap-
propriate meta-paths throughout the message pass-
ing procedure.



• HetGNN [Zhang et al., 2019] initially employs
random walks with restart to generate neighbor-
ing nodes, followed by the utilization of a Bi-
LSTM network to aggregate node features within
and across different types.

• MAGNN [Fu et al., 2020] builds upon the foun-
dation of HAN and extends its methodology by in-
corporating all nodes within a meta-path instance,
as opposed to solely considering nodes at the two
endpoints.

• HGT [Hu et al., 2020] use a transformer-like
heterogeneous attention mechanism to aggregate
neighbor information, which still falls into the mes-
sage passing framework. The approach employs
type-specific parameters to define heterogeneous
attention patterns along each edge.

• Simple-HGN [Lv et al., 2021] introduces a
straightforward yet powerful baseline model based
on GAT. This model incorporates both the edge
type embedding and node embeddings to compute
the attention scores.

(2) Transformer-based graph models

• ANS-GT [Zhang et al., 2022] innovates by adapt-
ing a multi-armed bandit algorithm to enable adap-
tive node sampling. Furthermore, it introduces a hi-
erarchical graph attention scheme, wherein coarse-
grained attention is accomplished through graph
coarsening.

• NodeFormer [Wu et al., 2022] employs a ker-
nelized Gumbel-Softmax operator to approximate
the otherwise quadratic complexity inherent in the
standard self-attention mechanism. Additionally, it
incorporates a relation bias to integrate graph struc-
ture into the model.

• HINormer [Mao et al., 2023] is a transformer-
based model designed for heterogeneous graphs.
It employs a local structure encoder alongside a
heterogeneous relation encoder to capture both the
structural and heterogeneous information.

C.3 Hyperparameter Settings
For the baseline models, in the cases of the DBLP, IMDB, and
ACM datasets, we have maintained an identical experimental
settings as presented in HGB [Lv et al., 2021]. Consequently,
we have directly incorporated the baseline results published
in HGB. For the Freebase dataset, we have adopted the de-
fault hyperparameter settings as presented in the original pa-
per for our experiment. For PHGT, we use Simple-HGN as
the structure encoder.

We report the hyperparameter adopted by PHGT in Ta-
ble 4.

Experiments are conducted on a server with:

• GPU: GeForce RTX 3090;

• CPU: Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz;

• Operating system: Ubuntu 18.04.5 LTS.

Table 4: Hyperparameter Settings for PHGT. NL denotes the num-
ber of node tokens, HD represents the hidden dimension, and LR
signifies the learning rate.

Dataset NL N M L HD dropout LR

DBLP 64 256 256 2 128 0.5 1e-4
IMDB 64 32 64 3 256 0.4 1e-4
ACM 256 64 64 2 64 0.5 1e-4

Freebase 128 128 320 2 64 0.5 1e-4
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