
Contrastive General Graph Matching with Adaptive Augmentation Sampling
Appendix

Appendix A Implementation Details1

Graph Encoder2

The initial node features of the input graph G is denoted as3

X ∈ RN×F , are first projected into a lower dimension H0 =4

WinitX ∈ RN×F ′
where F ′ ≤ F . We employ GraphSAGE5

[Hamilton et al., 2018] with the mean aggregator as shown6

below:7

ĥk
v = σ

(
Wk

GS MEAN
(
{ĥk−1

v } ∪ {ĥk−1
u ,∀u ∈ N (v)}

)
+

k−1∑
i=1

ĥk−1
v

)
(1)

where ĥk
v denotes the k-th layer embedding of node v, Wk

GS8

is the k-th layer learned weight matrix, σ denotes a non-linear9

activation function, and N (v) is the set of neighbors of node10

v.11

For node representation, we concatenate the embeddings12

from all the GCN layers and project them using a two-layer13

Multi-Layer Perceptron (MLP). This yields the final node14

representation Ĥ ∈ RN×F ′′
.15

ĥv = Wproj2σ
(
Wproj1 ⊕L

k=1 ĥ
k
v + bproj1

)
+ bproj2 (2)

where ĥv denotes the final representation of node v,16

⊕L
k=1ĥ

k
v represents the concatenation of the embeddings17

from all the L layers of the encoder for node v, Wproj1 and18

Wproj2 are learned weight matrices, bproj1 and bproj2 are bias19

terms.20

Finally, the global representation ĥG is attained by a read-21

out function:22

ĥG = AGGR
(
{Wread2σ

(
Wread1 ⊕L

k=1 ĥ
k
v + bread1

)
+ bread2,∀v ∈ V }

)
(3)

here AGGR is an aggregator function that consolidates23

node embeddings using methods like mean, sum, or max24

pooling. Wread1, Wread2, Wread1, and Wread2 are learnable25

weights. And V is the entire set of nodes in G.26

Algorithm27

The psudocode of training the proposed GCGM with our28

BiAS strategy is listed in Alg. 1. We first instantiate a pool of29

Algorithm 1 Training of GCGM with BiAS
Require: Augmentation pairs pool P , Initial weight for each aug-

mentation pair w0
i = eα, Hyperparameters α, λ

1: for t in training steps do
2: Pt(i) =

wi
t∑

j∈S w
j
t

, ∀i ∈ |P| # probability distribution

3: for each graph G in batch of graphs {G1, . . . ,GN} do
4: (τj , τk) ∼ Pt over P # sample augmentation pairs
5: G̃A ← τj(G), G̃B ← τk(G) # augment graph
6: F1 ←Match between G̃A and G̃B
7: end for
8: wt+1

i ← λ · wt
i + (1− λ) · eα·(1−ϕi

t) # update weights
9: Update P with the new weights

10: end for
Ensure: Trained model

random augmentation pairs P , each having an initial weight 30

w0
i set to eα, along with hyperparameters α and λ for BiAS. 31

During the training, for each mini-batch t, we compute a 32

probability distribution Pt for all augmentation pairs based 33

on their current weights. Then, for every graph G in our batch 34

of graphs, we sample an augmentation pair using Pt and ap- 35

ply these augmentations to obtain two new augmented graphs 36

G̃A and G̃B . We then utilize the GM solver adopted to pre- 37

dict the matching matrix between these augmented views and 38

attain the performance score i.e., F1 score. After process- 39

ing the entire batch, we update the weights of our augmenta- 40

tion pairs by first computing ϕi
t, the mean performance score 41

for all matchings where augmentation pair (τj , τk) was previ- 42

ously applied up to the current mini-batch t, and then updat- 43

ing weights. Subsequently, we update our pool P with these 44

new weights. We continue this process for each mini-batch 45

until the termination criteria are met, resulting in a trained 46

model. 47

Model Configurations 48

We pre-train our model using the Adam Optimizer. Detailed 49

hyperparameters used could be found in Tab. A. 50

Hardware Configuration 51

For our experiments, we utilized a Linux machine equipped 52

with an AMD EPYC 7742 64-Core CPU (2.25GHz) paired 53

with a GeForce RTX 3090 GPU. 54

GCGM Pascal VOC Willow SPair-71k Synthetic
BBGM NGMv2 BBGM NGMv2 BBGM NGMv2 NGMv2

batch size 32 32 16 16 32 32 32
learning rate 1× 10−4 1× 10−4 1× 10−4 1× 10−4 1× 10−5 1× 10−4 1× 10−5

weight decay 1× 10−3 1× 10−5 1× 10−4 1× 10−4 1× 10−5 1× 10−5 1× 10−2

epoch 10 10 10 10 10 10 10
hidden dim 256 1024 256 1024 1024 1024 16
output dim 256 1024 256 1024 1024 1024 8
layer 2 2 2 2 2 2 1
activation leaky relu relu elu elu prelu relu leaky relu
aggregation mean mean max mean mean mean mean
readout mean mean max max add mean max
temperature 0.07 0.07 0.07 0.07 0.07 0.07 0.07

Table A: Hyperparameter configurations.

Type Feature Structure
Matching
Scenario Hyperparameters

ND ✗ ✓ outliers pnd ∈ [0.1, 0.9]: fraction of nodes dropped

EA ✗ ✓
new

connections pea ∈ [0.1, 0.9]: fraction of edges added

FM ✓ ✗ variations pfm ∈ [0.1, 0.9]:
probability of masking each feature dimension

Mixup ✓ ✗ variations γ ∈ [0.1, 0.9]: mixup rate

Table B: Details of the remaining four graph augmentation types.

Appendix B Graph Augmentations55

In addition to the four major types of augmentations, we have56

also included the following four. Details can be found in57

Tab. B.58

Node Dropping (ND). In the context of graph matching,59

recognizing outliers is crucial. While inserting dummy nodes60

introduces direct outliers, an equally effective strategy is to61

create outliers indirectly by dropping existing nodes. When62

random nodes are dropped from one view, their correspond-63

ing nodes in the other view automatically become outliers.64

Edge Addition (EA). Though real-world graphs are often65

sparse, additional connections can emerge. These new edges66

can significantly alter the graph’s structure and information67

flow. With the edge addition strategy [Zeng and Xie, 2021],68

random edges are added between nodes that are not directly69

connected but with a path between them, thus altering the70

original connectivity.71

Feature Masking (FM). Node features in graphs can vary72

widely or be incomplete. Feature masking, a standard graph73

augmentation, addresses this by randomly masking certain74

features as zero, ensuring models learn robust representa-75

tions. Similar to feature scaling, it helps counteract feature76

variations and prevents over-reliance on specific features.77

Mixup. We adopt the SCGM [Liu et al., 2022] approach to78

include label mixup as an additional feature-space augmenta-79

tion. However, there’s a distinct difference. Whereas SCGM80

calculates the contrastive loss immediately after applying im-81

age augmentations (without the mixup influencing the con-82

trastive loss computation), we treat mixup as standard graph83

augmentation and then calculate our node-level contrastive84

loss.85

Appendix C Dataset Preparation 86

Real-world Dataset 87

We strictly followed the configurations specified by each 88

method during experiments. For preprocessing and extract- 89

ing the initial node features, we followed the approach of 90

SCGM [Liu et al., 2022]. Images underwent standard pro- 91

cessing and were resized to 256 × 256. Using VGG16 [Si- 92

monyan and Zisserman, 2014], which was pre-trained on Im- 93

ageNet [Deng et al., 2009], we applied bilinear interpola- 94

tion to each keypoint to obtain the node features. The graph 95

was constructed using Delaunay triangulation. And the fea- 96

tures of the connected nodes, encoded by our graph encoder, 97

were concatenated to form their respective edge features. 98

For evaluations on Pascal VOC [Bourdev and Malik, 2009; 99

Everingham et al., 2010] and SPair-71k [Min et al., 2019], 100

we sampled 1000 random graph pairs from each class. For 101

Willow Object dataset [Cho et al., 2013], we sampled 100 102

graph pairs per category. 103

Synthetic Dataset 104

Following the previous work [Wang et al., 2021; Liu et al., 105

2023], we generated ten sets of random points on the 2D 106

plane, with coordinates sampled from U(0, 1) × U(0, 1). 107

These sets served as our ground truth. The points under- 108

went distortion via random scaling from U (1− δs, 1 + δs) 109

with δs = 0.2, and had noise N
(
0, σ2

n

)
added to their po- 110

sition, where σn = 0.02. Additionally, up to two outliers 111

were added to each graph. From each ground truth set, we 112

derived 200 graphs for training and 100 for testing, leading 113

to total 2000 training and 1000 testing samples. And we also 114

follow a 80:20 train-validation split. During evaluation, 1000 115

random graph pairs were sampled from each ground-truth set. 116

Appendix D Baselines 117

We selected eight baselines for our study, which includes su- 118

pervised methods CIE [Yu et al., 2019], BBGM [Rolı́nek 119

et al., 2020], and NGMv2 [Wang et al., 2021]. In addi- 120

tion, we chose learning-free methods: RRWM [Cho et al., 121

2010], IFPF [Leordeanu et al., 2009], and SM [Leordeanu 122

and Hebert, 2005]. For self-supervised baselines, our com- 123

parison were made against GANN-GM [Wang et al., 2023] 124

and SCGM [Liu et al., 2022]. 125

We utilized the implementations maintained by [Wang et 126

al., 2021], which have been well-received in the GM domain. 127

To ensure a fair comparison, we adopted their optimal config- 128

urations for the Pascal VOC and Willow Object datasets. Ad- 129

ditionally, we maintained the SPair-71k’s configuration iden- 130

tical to that used for the Pascal VOC, a practice we also fol- 131

lowed. 132

Appendix E Performance Metric 133

Given a pair of input graphs G1 and G2 with N1 and N2 nodes 134

respectively, we derive the predicted matching matrix Ĝ ∈ 135

{0, 1}N1×N2 from the GM backbone, Then we calculate the 136

accuracy/recall and precision between the prediction and the 137

ground-truth permutation matrix Ggt ∈ {0, 1}N1×N2 . 138

Methods Synthetic
Intsec Unfilt

CIE [SUP] 12.2 ± 5.2 -
BBGM [SUP] 79.0 ± 2.4 60.2 ± 3.7
NGMv2 [SUP] 82.6 ± 1.8 62.5 ± 2.6

IPFP 68.1 ± 0.02 48.8 ± 0.07
RRWM 80.9 ± 0.04 60.9 ± 0.12
SM 64.3 ± 0.07 43.4 ± 0.06

Table C: Average performance of supervised and learning-free meth-
ods on the Synthetic Dataset.

Recall =

∑N1

i=1

∑N2

j=1 ĝij · g
gt
ij∑N1

i=1

∑N2

j=1 g
gt
ij

(4)

Precision =

∑N1

i=1

∑N2

j=1 ĝij · g
gt
ij∑N1

i=1

∑N2

j=1 ĝij
(5)

F1 =
2 · Recall · Precision
Recall + Precision

(6)

In the Intersection setting, recall is equal to both precision139

and F1 score.140

Appendix F Additional Model Analyses141

Performance of Supervised and Learning-Free142

Methods on the Synthetic Dataset143

In this subsection, we present additional results for supervised144

and learning-free methods on the Synthetic dataset in Tab. C.145

Supervised methods require significant groundtruth matching146

labels, while learning-free methods apply a heuristic based on147

graph structure/affinity matrix. Similar to Tab. 2 in the paper,148

supervised methods perform better due to their access to la-149

bels. Meanwhile, learning-free methods also perform well on150

Synthetic data which exhibit highly consistent structural pat-151

terns that can be exploited by their heuristics, while avoiding152

overfitting to node features sampled from a uniform distribu-153

tion. However, they underperform on real-world data where154

noise and outliers are prevalent.155

Detailed Performance by Class156

As shown in Tab. D, GCGM consistently showcase compet-157

itive performance compared to other unsupervised methods158

on Pascal VOC dataset. In several categories like ‘bottle’,159

‘table’, and ‘plant’, GCGM not only takes the lead but does160

so with a significant advantage, comparable to supervised161

methods. However, when the SCGM achieves higher scores,162

the difference with GCGM is relatively modest. Meanwhile,163

IPFP [Leordeanu et al., 2009], RRWM [Cho et al., 2010],164

SM [Leordeanu and Hebert, 2005], and GANN-GM [Wang165

et al., 2023] generally perform at a noticeably lower level166

compared to both GCGM and SCGM. Tab. E compares the167

performance of GCGM with other methods on Willow Object168

dataset. GCGM, when coupled with either BBGM [Rolı́nek169

et al., 2020] or NGMv2 [Wang et al., 2021], consistently ex-170

hibits superior performance across the majority of categories.171

Notably, in ‘car’, ‘duck’, and ‘winebottle’, the GCGM +172

NGMv2 achieves the highest scores, surpassing even some 173

supervised approaches such as CIE [Yu et al., 2019] and 174

NGMv2. 175

Comparison of GCGM vs. SCGM: Varied 176

Information Levels 177

To illustrate GCGM’s ability to achieve outstanding per- 178

formance with minimal information (specifically, only the 179

graph) in contrast to SCGM’s two-stage augmentations which 180

requires access to additional image features, we conducted 181

experiments on three real-world datasets. In these experi- 182

ments, we excluded image augmentation and visual back- 183

bone fine-tuning (SCGM’s default training configuration) 184

from SCGM. The results presented in Tab. G show that when 185

restricted to only graph augmentation (although SCGM still 186

utilizes the image feature to aid affinity learning), SCGM’s 187

performance declines significantly across three datasets. In- 188

triguingly, when the visual backbone of SCGM is frozen, its 189

performances on Pascal VOC and SPair-71k datasets actually 190

improve compared to when fine-tuning is permitted. This 191

could be due to feature redundancy from image augmenta- 192

tion, where multiple transformations activate similar features. 193

Additionally, some augmentations might introduce noise or 194

irrelevant variations, making further fine-tuning counterpro- 195

ductive. In summary, our proposed GCGM consistently out- 196

performs others, relying solely on graph information. This 197

underscores its effectiveness and efficiency in managing real- 198

world datasets. 199

Effect of BiAS Design 200

The ablation study, presented in Table. F, evaluates the overall 201

effectiveness of the complete BiAS scheme against config- 202

urations where individual design elements such as momen- 203

tum update and ϕi
t are excluded, across multiple datasets. 204

We use uniform sampling as our baseline denoted as ‘Uni- 205

form’, establishing a fundamental performance reference. 206

The ‘ϕi’ signifies that BiAS updates the weight of augmenta- 207

tion pair i based solely on its current mini-batch performance, 208

as opposed to averaging over all previous matchings, which 209

would lead to less smoother weight updates. Although the 210

outcomes are largely similar, subtle variations are observed 211

across datasets. Notably, by turning off the momentum up- 212

date and combining with ϕi (labeled as ‘λ = 0∧ ϕi’), we see 213

slight improvements in specific situations, particularly in the 214

Unfiltered settings of the SPair-71k and Synthetic datasets. 215

This suggests that promoting the most challenging augmenta- 216

tions can occasionally yield superior results, especially in the 217

presence of outliers. Nevertheless, the comprehensive BiAS 218

approach consistently outperforms in most settings across 219

datasets, reinforcing its overall robustness and highlighting 220

the importance of both the performance metric ϕi
t and mo- 221

mentum update. 222

Varying Size of Augmentation Pool 223

In Fig. A, we present GCGM’s performance on the Pascal 224

VOC dataset using both the BiAS and ‘Uniform’ samplers 225

across varying augmentation pool sizes |P| ranging from 2 to 226

1024. Both sampler benefit from employing a larger augmen- 227

tation pool, leading to improved and more consistent scores. 228

Methods aero bike bird boat bottle bus car cat chair cow table dog horse motorbike person plant sheep sofa train tvmonitor

BBGM (SUP) 38.5 65.2 51.6 37.5 85.6 62.1 25.7 56.9 36.7 58.4 44.0 54.1 56.1 61.7 32.7 95.8 49.1 31.8 73.3 82.8
NGMv2 (SUP) 44.0 65.6 52.6 43.4 86.2 60.0 43.5 59.0 39.3 57.2 36.7 55.2 56.3 61.9 41.5 94.3 48.1 36.9 70.7 81.9

IPFP 20.9 42.1 27.1 23.6 42.5 32.9 21.4 31.4 20.2 25 37 25.8 27.6 32.8 16.8 56 22 15.2 45.3 64.8
RRWM 22.0 43.4 28.0 23.5 45.5 31.7 20.3 31.8 21.0 25.9 31.5 26.0 30 32.6 18.1 57.5 22.5 15.2 44.2 63.1
SM 19.7 41.2 25.4 22.5 43.2 32.0 20.5 30.6 18.9 23.5 32.9 25.3 25.3 31.9 16.7 53.3 20.3 14.5 43.9 66.1

GANN-GMˆ 13.2 22.1 15.9 19.6 37.1 31.3 17.2 15.6 19.8 16.2 23.7 13.1 15.2 19.8 13.2 37.6 16.5 17.3 37.3 67.0
SCGM + BBGM 23.5 48.5 34.2 29.9 59.6 33.9 22.5 33.8 22.5 30.7 25.3 28.3 36 38.4 19.8 76.2 27.8 21.8 52 66.5
SCGM + NGMv2 21.6 43.3 30.9 25.9 54.2 33.1 21.8 29.4 23.1 26.9 22.5 24.6 30.2 35.5 20.1 57.1 24.8 20.9 46.6 65.5

GCGM + BBGM 17.5 38.6 26.3 30.4 76.4 32.8 21.1 26.2 26.2 23 45.4 21 26.3 30.5 20.9 93 19.8 24.2 47.8 76.2
GCGM + NGMv2 20.0 39.9 28.7 30 74.7 32.4 21.7 32.7 25.5 26.1 42.9 25 29.5 33.2 21.2 91.7 22.3 25.9 48 76.4

Table D: Average performance w.r.t F1 score (%) by class on the Pascal VOC dataset’s Unfiltered setting. Supervised methods are annotated
with ‘SUP’. :̂ unsupervised methods that require categorical information. Bold/underlined: best/runner-up results.

Methods car duck face motorbike winebottle

CIE (SUP) 73.7 72.2 98.1 87.5 81.7
BBGM (SUP) 95.6 87.7 100 99.3 98.2
NGMv2 (SUP) 93.5 85.3 99.9 97.5 96.1

IPFP 76.3 69.6 99.8 69.7 85.1
RRWM 78.6 73.3 100 77.2 87.7
SM 76.7 72.5 99.9 71.4 86.1

GANN-GMˆ 84.5 85.2 100 81.8 95.3
SCGM + BBGM 88.4 86.3 100 92.8 98.1
SCGM + NGMv2 79.4 73.0 99.2 81.2 88.1

GCGM + BBGM 93.0 85.9 100 94.6 98.5
GCGM + NGMv2 95.7 86.6 100 93.6 99.1

Table E: Average performance by class on Willow Object dataset.

Configurations Pascal VOC Willow SPair-71k Synthetic
Intsec Unfilt Intsec Intsec Unfilt Intsec Unfilt

Uniform 56.9 36.7 94.7 62.0 34.8 57.5 40.0
ϕi 56.7 36.7 94.9 61.0 33.7 57.9 40.2
λ = 0 ∧ ϕi 56.5 37.0 94.9 61.2 35.5 58.0 40.3

BiAS 57.3 37.4 95.0 62.6 35.4 58.1 39.9

Table F: Ablation study on BiAS design.

0 200 400 600 800 1000
Pool Size | |

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

F 1
 S

co
re

BiAS
Uniform

(a) Intersection

0 200 400 600 800 1000
Pool Size | |

0.30

0.32

0.34

0.36

0.38

F 1
 S

co
re

BiAS
Uniform

(b) Unfiltered

Figure A: Comparison of BiAS and ‘Uniform’ samplers across dif-
ferent augmentation pool sizes on Pascal VOC dataset.

0.1
0.3

0.5
0.7

0.9

1

3

5

7

9

33.0
33.5
34.0

34.5

35.0

35.5

F1

34.7

34.8

34.9

35.0

35.1

35.2

35.3

Figure B: Sensitivity of BiAS to different hyperparameter settings
on SPair-71k dataset.

Notably, BiAS consistently surpasses the ‘Uniform’ sampler 229

in both the Intersection and Unfiltered scenarios. 230

Hyperparameter Sensitivity 231

To investigate the sensitivity of BiAS’s hyperparameters, 232

specifically λ and α, we conducted experiments using various 233

combinations of these parameters on the SPair-71k dataset. 234

As shown in Fig. B, we trained GCGM + BiAS for λ ∈ 235

[0.1, 0.9] and α ∈ [1, 10], and tested under Unfiltered set- 236

ting (each combination was run 5 times with different ran- 237

dom seeds and |P| = 512). From the results, we observe 238

that larger values of α can lead to sub-optimal performance. 239

Extremely high α values create a skewed distribution of the 240

weights for augmentation pairs, increasing the likelihood of 241

sampling challenging augmentations. This reduces data di- 242

versity and can hinder performance. For λ, values at the ex- 243

tremes should be avoided to ensure a smooth weight updating 244

process. Nevertheless, even with extreme parameter settings, 245

BiAS tends to produce good results, indicating its robustness 246

and effectiveness in adaptively sampling from a large pool of 247

randomly instantiated augmentation pairs with just two hy- 248

perparameters. 249

Methods Fine-tune
Visual Backbone

Image
Augmentation

Graph
Augmentation

Pascal VOC Willow SPair-71k
Intsec Unfilt Intsec Intsec Unfilt

SCGM + BBGM
✓ ✓ ✓ 54.8 36.6 93.1 60.2 34.1
✗ ✓ ✓ 55.7 36.1 91.5 62.6 33.4
✗ ✗ ✓ 53.8 32.4 84.9 46.4 20.0

SCGM + NGMv2
✓ ✓ ✓ 50.8 32.9 84.2 59.8 30.5
✗ ✓ ✓ 55.5 34.4 77.2 59.5 28.8
✗ ✗ ✓ 47.9 30.2 77.7 56.8 25.3

GCGM + BBGM
✗ ✗ ✓

56.8 36.2 94.4 60.6 35.9
GCGM + NGMv2 57.3 37.4 95.0 62.6 35.4

Table G: Comparison of GCGM and SCGM based on access to different levels of information across three real-world datasets.

References250

[Bourdev and Malik, 2009] L. Bourdev and J. Malik. Pose-251

lets: Body part detectors trained using 3d human pose an-252

notations. In International Conference on Computer Vi-253

sion, pages 1365–1372. IEEE, 2009.254

[Cho et al., 2010] Minsu Cho, Jungmin Lee, and Ky-255

oung Mu Lee. Reweighted random walks for graph256

matching. In Computer Vision–ECCV 2010: 11th Euro-257

pean Conference on Computer Vision, Heraklion, Crete,258

Greece, September 5-11, 2010, Proceedings, Part V 11,259

pages 492–505. Springer, 2010.260

[Cho et al., 2013] Minsu Cho, Karteek Alahari, and Jean261

Ponce. Learning graphs to match. In International Con-262

ference on Computer Vision, pages 25–32, 2013.263

[Deng et al., 2009] Jia Deng, Wei Dong, Richard Socher, Li-264

Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale265

hierarchical image database. In 2009 IEEE conference on266

computer vision and pattern recognition, pages 248–255.267

Ieee, 2009.268

[Everingham et al., 2010] Mark Everingham, Luc Van Gool,269

Christopher KI Williams, John Winn, and Andrew Zisser-270

man. The pascal visual object classes (voc) challenge.271

International Journal of Computer Vision, 88:303–338,272

2010.273

[Hamilton et al., 2018] William L. Hamilton, Rex Ying, and274

Jure Leskovec. Inductive representation learning on large275

graphs, 2018.276

[Leordeanu and Hebert, 2005] Marius Leordeanu and Mar-277

tial Hebert. A spectral technique for correspondence prob-278

lems using pairwise constraints. In Tenth IEEE Interna-279

tional Conference on Computer Vision (ICCV’05) Volume280

1, volume 2, pages 1482–1489. IEEE, 2005.281

[Leordeanu et al., 2009] Marius Leordeanu, Martial Hebert,282

and Rahul Sukthankar. An integer projected fixed point283

method for graph matching and map inference. Advances284

in neural information processing systems, 22, 2009.285

[Liu et al., 2022] Chang Liu, Shaofeng Zhang, Xiaokang286

Yang, and Junchi Yan. Self-supervised learning of visual287

graph matching. In European Conference on Computer288

Vision, pages 370–388. Springer, 2022.289

[Liu et al., 2023] Chang Liu, Zetian Jiang, Runzhong Wang, 290

Lingxiao Huang, Pinyan Lu, and Junchi Yan. Revocable 291

deep reinforcement learning with affinity regularization 292

for outlier-robust graph matching. In The Eleventh Inter- 293

national Conference on Learning Representations, ICLR 294

2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 295

2023. 296

[Min et al., 2019] Juhong Min, Jongmin Lee, Jean Ponce, 297

and Minsu Cho. Spair-71k: A large-scale bench- 298

mark for semantic correspondence. arXiv prepreint 299

arXiv:1908.10543, 2019. 300

[Rolı́nek et al., 2020] Michal Rolı́nek, Paul Swoboda, Do- 301

minik Zietlow, Anselm Paulus, Vı́t Musil, and Georg Mar- 302

tius. Deep graph matching via blackbox differentiation of 303

combinatorial solvers. In Computer Vision–ECCV 2020: 304

16th European Conference, Glasgow, UK, August 23– 305

28, 2020, Proceedings, Part XXVIII 16, pages 407–424. 306

Springer, 2020. 307

[Simonyan and Zisserman, 2014] Karen Simonyan and An- 308

drew Zisserman. Very deep convolutional networks 309

for large-scale image recognition. arXiv preprint 310

arXiv:1409.1556, 2014. 311

[Wang et al., 2021] Runzhong Wang, Junchi Yan, and Xi- 312

aokang Yang. Neural graph matching network: Learning 313

lawler’s quadratic assignment problem with extension to 314

hypergraph and multiple-graph matching. IEEE Trans- 315

actions on Pattern Analysis and Machine Intelligence, 316

44(9):5261–5279, 2021. 317

[Wang et al., 2023] Runzhong Wang, Junchi Yan, and Xi- 318

aokang Yang. Unsupervised Learning of Graph Match- 319

ing With Mixture of Modes Via Discrepancy Minimiza- 320

tion. IEEE Transactions on Pattern Analysis and Machine 321

Intelligence, pages 1–18, 2023. 322

[Yu et al., 2019] Tianshu Yu, Runzhong Wang, Junchi Yan, 323

and Baoxin Li. Learning deep graph matching with 324

channel-independent embedding and hungarian attention. 325

In International conference on learning representations, 326

2019. 327

[Zeng and Xie, 2021] Jiaqi Zeng and Pengtao Xie. Con- 328

trastive self-supervised learning for graph classification. In 329

Proceedings of the AAAI conference on Artificial Intelli-330

gence, volume 35, pages 10824–10832, 2021.331

	Implementation Details
	Graph Encoder
	Algorithm
	Model Configurations
	Hardware Configuration

	Graph Augmentations
	Dataset Preparation
	Real-world Dataset
	Synthetic Dataset

	Baselines
	Performance Metric
	Additional Model Analyses
	Performance of Supervised and Learning-Free Methods on the Synthetic Dataset
	Detailed Performance by Class
	Comparison of GCGM vs. SCGM: Varied Information Levels
	Effect of BiAS Design
	Varying Size of Augmentation Pool
	Hyperparameter Sensitivity

