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• Graph Matching
oone-to-one correspondence between the nodes of two graphs
ocomputer vision, social network alignment, etc

Example of visual graph matching between two images of airplane
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• Assumption of Side Information in SSL GM
oSCGM (Liu et al., 2022) requires raw images
oGANN-GM (Wang et al., 2023) requires matchable graph pairs based 

on category information

Liu, C., Zhang, S., Yang, X., & Yan, J. (2022, October). Self-supervised learning of visual graph matching. ECCV 2022
Wang, R., Yan, J., & Yang, X.: Unsupervised learning of graph matching with mixture of modes via discrepancy minimization. PAMI 2023
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• Graph contrastive learning (GCL)
o node-classification (Zhu et al., 2020)

o graph-classification (You et al., 2020)

o link prediction (Sun et al., 2019)
o and graph matching (Liu et al., 2022)

• Challenges with Augmentations in GCL
o design and selection of effective graph augmentations
o effectiveness varies by dataset and task (You et al., 2020)
o extensive augmentation tuning (You et al., 2021)

Sun, F.Y., Hoffman, J., Verma, V., Tang, J.: Infograph: Unsupervised and semi-supervised graph-level representation learning via mutual information 
maximization. ICLR (2019)
Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Deep graph contrastive representation learning. arXiv preprint (2020)
You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learning with augmentations NeurIPS (2020)
You, Y., Chen, T., Shen, Y., Wang, Z.: Graph contrastive learning automated. ICML (2021)
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Graph-centric Contrastive framework for Graph Matching (GCGM) with
Boosting-inspired Adaptive Augmentation Sampling (BiAS)
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Outliers First-hop Node insertion
• 𝐹𝑟𝑎𝑐 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑 = 0.25
• 𝑆𝑖𝑧𝑒 𝑜𝑓 𝑠𝑢𝑏𝑠𝑒𝑡 = 2
• 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 = max
• # 𝑜𝑓 𝐸𝑑𝑔𝑒𝑠 𝐼𝑛𝑠𝑒𝑟𝑡𝑒𝑑 = 3
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• Set of Randomly Initialized Augmentations
𝐼 = {𝑁𝐼1, 𝑁𝐼2,… ,𝑁𝐼𝑘,
𝑁𝑅1, 𝑁𝑅2, … , 𝑁𝑅𝑘,
𝐸𝑅1, 𝐸𝑅2, … , 𝐸𝑅𝑘,
… }

• Pool of Augmentation Pairs 𝑃 = 𝐼2
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𝜆 = 0.6, 𝛼 = 2

𝒘𝒕 𝝓𝒕 𝒘𝒕+𝟏

1 0.9 1.09

1 0.4 𝟏. 𝟗𝟑
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• Real-world Datasets
• Synthetic Dataset
• Ablation and Model Analyses
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• Solver Compatibility
o BBGM
o NGMv2

• Consistency in Challenging 
Settings
o Intersection: no outliers
o Unfiltered: more challenging 

with outliers
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• Superior Performance
• Graph-Centric Advantage

• not dependent on visual inputs
• enhance robustness
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• Node Insertion (NI) and Node 
Replacement (NR)
o Pascal VOC and SPair-71k

• Edge Removal (ER) 
o SPair-71k: significant 

viewpoint and scale variability
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• General Graph Matching
owithout the reliance on side information

• Robust Augmentation Strategy
oa comprehensive pool of graph augmentations 

• Adaptive Augmentation Sampler
odynamically selects challenging augmentations

• Superior Performance and Efficiency
ooutperforms other SSL methods
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