Contrastive General Graph Matching with Adaptive Augmentation Sampling

= SMU Jianyuan Bo, Yuan Fang JCAI
wihd s Singapore Management University, Singapore JEJU 2024
UNIVERSITY {lybo.2020, yfang}@smu.edu.sg

Introduction Motivation

Graph matching is crucial across various domains such as bioinformatics, | * Dependency on Labeled Data: Most graph matching techniques

social network analysis, and computer vision. The effectiveness of heavily rely on extensive labeled data for training. This dependence is
traditional methods, however, Is curtailed by significant challenges, resource-intensive and limits applicability in areas where such data is
Including those inherent in the burgeoning field of contrastive learning. scarce or expensive to procure.

* Lack of Generalizability: Existing approaches often require additional
side information or are tailored to specific graph types, which hinders
their broader application. This specificity reduces the utility of graph
matching methods in new or diverse areas that demand adaptable
solutions.

* Contrastive Learning Limitations: While contrastive learning offers a
promising direction for self-supervised learning in graph matching, it
typically necessitates careful selection of augmentations to generate
effective positive and negative samples. This requirement presents a
challenge in tuning and selecting these augmentations without
exacerbating the computational burden or risking model overfitting.
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Figure 2: Graph augmentation: (a) input graph; (b) node insertion;
(¢) node replacement; (d) edge removal. The blue node represents
the 1nserted node, and the dotted edge indicates the added edge.
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Table 1: Details of the four major types of graph augmentation. , , , , ,
Figure A: Comparison of BiAS and ‘Uniform’ samplers across dif-

ferent augmentation pool sizes on Pascal VOC dataset.




