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Abstract
Graph matching has important applications in pat-
tern recognition and beyond. Current approaches
predominantly adopt supervised learning, demand-
ing extensive labeled data which can be limited or
costly. Meanwhile, self-supervised learning meth-
ods for graph matching often require additional
side information such as extra categorical informa-
tion and input features, limiting their application
to the general case. Moreover, designing the opti-
mal graph augmentations for self-supervised graph
matching presents another challenge to ensure ro-
bustness and efficacy. To address these issues, we
introduce a novel Graph-centric Contrastive frame-
work for Graph Matching (GCGM), capitalizing on
a vast pool of graph augmentations for contrastive
learning, yet without needing any side informa-
tion. Given the variety of augmentation choices,
we further introduce a Boosting-inspired Adap-
tive Augmentation Sampler (BiAS), which adap-
tively selects more challenging augmentations tai-
lored for graph matching. Through various exper-
iments, our GCGM surpasses state-of-the-art self-
supervised methods across various datasets, mark-
ing a significant step toward more effective, effi-
cient and general graph matching.

1 Introduction
Graph Matching (GM) refers to the process of establishing
a correspondence between the nodes of two graphs based on
their structure and node attributes [Yan et al., 2016; Zanfir
and Sminchisescu, 2018], and entails various applications.
In pattern recognition [Shokoufandeh et al., 2012], graph
matching facilitates the alignment of visual patterns within
images [Wang et al., 2018]. In bioinformatics [Krissinel and
Henrick, 2004], it is crucial for understanding protein-protein
interaction networks [Zaslavskiy et al., 2009]. In social net-
works, aligning user profiles and their connections is essential
for understanding social behaviors [Zhang et al., 2018].

Despite the widespread applications of graph matching,
prevailing methods such as BBGM [Rolı́nek et al., 2020] and
NGM [Wang et al., 2021] heavily depend on the supervised
learning paradigm, which requires a large number of label to

annotate the node correspondence across graphs. To avoid
the costly labeling effort, self-supervised learning (SSL) on
graphs [Peng et al., 2020; Zeng and Xie, 2021] becomes a
practical alternative. Different from supervised learning, SSL
exploits label-free graphs to model intrinsic graph properties
general to an application domain, which guides the learning
of node representations amenable to graph matching. While
label-free graphs are often abundant or easy to obtain, exist-
ing SSL-based approaches for graph matching often assume
the availability of additional side information besides graphs.
On the one hand, approaches like GANN [Wang et al., 2023]
and IA-SSGM [Guo et al., 2023] still require graph pairs that
are potentially matchable as training data, although they do
not need exact annotations on node correspondence. The po-
tentially matchable graph pairs are typically sampled from
the same category, under the assumption that graph pairs from
distinct categories involve totally different kinds of nodes and
cannot be matched. Hence, such approaches require extra
categorical information, which can be considered as a form
of weak supervision. On the other hand, SCGM [Liu et al.,
2022] requires raw image as input in order to perform aug-
mentation, leveraging additional image features in visual ap-
plications, and thus cannot be generalized to graph matching
in non-visual domains. Additionally, image features may not
be available for privacy or commercial considerations.

Thus, toward more general graph matching, an immediate
challenge arises: Is it feasible to employ SSL for graph match-
ing without relying on any side information? To address this,
we develop a Graph-centric Contrastive framework for Graph
Matching (GCGM), using a large pool of graph augmenta-
tions to compensate for the lack of any side information. As
a form of SSL, contrastive learning (CL) [Wu et al., 2018;
Chen et al., 2020] regards corresponding/non-corresponding
nodes from two different views of the same graph as posi-
tive/negative pairs, where a graph can be augmented in dif-
ferent ways to generate different views [Hassani and Khasah-
madi, 2020]. For robustness, we consider both structure-
and feature-space augmentations. First, the structure-space
augmentations include edge removal, node dropping, and
node replacement, etc., which alter the structure of the graph,
thereby improving matching against structure variations. Sec-
ond, the feature-space augmentations include feature mask-
ing and scaling, which manipulate nodes features, thereby im-
proving matching against feature variations. Generally speak-



ing, each type of augmentation focuses on a specific kind of
variation across graphs to enhance a specific aspect of match-
ing capability. Moreover, each type of augmentation (e.g.,
node dropping) in fact entails a family of augmentations de-
fined by some hyperparameters (e.g., probability of dropping
a node) to vary the difficulty levels within each type. To-
gether, we form a large, comprehensive pool of augmenta-
tions to improve the robustness of graph matching.

However, given a comprehensive pool of graph augmen-
tations, a second challenge follows: How do we select the
most effective augmentations for graph matching? The pool
of graph augmentations includes various types of structure-
and feature-space augmentations, and each type can instan-
tiate a family of augmented views by tuning the hyperpa-
rameters of that type. In existing graph contrastive learning,
hyperparameter tuning for each type of augmentation is the
prevailing solution [You et al., 2020], which can be expen-
sive and tends to overfit. A few automated methods exist
in selecting the right type of augmentations. JOAO [You et
al., 2021] always exploits the most challenging augmentation
w.r.t. the current loss, while recent research [Cai et al., 2020;
Robinson et al., 2021; Wang and Liu, 2021] finds that the
hardest instances are not necessarily the best for learning.
Meanwhile, GCA [Zhu et al., 2021] adaptively augments
each graph through edge removal based on node centrality
and masking unimportant node features, which requires cus-
tom design for each type of augmentation and does not gen-
eralize to other types. To counter this challenge, we present
a Boosting-inspired Adaptive Augmentation Sampler (BiAS)
that automatically and adaptively samples graph augmenta-
tions beyond naı̈ve uniform sampling, providing a general so-
lution to the otherwise expensive task of selecting and tuning
the optimal augmentations.

By addressing the challenges, we make three major contri-
butions to graph matching. (1) We propose GCGM, a graph-
centric contrastive framework for general graph matching,
based on a large pool of graph augmentations without the
need of any labeled data or side information. (2) We intro-
duce BiAS, an adaptive augmentation selection strategy for
GCGM, to optimize graph matching and eliminate manual
tuning effort over the pool of augmentations. (3) We con-
duct experiments on both real-world and synthetic datasets,
demonstrating that our approach consistently outperforms
state-of-the-art self-supervised baselines.

2 Related Work
Deep Graph Matching In supervised graph matching,
GMN [Zanfir and Sminchisescu, 2018] has pioneered the
use of deep learning for GM. Subsequent research, like PCA
[Wang et al., 2020], has advanced this by learning node, edge,
and affinity features end-to-end. Another notable approach
is the channel-independent embedding with Hungarian atten-
tion in deep graph matching [Yu et al., 2019].

Furthermore, NGM [Wang et al., 2021] extends GM to
hypergraphs and multi-graph matching (MGM). Addition-
ally, BBGM [Rolı́nek et al., 2020] addresses GM using dif-
ferentiable operations on combinatorial solvers. Besides,
addressing outliers and noise is crucial for obtaining accu-

rate matches. Notably, RGM [Liu et al., 2023] introduced
a reinforcement learning approach with a revocable action
scheme to counteract the impact of outliers, using a pre-
trained BBGM as a feature extractor that still requires labels.

While supervised graph matching methods have pro-
gressed using large labeled datasets, unsupervised or self-
supervised approaches have emerged to tackle label scarcity.
GANN utilizes graduated assignment mechanisms that allows
for joint MGM and clustering. SCGM introduces a two-stage
contrastive learning framework where image augmentation
is essential, necessitating visual access and limiting its use
in other domains. Given the advantage of self-supervised
learning, our research primarily benchmarks against these ap-
proaches in the evolving landscape of graph matching.

Graph Contrastive Learning Graph learning has ad-
vanced significantly with the advent of graph neural networks
(GNNs) [Veličković et al., 2017] and the introduction of
contrastive learning methods [Chen et al., 2020], leading to
the novel concept of graph contrastive learning (GCL) [You
et al., 2020]. As a major branch of self-supervised learn-
ing, GCL enhances the representation of nodes [Tan et al.,
2022], edges [Li et al., 2023], and entire graphs [Peng et
al., 2020] by contrasting corrupted views augmented by dif-
ferent graph augmentations [Xu et al., 2022], providing su-
perior performance to traditional graph learning techniques.
However, these approaches face the challenge of design-
ing effective augmentations, which may involve custom de-
signs or extensive hyperparameter tuning [You et al., 2020;
Zhao et al., 2021], posing a significant overhead.

3 Proposed Method
In this section, we introduce our GCGM framework, starting
with the overall framework and preliminaries, followed by
our augmentation designs and adaptive sampling strategy.

3.1 Overall Framework
Pre-training Fig. 1(a) depicts the self-supervised pre-
training phase. The illustrated augmentation process is ap-
plied across all graphs in the entire training set.

Specifically, for each graph G = {X,A} in a batch during
pre-training, defined by node features X ∈ RN×F and the
adjacency matrix A, we sample a augmentation pair (τj , τk)
based on their weights w.r.t. the current mini-batch, from
a randomly initialized augmentation pairs pool as shown in
Fig. 1(a)(i). Through graph augmentation, we produce two
distinct views of each input graph: G̃A and G̃B , with NA

and NB nodes respectively, which will then be processed
by an graph encoder, capturing both local and global graph
patterns. Node embeddings are then refined through the
node-level contrastive strategy, optimizing the embedding by
matching congruent nodes across views and differentiating
non-correspondence nodes. Finally, the encoded embeddings
will be processed by the subsequent affinity learning mod-
ule and GM solver to produce the predicted matching matrix
Ĝ ∈ RNA×NB .

Enhancing this workflow, as illustrated in Fig. 1(a)(ii),
our BiAS technique dynamically updates the weights of the
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Figure 1: Framework of the proposed GCGM with BiAS. (a) Pre-training: Each graph G in the training set is augmented by sampling
augmentation pairs from a large pool, guided by the BiAS strategy. (To be clear, we only show one training graph here; the same augmentation
process is applied to every graph in the training set.) (b) Inference: The pre-trained model is frozen and applied to unseen graph pairs.

augmentation pair according to the matching accuracy be-
tween the two corresponding augmented views. This ad-
justment influences the sampling probability for subsequent
mini-batches. By doing so, BiAS adaptively samples chal-
lenging augmentations tailored for GM, mitigating the neces-
sity for exhaustive hyperparameter tuning and augmentation
pool selection.

Inference In the inference phase, as shown in Fig. 1(b), we
apply the pre-trained, now-frozen graph encoder and affin-
ity learning module to unseen graph pairs. The GM solver
predicts the matching matrix, which determines the node-to-
node alignment for each input graph pair.

We will next introduce some technical preliminaries
(Sect. 3.2), before discussing our main contributions on the
comprehensive pool of graph augmentations (Sect. 3.3) and
our adaptive sampler BiAS (Sect. 3.4), respectively.

3.2 Preliminaries
Graph Encoder During training, our proposed graph en-
coder takes an augmented graph G̃ as input to produce both
node and graph-level representations as output. Given the
comprehensive graph augmentations we carry out, it is essen-
tial to leverage information at multiple granularities to pre-
serve both local and global graph patterns. To achieve this,
we have opted for the commonly used GraphSAGE frame-
work [Hamilton et al., 2017] as our base graph encoder, de-
noted as f(·) in Fig. 1. This encoder captures both local node-
level embedding h̃v using GraphSAGE layers with skip con-
nections, and global graph-level embedding h̃G̃ via a readout
function. The node- and graph-level embeddings are then uti-
lized for the affinity learning and GM solver modules, to be
elaborated next. For detailed specifications of the encoding
function f(·), refer to Appendix A.

Affinity Learning and GM Solver On one hand, the affin-
ity learning module accepts these embeddings from the two
views (graphs) as input and generates an affinity matrix, con-
taining the pairwise affinity scores between the nodes from
the two views. Subsequently, the GM solver leverages the
affinity matrix to determine the node correspondence across

the two graphs. We will use the affinity learning module and
GM solver following previous work [Rolı́nek et al., 2020;
Wang et al., 2021].
Contrastive Loss After processing the two augmented
views of the graph through our encoder, as depicted in
Fig. 1(a), we employ a contrastive framework to learn node
embeddings. Adapting from GRACE [Zhu et al., 2020], we
employ both intra-view and inter-view contrastive objectives
to enhance the comparison and alignment of nodes between
distinct graph views.

First, the intra-view contrastive objective aims to differen-
tiate anchor nodes from other nodes within the same view by
maximizing their dissimilarity. Specifically, in view G̃A with
NA nodes, the dissimilarity between the anchor node vAi with
feature h̃A

i and the negative nodes is

ℓAintra(vi) =
∑NA

j=1;j ̸=i exp
(
sim

(
g(h̃A

i ), g(h̃
A
j )

)
/T

)
, (1)

where sim(·, ·) denotes cosine similarity, g(·) : Rdh → Rd′
h

is a non-linear projection head, and T is the temperature
hyperparameter. This approach ensures that distinct nodes
within the same view become dissimilar.

Second, our inter-view contrastive objective, operating
across distinct augmented views G̃A and G̃B , maximizes the
similarity of corresponding nodes across views while mini-
mizing that of an anchor node and all other nodes in the oppo-
site view. We first sum up the similarities across all inter-view
pairs, centered around the anchor node in view G̃A:

ℓAinter(vi) =
∑NB

j=1 exp
(
sim

(
g(h̃A

i ), g(h̃
B
j )

)
/T

)
. (2)

Integrating both intra- and inter-view objectives based on
the NT-Xent loss [Chen et al., 2020], the contrastive loss for
an anchor node is

ℓAi = − log
exp(sim(g(h̃A

i ),g(h̃B
i ))/T)

ℓAintra(vi)+ℓAinter(vi)
. (3)

The total contrastive loss averages across all anchor nodes in
the two views:

Lnode = 1
NA+NB

(∑NA

i=1 ℓ
A
i +

∑NB

i=1 ℓ
B
i

)
. (4)
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Figure 2: Graph augmentation: (a) input graph; (b) node insertion;
(c) node replacement; (d) edge removal. The blue node represents
the inserted node, and the dotted edge indicates the added edge.

In essence, our contrastive strategy attempts to align corre-
sponding nodes in the two views to achieve graph matching.

Graph Matching Loss While our contrastive loss refines
individual node representations, our approach recognizes the
importance of holistic graph matching. To this end, we incor-
porate a graph matching loss Lmatch. This loss bridges the gap
between our predicted matching matrix, Ĝ, and a self-labeled
ground-truth matching matrix Gself. Gself can be readily de-
termined without supervision, as G̃A and G̃B originate from
the same input graph.

Lmatch = L
(
Ĝ,Gself

)
(5)

The specific GM solver used determines the form of the loss:
a permutation loss for NGM [Wang et al., 2021], or a Ham-
ming loss for BBGM [Rolı́nek et al., 2020].

Our overall loss L = Lnode + Lmatch combines contrastive
loss and graph matching loss, ensuring that the overall graph
representations are optimized for graph matching tasks.

3.3 Comprehensive Graph Augmentations
Appropriate graph augmentations are crucial for the success
of contrastive learning toward general graph matching. As
illustrated in Fig. 1(a), we propose to select from a compre-
hensive pool of augmentation pairs to generate two views for
each input graph. While existing methods often adopt a small
number of standard augmentations, we argue that, in the ab-
sence of side information for graph matching, we need to for-
mulate a comprehensive pool of augmentations for robust-
ness. In particular, we not only focus on a diverse range of
augmentation types to improve different aspects of matching,
but also expand each augmentation type into a family of aug-
mentations with varying difficulty levels. In the following,
we first introduce different types of augmentations; then, we
discuss the construction of the pool of paired augmentations
for contrastive learning.

Types of Augmentation We introduce four major graph
augmentation types to robustly handle real-world matching
scenarios, most notably the complexities in managing out-
liers, noises [Cho et al., 2014] and high-order structures. The
first three types operate in the structure space, while the last
one operates in the feature space.

Node Insertion (NI). Recognizing outliers, or nodes that
are exclusive to only one of the graph in a candidate match-
ing pair, is a crucial aspect for graph matching. Inspired by
node addition in contrastive learning for graph classification
[Zeng and Xie, 2021], we propose a node insertion strategy
to simulate outliers. As shown in Fig. 2(b), given a randomly

selected subset of nodes from the original input graph, we ag-
gregate their features to construct a dummy node (e.g., v1d)
and randomly link it to randomly chosen nodes not in the
given subset. The augmented graph view with the dummy
nodes can provide contrastive samples to learn outliers.

Node Replacement (NR). This is a variant of node insertion,
to simulate the matching scenario where there can still be out-
liers even though the total number of nodes are the same in a
candidate pair. As illustrated in Fig. 2(c), we first drop some
nodes randomly from the original graph (e.g., v1, v3) along
with their incident edges, and then insert an equal number
of dummy nodes (e.g., v1d, v2d) following the node insertion
strategy above.

Edge Removal (ER). In many real-world graphs, first-order
connections (i.e., edges to one-hop neighbors) are often noisy
or sparse. This limitation can be alleviated by considering
high-order structural connectivity or node features. To rec-
ognize node correspondences without overly relying on first-
order connections, we adopt an edge removal strategy [Has-
sani and Khasahmadi, 2020]. As shown in Fig. 2(d), a subset
of edges (e.g., v3–v4) is randomly removed from the graph,
which encourages the model to focus more on the high-order
connections (e.g., v3–v5–v4) or invariant features.

Feature Scaling (FS). Node features in graphs can exhibit
significant variability and contain considerable noises. To ad-
dress this, we present two feature scaling techniques [Laskin
et al., 2020]. First, node features are scaled using a univariate
random variable, such that all dimensions of the feature vec-
tor of the same node are scaled by the same factor. Second,
we apply a multivariate random variable, such that different
scaling factors can be applied to different dimensions.

In addition to above four major types of augmentations de-
signed to deal with different matching scenarios, we further
adopt a series of standard graph augmentations aimed to cap-
ture general graph properties that are widely used in previous
work. We summarize the four major of augmentations used in
our approach in Tab. 1; the additional types of augmentation
are in Appendix B. Note that each type of augmentation is
also associated with one or more hyperparameters, adjusting
which can instantiate different augmentations with variable
difficulty. Additionally, we introduce a special type τ∅ that
does nothing, which enables us to generate a view using the
the original graph.

Formally, let T denote the set of augmentation types in-
cluding τ∅. Further define Iτ as the set of augmentations
that can be instantiated from type τ ∈ T , by sampling differ-
ent hyperparameter values associated with τ . Hence, the full
set of augmentations under consideration is I = ∪τ∈T Iτ .

Pool of Paired Augmentations As illustrated in
Fig. 1(a)(i), given an input graph, we generate two augmented
views of the graph by applying a pair of augmentations.
Existing graph contrastive learning approaches mostly
employ well-tuned hyperparameters for every augmentation
type. However, given a large number of augmentation types
and associated hyperparameters, extensive tuning can be
combinatorially costly and tends to overfit. Moreover, recent
research shows [Cai et al., 2020] that training can often
benefit from samples of variable difficulty level. In our



Type Matching scenario Hyperparameters

NI
node outlier

(unequal node count
in two views)

pni ∈ [0.1, 0.9]: fraction of nodes inserted;
kni ≥ 2: size of subset;

aggrni ∈ {mean,max}: aggregation function;
eni ≥ 1: number of edges inserted

NR
node outlier

(equal node count
in two views)

pnr ∈ [0.1, 0.9]: fraction of nodes replaced;
knr ≥ 2: size of subset;

aggrnr ∈ {mean,max}: aggregation function;
enr ≥ 1: number of edges inserted

ER
sparse/noisy first-
order connections per ∈ [0.1, 0.9]: probability of each edge being removed

FS feature variations
& noises

α ∈ [0.2, 0.8]: lower bound of uniform distribution;
β ∈ [1.2, 1.8]: upper bound of uniform distribution

Table 1: Details of the four major types of graph augmentation.

case, as the difficulty of augmentation is controlled by its
associated hyperparameters, it is not ideal to only rely on one
set of tuned hyperparameters.

In our approach, given an input graph, we propose to ap-
ply a pair of augmentations sampled from P , the pool of all
possible pairs. Most generally, we can define P = I2, i.e.,
the Cartesian product of I with itself, where I is the set of all
augmentations. However, we exclude two special cases: (1)
Both augmentations in the pair belong to the τ∅ type, since
both views being the original graph does not form a mean-
ingful contrastive example; (2) both belong to the mixup type
following earlier work [Liu et al., 2022] which tends to give
poor empirical performance.

3.4 Sampling Augmentation Pairs via BiAS

Given a pool of augmentation pairs P , we sample a pair to be
applied to each input graph to form the contrastive example
for training. Adopting a uniform sampler is the most straight-
forward approach, but its disadvantage is twofold. First, it
does not distinguish the importance of different augmenta-
tions; second, it is static and task irrelevant, which does not
adapt to the fluctuations in training.

In our GCGM framework, we propose BiAS, a Boosting-
inpired Adaptive Augmentation Sampler. As the name sug-
gests, BiAS is adaptive to training fluctuations, inspired by
the boosting technique [Schapire, 1999] in ensemble learning
that iteratively refines weak learners by focusing on more dif-
ficult examples. Specifically, augmentation pairs that result in
subpar matching performance in a mini-batch during training
are marked as difficult, suggesting that the model needs fur-
ther adaptation to data variations introduced by such augmen-
tations. These challenging augmentation pairs subsequently
receive more frequent sampling by increasing their probabil-
ity. Conversely, pairs that can be solved effortlessly with high
accuracy are deemed easy and are less frequently sampled
in the following mini-batches. Essentially, this strategy bi-
ases toward certain augmentations dynamically, addressing
the drawbacks of a uniform sampler.

Formally, we introduce a weight updating scheme to dy-
namically adjust the sampling probability of each augmen-
tation pair from the pool P , as illustrated in Fig. 1(a)(ii).
Specifically, each augmentation pair i ∈ P is associated with
a weight wi

t in the t-th mini-batch. The weight is updated in

the next mini-batch as follows.

wi
t+1 = λwi

t + (1− λ)eα(1−ϕi
t), (6)

where ϕi
t indicates the mean performance score for all match-

ings where augmentation pair i was previously applied up to
the current mini-batch t. In our implementation, we adopt the
F1 score as the performance score (see Appendix E), which
measures the accuracy of the predicted matching against the
contrastive self-supervision generated from the two graph
views. The hyperparameter α ≥ 1 regulates the magnitude
of weight adjustment, while λ ∈ [0, 1] serves the purpose
of momentum update to constrain the potentially exponential
increase in weights of those very challenging pairs yielding
low ϕi

t repeatedly. The weights in the t-th mini-batch are
then normalized into a probability distribution over the pool
of augmentation pairs P , given by Pt(i) = wi

t/
∑

j∈P wj
t .

The initial weight wi
0 is set to eα for all augmentation pairs,

i.e., we start with a uniform sampler.
Finally, given an input graph in the t-th mini-batch, we

generate two views using an augmentation pair i ∼ Pt(i)
drawn from the distribution over the pool P . Pseudocode of
our method can be found in Appendix A.

In summary, BiAS offers an adaptive strategy to choose
the right augmentations. Compared to the uniform sampling
strategy, BiAS dynamically selects the most useful augmen-
tation pairs in each mini-batch during training. Compared to
the conventional approach of tuning the hyperparameters of
each augmentation type, BiAS is much cheaper and can ben-
efit from a wider range of augmentations.

4 Experiment
In this section, we empirically evaluate the proposed model
GCGM and BiAS.

4.1 Experiment Setup
Datasets We tested three real-world datasets. (1) Pascal
VOC [Bourdev and Malik, 2009; Everingham et al., 2010] in-
cludes images from 20 classes; (2) Willow [Cho et al., 2013]
offers 256 images over five classes; (3) SPair-71k [Min et al.,
2019] has 70,958 image pairs across 18 classes. Besides, we
followed a recent work [Liu et al., 2023] to generate a syn-
thetic dataset from random 2D node coordinates for the gen-
eral non-visual domain. All graphs are constructed based on
Delaunay triangulation. More dataset details are presented in
Appendix C.

Baselines We assessed the performance of GCGM against
diverse baselines, including supervised, learning-free, and
unsupervised methods. Our emphasis is benchmarking
against graph-centric self-supervised methods, given our ex-
clusion of labeled data or side information. Supervised meth-
ods included cutting-edge techniques like CIE [Yu et al.,
2019], BBGM [Rolı́nek et al., 2020], and NGMv2 [Wang et
al., 2021]. Learning-free methods included RRWM [Cho et
al., 2010], IFPF [Leordeanu et al., 2009], and SM [Leordeanu
and Hebert, 2005]. For self-supervised baselines, we com-
pared against GANN-GM [Wang et al., 2023] and SCGM
[Liu et al., 2022].



Methods Pascal VOC Willow SPair-71k
Intsec Unfilt Intsec Intsec Unfilt

CIE (SUP) 66.8±0.4 - 82.6±0.2 69.3±0.3 -
BBGM (SUP) 77.3±0.1 55.0±0.1 96.2±0.1 77.7±0.2 48.4±0.2
NGMv2 (SUP) 76.8±0.1 56.7±0.1 94.5±0.3 76.6±0.2 49.8±0.08

IPFP 45.8±0.02 31.5±0.002 80.1±0.06 57.0±0.04 31.7±0.01
RRWM 47.2±0.02 31.7±0.001 83.4±0.09 58.6±0.05 32.3±0.01
SM 46.2±0.03 30.4±0.002 81.3±0.08 57.7±0.04 30.3±0.01

GANN-GMˆ 34.5±0.3 23.4±0.2 89.3±0.1 34.7±0.4 19.4±0.3
SCGM+BBGM 54.8±0.05 36.6±0.04 93.1±0.08 60.2±0.05 34.1±0.01
SCGM+NGMv2 50.8±0.1 32.9±0.03 84.2±0.1 59.8±0.1 30.5±0.3

GCGM+BBGM 56.8±0.02 36.2±0.01 94.4±0.3 60.6±0.1 35.9±0.07
GCGM+NGMv2 57.3±0.11 37.4±0.07 95.0±0.1 62.6±0.02 35.4±0.07

Table 2: Performance (%) on real-world datasets. Supervised meth-
ods are marked with ‘SUP’, included for reference only. -: run-
ning exception in handling the matching scenario. :̂ self-supervised
methods that require categorical information. Bold/underlined:
best/runner-up results (excluding supervised methods).

Settings and Hyperparameters GCGM with BiAS is a
generic framework that can be applied to any GM solver. To
demonstrate this, we paired them with both BBGM [Rolı́nek
et al., 2020] and NGMv2 [Wang et al., 2021]. As GCGM
is graph-centric, we froze the image backbone on the visual
datasets, and treated each input image solely as a graph. Our
implementation is based on ThinkMatch [Wang et al., 2021],
and we kept the original configurations for both solvers. Our
reported results for supervised methods and SCGM might
be slightly lower than their original papers due to our 80:20
train-validation split from the original training set, as the orig-
inal splits lack a validation set. We repeated the splits five
times using varied random seeds. We tuned the hyperparam-
eters of our encoder using Tree-structured Parzen Estimator
(TPE) [Bergstra et al., 2011] via Optuna [Akiba et al., 2019]
based on the validation set. For BiAS, we set λ = 0.8,
α = 3, |P| = 512. However, for the Willow dataset, due
to its smaller size, we adjust |P| to 128. Early stopping was
applied if performance improvements were below the thresh-
old ϵ = 0.001. Detailed model and parameter configurations
can be found in Appendix A.

For other supervised and SSL baselines, we also applied
the same early stopping criterion. On visual datasets, we al-
lowed them to fine-tune their visual backbone and employ
visual augmentations (if any) per their original paper. More
detailed baseline settings can be found in Appendix D.
Evaluation Metric We used the F1 score for evaluation
(see Appendix E), combining precision and recall for a bal-
anced measure, which is vital for matching graphs with out-
liers. We repeated the experiments on the five different splits
described above, and report their average and standard devia-
tion in F1.

4.2 Performance Evaluation
In our experiments, we adopted the two pairwise GM settings
outlined by SCGM. The Intersection (Intsec) setting confines
keypoints (i.e., nodes) to only those shared between the in-
put graph pair. Meanwhile, the Unfiltered (Unfilt) setting
includes all keypoints, accounting for potential outliers and
variations in keypoint counts between graphs. Notably, the

Methods Synthetic
Intsec Unfilt

GANN-GMˆ 11.2±0.04 10.2±0.03
SCGM + BBGM 33.5±2.0 24.3±1.2
SCGM + NGMv2 35.2±0.6 25.0±0.4

GCGM 58.1±0.5 39.9±0.4

Table 3: Performance (%) of SSL methods on the synthetic dataset.

Unfiltered setting is more challenging because of the presence
of the outliers. Note that in the case of the Willow dataset,
the Intersection and Unfiltered scenarios are equivalent due to
each graph class containing 10 shared keypoints (i.e., nodes)
without outliers. Consequently, we only report the Intersec-
tion results. For training, we used the original graph without
any filtering, retaining all the keypoints.
Real-world Datasets In Tab. 2, we present the performance
evaluation on the visual datasets (see detailed per-class results
in Appendix F). We make several observations.

First, in terms of overall performance, GCGM consistently
surpasses other SSL baselines and learning-free methods. On
the Willow dataset, GCGM outperforms even some super-
vised methods. This result highlights the effectiveness of
our contrastive approach, especially given that the baselines
are allowed to fine-tune the visual backbone and apply image
augmentations (if applicable), whereas our GCGM is graph-
centric and does not rely on these visual elements.

Second, when paired with the same GM solver, GCGM
consistently outperforms the state-of-the-art SCGM. This
finding highlights the flexibility and robustness of GCGM
when working with different GM solvers. Specifically, when
pairing with NGMv2, a GNN-based solver, our approach
tends to perform the best. For brevity, in subsequent results,
we default to reporting only the performance of GCGM using
the NGMv2 solver.

Third, GCGM demonstrates solid performance in both In-
tersection and Unfiltered settings. In particular, the Unfiltered
setting is often more challenging given the presence of out-
liers. Hence, all methods give lower performance in this set-
ting, while GCGM continues to maintain a clear advantage.
Synthetic Dataset The performance of various SSL meth-
ods on the synthetic dataset is presented in Tab. 3, provid-
ing a focused and fair comparison since our GCGM is self-
supervised. Note that supervised methods (CIE, BBGM and
NGMv2) and learning-free methods (IPFP, RRWM and SM)
as shown in Tab. 2 are for reference only; we report their re-
sults on the synthetic dataset in Appendix F.

In this dataset, GCGM excels over other SSL methods in
both Intersection and Unfiltered settings. It is worth noting
that the performances of SCGM and GANN-GM significantly
trail behind GCGM, widening the gap observed on the visual
datasets. The reason is that the synthetic dataset does not
require visual backbone processing or visual input, making
SCGM and GANN-GM unable to exploit the visual aspects
in their original design. Hence, they tend to perform poorly
in general graph matching outside the visual domain. In con-
trast, our GCGM is graph-centric and does not rely on vi-



Augmentation
Set

Pascal VOC Willow SPair-71k Synthetic
Intsec Unfilt Intsec Intsec Unfilt Intsec Unfilt

T \NI 56.9 36.6 94.8 61.8 34.9 57.9 40.5
T \NR 56.5 36.5 95.1 61.8 34.4 57.8 40.0
T \ER 57.3 37.2 95.0 59.8 32.5 57.9 40.0
T \FS 57.5 37.2 95.0 62.1 35.1 57.8 40.3

T 57.3 37.4 95.0 62.6 35.4 58.1 39.9

Table 4: Ablation study on graph augmentations.

sual information, lending to its effectiveness and robustness
in general graph matching.

4.3 Ablation and Model Analyses
Effect of Graph Augmentations We explored the contri-
bution of different types of graph augmentation, by exclud-
ing each type from the augmentation set T . As observed
in Tab. 4, Node Insertion (NI) and Node Replacement (NR)
generally have a significant impact on the performance, par-
ticularly on Pascal VOC and SPair-71k. For the synthetic
dataset, the two augmentation types appear not useful. A
potential reason is that the node features are generated ran-
domly, which means the feature differences between outliers
and inliers are less significant. Thus, NI and NR can help less
on the synthetic dataset. On the other hand, excluding Edge
Removal (ER) and Feature Scaling (FS) generally results in a
slight performance dip. In particular, ER appears to be the
most useful to SPair-71k, due to the significant variability
in viewpoint and scale in this dataset, as compared to other
datasets [Min et al., 2019]. This variability leads to diverse
geometric configurations of keypoints across images, which
impacts and alters the graph structures formed. By randomly
removing edges, ER encourages the model to focus on invari-
ant features over variable graph structures, which is important
on SPair-71k.

Effect of BiAS and Augmentation Pool Tab. 5 compares
the performance of GCGM under different strategies for se-
lecting augmentations. In the first category including ‘Ran-
dom’, ‘Tuning’ and ‘Tuning + BiAS’, we only adopt one hy-
perparameter setting for each augmentation type. In ‘Ran-
dom’, the hyperparameters of an augmentation type are ini-
tialized randomly, whereas in ‘Tuning’ or ‘Tuning + BiAS’,
they are selected via 100 trials of TPE based on validation
performance. Furthermore, ‘Random’ and ‘Tuning’ applies
a uniform sampler when selecting the augmentation pair in
each mini-batch, whereas ‘Tuning + BiAS’ applies our BiAS
sampler. In the second category including ‘Uniform’ and
‘BiAS’, we do not rely on just one set of hyperparameters for
each augmentation type. As discussed in Sect. 3.3, we instan-
tiate a family of augmentations from each type with different
hyperparameter settings. In each mini-batch, we select an
augmentation pair from all pairs of instantiations using either
the uniform or BiAS sampler.

In terms of performance, we observe that ‘Tuning’ gen-
erally outperforms ‘Random’, implying that hyperparame-
ter settings are important to each augmentation type. More-
over, ‘Tuning + BiAS’ generally improves over ‘Tuning’, and

Settings P Pascal VOC Willow SPair-71k
Intsec Unfilt Time/h Intsec Time/h Intsec Unfilt Time/h

Random ✗ 55.0 35.9 0.26 93.8 0.04 61.4 35.2 0.38
Tuning ✗ 55.9 36.8 23.76 94.8 4.54 61.5 35.6 31.96
Tuning + BiAS ✗ 55.8 37.0 23.95 95.4 4.54 61.9 36.0 31.88

Uniform ✓ 56.9 36.7 0.32 94.7 0.05 62.0 34.8 0.35
BiAS ✓ 57.3 37.4 0.39 95.0 0.05 62.6 35.4 0.34

Table 5: Performance of different initialization of augmentations
and the use of augmentation pool. Time (hour) represents the to-
tal wall clock time spent on tuning the augmentations (for ‘Tuning’
methods) and training the model. The ‘P’ column indicates if a pool
of augmentation pairs is used.

‘BiAS’ consistently improves over ‘Uniform’, highlighting
the effectiveness of the BiAS sampler. Furthermore, using a
large pool of augmentation pairs can compensate for the lack
of hyperparameter tuning, as evident from the improvements
made by ‘Uniform’ and ‘BiAS’ w.r.t. ‘Random’.

In terms of time cost, ‘Tuning’ and ‘Tuning + BiAS’ fare
poorly due to the need of hyperparameter tuning. Yet, their
performance rarely surpasses BiAS. On the other hand, the
time cost of BiAS is two orders of magnitude smaller than
tuning-based methods, and simultaneously achieves the best
or near-best performance. It is also worth-noting that the
weight updating strategy in BiAS incurs a negligible over-
head, taking similar training time as ‘Random’ or ‘Uniform’
while achieving better results.

In summary, BiAS offers a robust solution for selecting op-
timal augmentations, yet without the significant time over-
head required by the tuning-based methods.
Additional Model Analyses Additionally, we experi-
mented our framework with varying sizes of the augmenta-
tion pool and different combinations of the hyperparameter λ
and α. We also investigated the effect of the individual design
elements in BiAS, namely, momentum update and perfor-
mance criterion. Finally, we compared GCGM with SCGM
when the level of input information varies, to show the ro-
bustness of our approach given minimum input. Due to space
constraint, we omit these results here, and present them in
Appendix F.

5 Conclusion
We introduced the Graph-centric Contrastive framework for
Graph Matching (GCGM), a novel framework toward gen-
eral graph matching without the need of any side information.
GCGM utilizes a comprehensive pool of graph augmenta-
tions for self-supervised contrastive learning, which enhances
matching robustness in the absence of side information. It
is further complemented with a Boosting-inspired Adaptive
Augmentation Sampler (BiAS), which dynamically selects
the challenging augmentations for optimal results without
tuning the hyperparameters associated with the augmenta-
tions. Together, through our experiments GCGM with BiAS
achieves superior performance in graph matching, surpassing
state-of-the-art self-supervised methods across various do-
mains. At the same time, it is significantly more efficient than
conventional augmentations with hyperparameter tuning.
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