End-to-End Open-Set Semi-Supervised Node Classification with Out-of-Distribution Detection

Tiancheng Huang^{1,2,3}, Donglin Wang^{2,3*}, Yuan Fang⁴, and Zhengyu Chen^{2,3} 1 Zhejiang University, Hangzhou, China 2 Westlake University, Hangzhou, China 3 Westlake Institute for Advanced Study, Hangzhou, China 4 Singapore Management University, Singapore

{huangtiancheng, wangdonglin, chenzhengyu}@westlake.edu.cn, yfang@smu.edu.sg

Motivation

OOD Detection on Images [1]

W/O Propagation and Aggregation between ID and OOD Samples

OOD Detection on Graphs (Ours)

Across-distribution Mixture

W/ Propagation and Aggregation between ID and OOD Samples

[1] Yu Q, Aizawa K. Unsupervised Out-of-Distribution Detection by Maximum Classifier Discrepancy. ICCV 2019

Across-distribution Mixture

Theorem. Across-distribution Mixture [1]. It is assumed that the sample feature conforms to the Normal distribution with the mean μ and variance σ . The mixing feature of a sample comes from in-distribution and out-of-distribution:

$$P_{mix}(\mathbf{x}) = P(\mathbf{x}|O = in)P(O = in) + P(\mathbf{x}|O = out)P(O = out)$$

 $\sim \mathcal{N}(\mu_1, \sigma_1) + \mathcal{N}(\mu_2, \sigma_2),$

where $P(\mathbf{x}|O=in), P(\mathbf{x}|O=out) \sim \mathcal{N}(\mu_i, \sigma_i), i \in \{1, 2\}.$

Lemma. *Across-distribution Mixture on Graphs.* Take one-layer aggregation of GNN as an example, the distribution mixture comes from the central node and its neighbors:

$$P_{mix}(\mathbf{x}_i) \sim \mathcal{N}(\mu_i, \sigma_i) + \sum_{v=1}^{|\mathbb{N}(u)|} w_{v,u} \mathcal{N}(\mu_{j_v}, \sigma_{j_v})$$

where $i, j_v \in \{1, 2\}, w_{v,u}$ denotes weights between node u and v, and $\mathbb{N}(u)$ denotes neighbors of node u

[1] Bitterwolf et al. Revisiting ood detection: A simple baseline is surprisingly effective. ICLR 2022 Submitted.

Unified Learning Framework

To avoid the across-distribution mixture

The joint probability distribution of node label Y and latent variable O

 $P_{\theta}(Y, O | \mathbf{X}, \mathbf{A}) = P_{\theta}(Y | \mathbf{X}, \mathbf{A}, O) P(O | \mathbf{X}, \mathbf{A}),$

i) Learning the GNN parameter by maximizing the likelihood

$$\log P_{\theta}(Y, O | \mathbf{X}, \mathbf{A}) = \log \sum_{k} P_{\theta}(Y | \mathbf{X}, \mathbf{A}, O_{k}) \cdot P(O_{k} | \mathbf{X}, \mathbf{A}),$$

ii) Inferring the following posterior of the latent variable O as

$$P_{\theta}(O_k | \mathbf{X}, \mathbf{A}, Y) = \frac{P_{\theta}(Y | \mathbf{X}, \mathbf{A}, O_k)}{\sum_j P_{\theta}(Y | \mathbf{X}, \mathbf{A}, O_j)},$$

Challenges

1) involves marginalizing the latent variable O

2) lacks of supervision for test nodes for inference

Unified Learning Framework

Variational Inference

Introducing variational distribution Q

 $\mathcal{L}(\theta) = \mathbb{E}_{Q(O_k)} \left[\log P_{\theta}(Y | \mathbf{X}, \mathbf{A}, O_k) \right] - \mathrm{KL}(Q(O_k) || P(O_k)),$

Introducing the parameterized posterior Q_{ϕ} with parameter ϕ , and minimizing Kullback-Leibler (KL) divergence, to make the variational distribution Q_{ϕ} close to its intractable true posterior distribution

$$\mathrm{KL}(Q_{\phi} \| P) = \mathbb{E}_{Q} \left[\log \frac{Q_{\phi}(O_{k} | \mathbf{X}, \mathbf{A})}{P(O_{k})} \right]$$

where P follows Bernoulli distribution

Negative ELBO $\mathcal{L}(\theta, \phi) = -\mathbb{E}_{Q_{\phi}}[\log P_{\theta}(Y|\mathbf{X}, \mathbf{A}, O)] + \mathrm{KL}(Q_{\phi} \| P),$

Learning to Mix Neighbors

Learning and Aggregating Weights

Predictor f_{ϕ} gives a single scalar between 0 and 1 (parametrized as a sigmoid):

$$Q_{\phi}(w_{v,u}|\mathbf{X}, \mathbf{A}) = \frac{1}{1 + exp(-\mathbf{W}^{T}[\mathbf{H}_{v} \| \mathbf{H}_{u}])},$$

Bi-level Optimization

Updating outer level

Updating inner level

$$\min_{\phi} \mathcal{L}_{val}(\theta^*(\phi), \phi),$$

s.t. $\theta^*(\phi) = \arg\min_{\theta} \mathcal{L}_{train}(\theta, \phi),$

Experiments

Datasets. 1) Cora; 2) Citeseer; 3) Pubmed; and 4) ogbn-arXiv

For the split of OOD classes, we strictly follow the standard OOD detection benchmark on graphs [Stadler et al., 2021]. The statistics of datasets are presented in the Table

below.

	Cora	Citeseer	Pubmed	arXiv
# Nodes	2,708	3,327	19,717	169,343
# Edges	10,556	9,104	88,648	2,315,598
# Features	1,433	3,703	500	128
# Labels	7	6	3	40
$\# \mathcal{C}_{out} $	3	2	1	15
# Fraction	33.38%	33.18%	39.94%	39.11%

Baselines.

GCN [Kipf and Welling, 2017], 2) ChebNet [Defferrard et al., 2016], 3) GraphSAGE [Hamilton et al., 2017], 4) GAT [Veli^{*}ckovi^{*} c et al., 2018], 5) SGC [Wu et al., 2019], 6)
JKNet [Xu et al., 2018], 7) APPNP [Klicpera et al., 2018], 8) SuperGAT [Kim and Oh, 2020],
9) GCNII [Chen et al., 2020], and 10) DropEdge [Rong et al., 2019].

Experiments

Comparison of **semi-supervised node classification** accuracy (%)

Comparison of **OOD detection** AUROC (%)

Methods	Cora	Citeseer	Pubmed	arXiv	Methods	Cora	Citeseer	Pubmed	arXiv
GCN	87.4 ± 0.3	66.0 ± 0.6	89.0 ± 0.2	$47.4{\scriptstyle\pm0.6}$	GCN	77.8±0.4	$73.1_{\pm 2.2}$	63.3 ± 1.4	56.1 ± 0.5
ChebNet	85.6 ± 0.4	65.0 ± 0.6	88.4 ± 0.3	$46.5{\scriptstyle \pm 0.4}$	ChebNet	73.5±1.3	$69.7_{\pm 4.0}$	62.2 ± 1.2	$57.1{\scriptstyle \pm 0.8}$
GraphSAGE	85.3 ± 1.2	65.8 ± 0.7	89.6 ± 0.6	46.8 ± 0.9	GraphSAGE	75.6±1.8	72.8 ± 3.1	$59.5{\scriptstyle\pm2.0}$	$56.9{\scriptstyle \pm 1.0}$
GAT	$88.7{\scriptstyle\pm0.6}$	69.6 ± 0.6	90.6 ± 0.9	$49.8{\scriptstyle \pm 1.5}$	GAT	80.2 ± 1.4	$77.9_{\pm 3.1}$	61.6±4.2	$58.0{\scriptstyle \pm 1.0}$
SGC	87.2 ± 0.3	69.2 ± 0.2	$91.5{\scriptstyle\pm0.6}$	$40.5{\scriptstyle \pm 2.6}$	SGC	$70.0_{\pm 0.8}$	75.5 ± 2.3	61.4 ± 1.8	$51.8{\scriptstyle\pm1.5}$
JKNet	86.7 ± 1.1	67.3 ± 0.7	$93.1{\scriptstyle\pm0.1}$	50.6 ± 0.6	JKNet	76.3±1.8	70.8 ± 3.4	64.4 ± 1.8	$52.9{\scriptstyle\pm0.6}$
APPNP	88.2 ± 0.4	68.3 ± 0.5	$93.2{\scriptstyle\pm0.1}$	51.3 ± 0.9	APPNP	77.8 ± 0.5	72.3 ± 2.7	64.3 ± 0.8	$53.7{\scriptstyle\pm0.3}$
SuperGAT	88.3 ± 0.5	$69.3{\scriptstyle\pm0.8}$	$91.3{\scriptstyle\pm1.0}$	$49.2{\scriptstyle\pm0.7}$	SuperGAT	78.5 ± 1.6	78.1 ± 1.6	63.2 ± 3.9	$54.1{\scriptstyle \pm 0.8}$
GCNII	88.7 ± 0.3	69.4 ± 1.4	$93.0{\scriptstyle\pm0.7}$	51.6 ± 1.7	GCNII	78.0±1.3	$72.4_{\pm 2.1}$	65.2 ± 3.9	$56.3{\scriptstyle \pm 2.2}$
DropEdge	88.9±0.7	69.6 ± 1.2	$93.0{\scriptstyle \pm 0.9}$	$51.7{\scriptstyle\pm2.7}$	DropEdge	79.3±0.9	75.2 ± 3.5	63.0 ± 2.1	57.9 ± 0.9
LMN(Ours)	89.7±0.6	$71.1{\scriptstyle\pm0.6}$	93.4 ± 0.1	$5\overline{4.1}{\scriptstyle \pm 1.4}$	LMN(Ours)	80.5±1.2	$78.5{\scriptstyle \pm 3.2}$	68.7±1.3	60.4 ± 0.3

Experiments

1. Mixing Strategies

- 1) RandomMask (RM) 2) TruthMask (TM)
- 3) RandomDrop (RD) 4) TruthDrop (TD)

5) ATtention (AT)

6) LMN (Ours)

2. The Effect of Bi-level Optimization

Figure 4: The training and validation losses on Cora.

3. Ablation Study

Methods	OOD Modules	Cora	Citeseer
GCNII	None	88.7±0.3	69.4 ± 1.4
LMN	Mixing Neighbors	89.7±0.6	71.1 ± 0.6

Conclusions

- In this paper, we study a novel problem of end-to-end open-set semisupervised node classification with OOD detection.
- The novel method LMN in a variational inference framework has been proposed for node classification and OOD detection in an end-to-end manner.
- Extensive experiments on four datasets demonstrate the effectiveness of our proposed method.