

End-to-End Open-Set Semi-Supervised Node Classification with **Out-of-Distribution Detection**

A Crucial Question

How to train the GNN to perform open-set semi-supervised node classification with OOD detection in end-to-end manner? Across-distribution Mixture on Graphs

Challenges

1) Lack of supervision on in-distribution or OOD; 2) Promote the information propagation but cause across-distribution mixture; 3) Over-fitting could be more severe (an additional model)

Analysis and Toy Visualization

Across-distribution Mixture on Graphs. Take one-layer aggregation of GNN as an example, the distribution mixture comes from the central node and its neighbors:

$$P_{mix}(\boldsymbol{x}_i) \sim \mathcal{N}(\mu_i, \sigma_i) + \sum_{v=1}^{|\mathbb{N}(u)|} w_{v,u} \mathcal{N}(\mu_{j_v}, \sigma_{j_v})$$

where $i, j_v \in \{1, 2\}$, $w_{v,u}$ denotes weights between node u and v, and $\mathbb{N}(u)$ denotes neighbors of node u.

where θ represents GNN parameter and the probability distribution of OOD detection can be described as $P(O|\mathbf{X}, \mathbf{A})$. From the Bayesian perspective, the learning process includes: *i)* Learning the GNN parameter by maximizing the likelihood

ii) Inferring the following posterior of the latent variable O

Variational Inference. We introduce a variational distribution to minimize Kullback-Leibler (KL) divergence:

Minimizing the following negative ELBO:

Adopting a predictor to generates the weights to mix neighbors

Tiancheng Huang, Donglin Wang, Yuan Fang, and Zhengyu Chen

Methodology

Unified Learning Framework

The joint probability distribution of labels Y and O

$$P_{\theta}(Y, O | \mathbf{X}, \mathbf{A}) = P_{\theta}(Y | \mathbf{X}, \mathbf{A}, O) P(O | \mathbf{X}, \mathbf{A}),$$

$$\log P_{\theta}(Y, O | \mathbf{X}, \mathbf{A}) = \log \sum P_{\theta}(Y | \mathbf{X}, \mathbf{A}, O_k) \cdot P(O_k | \mathbf{X}, \mathbf{A}),$$

$$P_{\theta}(O_k | \mathbf{X}, \mathbf{A}, Y) = \frac{P_{\theta}(Y | \mathbf{X}, \mathbf{A}, O_k)}{\sum_j P_{\theta}(Y | \mathbf{X}, \mathbf{A}, O_j)},$$

$$\mathrm{KL}(Q_{\phi} \| P) = \mathbb{E}_{Q} \left[\log \frac{Q_{\phi}(O_{k} | \mathbf{X}, \mathbf{A})}{P(O_{k})} \right]$$

$$\mathcal{L}(\theta, \phi) = -\mathbb{E}_{Q_{\phi}}[\log P_{\theta}(Y | \mathbf{X}, \mathbf{A}, O)] + \mathrm{KL}(Q_{\phi} || P),$$

Learning to Mix Neighbors (LMN)

$$Q_{\phi}(w_{v,u}|\mathbf{X}, \mathbf{A}) = \frac{1}{1 + exp(-\mathbf{W}^{T}[\mathbf{H}_{v} || \mathbf{H}_{u}])},$$

The graph convolution based on message passing

 $\mathbf{H}^{(l+1)} = f_{\theta^{(l)}}(\mathbf{H}^{(l)}, \mathbf{A}, w_{v,u}^{(l)}),$

Bi-level Optimization

Updating Outer Loop $\min_{\phi} \mathcal{L}_{val}(\theta^*(\phi), \phi),$

Updating Inner Loop $s.t. \theta^*(\phi) = \arg\min_{\phi} \mathcal{L}_{train}(\theta, \phi),$

Metho

GCN Cheb Graph GAT SGC

JKNet APPN

Super GCNI

DropE

LMN(

Metho

GCN Cheb Graph GAT SGC **JKNet** APPN Super **GCNI** DropE LMN(

Experiments

Node Classification Task (Accuracy%)

ods	Cora	Citeseer	Pubmed	arXiv
	$87.4{\scriptstyle\pm0.3}$	66.0 ± 0.6	$89.0{\scriptstyle\pm0.2}$	$47.4{\scriptstyle\pm0.6}$
Net	85.6 ± 0.4	$65.0{\scriptstyle\pm0.6}$	88.4 ± 0.3	$46.5{\scriptstyle \pm 0.4}$
SAGE	85.3 ± 1.2	65.8 ± 0.7	$89.6{\scriptstyle\pm0.6}$	46.8 ± 0.9
	$88.7{\scriptstyle\pm0.6}$	$69.6{\scriptstyle\pm0.6}$	90.6 ± 0.9	49.8 ± 1.5
	87.2 ± 0.3	69.2 ± 0.2	$91.5{\scriptstyle \pm 0.6}$	$40.5{\scriptstyle \pm 2.6}$
t	86.7 ± 1.1	67.3 ± 0.7	$93.1{\scriptstyle \pm 0.1}$	50.6 ± 0.6
IP	$88.2{\scriptstyle\pm0.4}$	68.3 ± 0.5	$93.2{\scriptstyle\pm0.1}$	51.3 ± 0.9
GAT	$88.3{\scriptstyle\pm0.5}$	$69.3{\scriptstyle\pm0.8}$	$91.3{\scriptstyle\pm1.0}$	$49.2{\scriptstyle\pm0.7}$
Ι	$88.7{\scriptstyle\pm0.3}$	69.4 ± 1.4	$93.0{\scriptstyle\pm0.7}$	51.6 ± 1.7
Edge	$88.9{\scriptstyle \pm 0.7}$	69.6 ± 1.2	$93.0{\scriptstyle\pm0.9}$	$51.7{\scriptstyle\pm2.7}$
(Ours)	$89.7{\scriptstyle\pm0.6}$	$71.1{\scriptstyle\pm0.6}$	$93.4{\scriptstyle\pm0.1}$	54.1 ± 1.4

OOD Detection Task (AUROC%)

ods	Cora	Citeseer	Pubmed	arXiv
	77.8 ± 0.4	73.1 ± 2.2	63.3 ± 1.4	56.1 ± 0.5
Net	$73.5{\scriptstyle\pm1.3}$	$69.7{\scriptstyle\pm4.0}$	62.2 ± 1.2	$57.1{\scriptstyle \pm 0.8}$
SAGE	75.6 ± 1.8	72.8 ± 3.1	$59.5{\scriptstyle\pm2.0}$	$56.9{\scriptstyle\pm1.0}$
	$80.2 {\pm} {}_{1.4}$	77.9 ± 3.1	61.6 ± 4.2	$58.0{\scriptstyle\pm1.0}$
	$70.0{\scriptstyle\pm0.8}$	$75.5{\scriptstyle\pm2.3}$	$61.4{\scriptstyle\pm1.8}$	51.8 ± 1.5
t	76.3 ± 1.8	$70.8{\scriptstyle\pm3.4}$	$64.4{\scriptstyle\pm1.8}$	$52.9{\scriptstyle\pm0.6}$
IP	77.8 ± 0.5	$72.3{\scriptstyle \pm 2.7}$	64.3 ± 0.8	$53.7{\scriptstyle\pm0.3}$
GAT	$78.5{\scriptstyle\pm1.6}$	78.1 ± 1.6	63.2 ± 3.9	$54.1{\scriptstyle\pm0.8}$
Ι	78.0 ± 1.3	$72.4{\scriptstyle\pm2.1}$	65.2±3.9	$56.3{\scriptstyle\pm2.2}$
Edge	$79.3{\scriptstyle\pm0.9}$	$75.2{\scriptstyle\pm3.5}$	$63.0{\scriptstyle\pm2.1}$	$57.9{\scriptstyle\pm0.9}$
(Ours)	80.5±1.2	$78.5{\scriptstyle \pm 3.2}$	68.7±1.3	60.4±0.3