
Node-wise Localization of Graph Neural Networks
(Supplemental Material)

Zemin Liu1 , Yuan Fang1 , Chenghao Liu2 and Steven C.H. Hoi1,2
1Singapore Management University, Singapore

2Salesforce Research Asia, Singapore
{zmliu, yfang}@smu.edu.sg, {chenghao.liu, shoi}@salesforce.com

A Additional Implementation Details
We implemented the proposed LGNN using TensorFlow
1.13.1 in Python 3.6.5. All experiments were conducted on a
Linux workstation with a 6-core 3.6GHz CPU, 128GB DDR4
memory and two RTX 2080Ti GPUs.

For the baselines DeepWalk1 and Planetoid2, we used their
respective authors’ implementations. Note that DeepWalk is
unsupervised and does not consider node features. There-
fore, after obtaining the node embeddings using DeepWalk,
we follow the standard practice to further train a logistic re-
gression classifier for node classification, using the concate-
nation of node embeddings and node features as the final
feature vectors. For the baselines GCN3, GAT4 and GIN5,
their authors’ implementations load in the entire graph dur-
ing training. To enable more scalable and efficient training,
we adapted their original code to work with mini-batches of
nodes and their neighborhoods during training. Our adapted
implementations achieved near-identical performance on the
benchmark datasets as reported in the original papers. For
GNN-FiLM6, using the authors’ code as a reference, we im-
plemented it on three different GNN architectures, namely,
GCN, GAT and GIN, and obtained three corresponding ver-
sions GCN-FiLM, GAT-FiLM and GIN-FiLM.

B Additional Experimental Settings
We further discuss more settings omitted in the main paper
due to space constraint. For the optimization of the base-
line GNNs and our LGNN, we used the Adam optimizer with
learning rate 0.005. The regularization for GNN parameters
were all set to λG = 0.0005. We used the Exponential Lin-
ear Unit (ELU) as the activation function. We also applied
dropout with a rate of 0.6 for the baselines, a rate of 0.4
for our LGCN and LGIN, and 0.6 for our LGAT (0.7 only
for LGAT on Citeseer dataset), based on empirical tuning on
the validation set. Moreover, for GAT, we adopted 8 heads
for the attention mechanism in the first aggregation layer; for
GIN, we adopted an MLP with one hidden layer; for LGNN,

1https://github.com/phanein/deepwalk
2https://github.com/kimiyoung/planetoid
3https://github.com/tkipf/gcn
4https://github.com/PetarV-/GAT
5https://github.com/weihua916/powerful-gnns
6https://github.com/Microsoft/tf-gnn-samples

as the input dimension of the node features is fairly large,
we utilized two-dense layers to generate the node-specific
vectors for scaling and shifting. Furthermore, we employed
LeakyReLU as the activation function for the generation of
all the transformation vectors.

C Analysis of Number of Parameters
To validate that the power of the proposed LGNN is not sim-
ply derived from an increased number of model parameters,
we calculated the number of parameters of different models.
The details of the calculation are as follows.

• DeepWalk: This model adopts a direct embedding
lookup. Each node has two learnable parameter vectors,
one serving as the node representation, and the other
serving as the weight vector when it appears as a con-
text node. There are no other learnable parameters. The
total number of parameters are therefore 2d · |V |, where
d is the dimension of the vectors, and |V | denotes the
number of nodes in the graph.

• Planetoid: Similar to DeepWalk, a direct embedding
lookup is used. However, it utilizes an additional hid-
den layer to embed the input features and transform the
node embeddings, as well as a classification layer for the
final output. The total number of parameters are there-
fore 2d · |V | + d1 · d0 + d1 · d + 2K · d1, where d0
is the dimension of the input features, d1 is the dimen-
sion of the hidden layer, and K is the number of classes.
Note that |V | and d0 can be large whereas d1, d and K
are typically small constants. Thus, the total number of
parameters is dominated by 2d · |V |+ d1 · d0.

• GCN: The learnable parameters are the weights
W1,W2, ...Wl in each layer. As we adopt a two-layer
architecture where the dimension of the last layer is
commonly set to the number of classes, the number of
parameters amounts to d1 · d0 +K · d1.

• GAT: There are h weight matrices and h attention vec-
tors in the first layer, where h is the number of attention
heads. The size of each matrix is d1 × d0 and that of
each vector is 2d1. Overall, the number of parameters is
given by h(d1 ·d0+2d1)+h ·K ·d1+2K. Note that d1
and K are small constants, which means the parameters
are roughly h times as many as those of GCN.

https://github.com/phanein/deepwalk
https://github.com/kimiyoung/planetoid
https://github.com/tkipf/gcn
https://github.com/PetarV-/GAT
https://github.com/weihua916/powerful-gnns
https://github.com/Microsoft/tf-gnn-samples

Table I: Average classification performance with standard deviation (percent) over 10 runs, using a validation set of 100 nodes only. Improve-
ments of LGNN are relative to the best performing baseline with the corresponding GNN architecture.

Methods Cora Citeseer Amazon Chameleon
Accuracy Micro-F Accuracy Micro-F Accuracy Micro-F Accuracy Micro-F

GCN 79.9±1.8 79.2±1.7 69.2±1.2 67.3±1.1 82.4±1.2 81.0±1.6 33.8±3.7 31.4±5.4
GCN-FiLM 74.3±1.1 72.9±1.2 66.6±1.3 64.6±1.6 78.9±2.3 76.5±3.0 42.1±1.7 38.3±2.5
LGCN 83.0±0.8 81.7±0.9 71.6±0.6 69.7±0.6 83.2±1.7 81.5±2.7 50.5±1.1 49.7±0.8
(improv.) (3.9%) (3.2%) (3.5%) (3.6%) (1.0%) (0.6%) (19.9%) (29.8%)

GAT 82.6±0.8 81.8±0.7 71.0±1.1 69.3±1.3 82.8±0.8 80.7±1.4 47.6±1.8 47.1±2.4
GAT-FiLM 82.5±1.1 81.4±0.9 71.2±0.9 69.3±0.8 83.1±0.8 81.2±1.3 39.8±5.5 38.1±7.1
LGAT 83.1±0.8 82.1±0.5 71.3±1.3 69.4±1.2 83.5±0.6 82.0±0.8 51.2±1.9 50.0±1.9
(improv.) (0.6%) (0.4%) (0.1%) (0.1%) (0.5%) (1.0%) (7.6%) (6.2%)

GIN 79.4±1.1 78.1±0.9 66.0±1.2 63.0±1.2 78.0±2.0 77.1±2.6 38.2±4.8 33.1±4.9
GIN-FiLM 77.5±1.0 76.6±0.9 63.0±3.5 60.6±4.0 79.9±2.3 78.2±2.9 37.5±3.0 32.0±3.0
LGIN 82.1±0.7 81.1±0.5 71.1±0.7 69.2±0.6 83.2±1.5 81.4±2.4 47.5±1.3 46.6±1.2
(improv.) (3.4%) (3.8%) (7.7%) (9.8%) (4.1%) (4.1%) (24.3%) (40.8%)

• GIN: Similar to GCN, there is a series of one-layer
MLPs in each aggregation layer. Each one-layer MLP
is parameterized by one weight matrix of size dl × dl−1

and a bias vector of size dl. The total number of param-
eters is thus d1 · d0 + d1 +K · d1 +K. Note that this
number is dominated by d1 · d0 + K · d1, which is the
same as GCN.

• GNN-FiLM: It contains all the parameters of the corre-
sponding base GNN model. Additionally, it further gen-
erates the node-specific scaling and shifting vectors in
each layer, and each type of transformation vector cor-
responds to a parameter matrix. Therefore, it has addi-
tional 2d0 · d1 + 2K · d1 parameters.

• LGNN: Similar to GNN-FiLM, our model naturally has
all the parameters of the global GNN model. Addition-
ally, we need to generate four types of vectors: node-
specific scaling and shifting vectors, and edge-specific
scaling and shifting vectors. For each type of node-
specific vectors, there are d20 parameters in the first GNN
layer, and d21 parameters in the second GNN layer. How-
ever, due to the potentially high-dimensional node fea-
tures (i.e., large d0), we employed dense layers where
the first dense layer has dimension d1 in order to gener-
ate the node-specific vectors in the first GNN layer. That
means, there are instead only 2d0 · d1 parameters in the
first GNN layer. For each type of edge-specific vectors,
there are 2d0 · d1 parameters in the first GNN layer, and
2d1 · K parameters in the second GNN layer. Overall,
we have additional 8d0 · d1 +2d21 +4d1 ·K parameters.

D Evaluation on Smaller Validation Sets
GNNs run the risk of overfitting to the validation set (Shchur
et al. 2018). In other words, models with more parameters
tend to perform better given a larger validation set. To eval-
uate the influence of validation set on GNN-based models,
we further conduct experiments using a smaller validation set
of only 100 nodes (the standard splits used in the main pa-
per consist of 500 nodes for validation). We report the re-
sults in Table I, and we can draw the following conclusions.

Table II: Time cost comparison. Train/test refers to wall-clock time
in ms, and train time is the average of one epoch.

Cora Amazon
FLOPs Train Test FLOPs Train Test

GCN 821M 32.4 37.2 2,188M 37.5 44.2
LGCN 15,158M 65.3 130.6 42,608M 109.1 196.5

GAT 5,268M 54.8 37.2 14,220M 55.3 222.2
LGAT 119,410M 324.8 130.6 336,161M 563.4 1076.3

GIN 821M 23.6 206.2 2,190M 25.9 50.3
LGIN 15,792M 80.4 758.4 44,390M 125.2 228.0

Firstly, with a smaller validation set, all the models includ-
ing GNNs, GNN-FiLMs and LGNNs generally achieve worse
performance than using a large validation set (as shown in Ta-
ble 3 of the main paper). This implies that the validation set is
an important factor on the performance, and a larger valida-
tion set would improve model generalization to some extent.
Secondly, our model could still outperform all the baselines
across four datasets with a smaller validation set, despite hav-
ing more parameters. By employing appropriate regulariza-
tions on the parameters as well as the transformation vectors
in Eq. (11) of the main paper, LGNNs are robust with both
large and small validation sets.

E Complexity Study
Our node-wise localization increases the computational cost.
Taking GCN as an example, with everything else being the
same, we compare the complexity of neighborhood aggrega-
tion for one node in GCN and LGCN. Given a node with de-
gree d, the complexity of GCN is O(d) for neighborhood ag-
gregation. On the other hand, LGCN has two main parts. (1)
Node level: generate the localized weight matrix in Eqs. (4),
(5) and (6), with complexity O(d); then to calculate Wl

vh
l−1
u

in Eq. (8) with complexityO(d). (2) Edge level: calculate the
transformation for all edges with complexityO(d) in Eqs. (7),
(9) and (8). Overall, the complexity of LGCN for neighbor-
hood aggregation of one node is O(d), belonging to the same

0.01 0.1 1.0 10 100 1000
80

82

84

86

A
cc

ur
ac

y
(%

)

(a) Cora

LGCN
GCN

0.01 0.1 1.0 10 100 1000
69

71

73

75

A
cc

ur
ac

y
(%

)

(b) Citeseer

LGCN
GCN

0.01 0.1 1.0 10 100 1000
79

81

83

85

A
cc

ur
ac

y
(%

)

(c) Amazon

LGCN
GCN

0.01 0.1 1.0 10 100 1000
45

48

51

54

A
cc

ur
ac

y
(%

)

(d) Chameleon

LGCN
GCN

Figure I: Effect of regularization on the magnitude of localization.

(a) Nodes of GCN (b) Nodes of LGCN

Global weight

(c) Weights of LGCN

Figure II: Visualizations on the Cora dataset. Each color represents
a class. (a) Node representations generated by GCN; (b) Node repre-
sentations generated by LGCN, our proposed localization of GCN;
(c) Global (large red circle) and node-wise localized weights (small
circles) of LGCN.

complexity class as its base model GCN and only differing
by a constant factor. This comparison is also appropriate for
other GNNs and LGNNs. In Table II, we report the number of
floating point operations (FLOPs) and wall-clock time costs
on the smaller Cora and larger Amazon datasets. The FLOPs
indeed differ by a constant factor, while the wall-clock time
difference is even smaller due to parallelization.

F Effect of Regularization
In Eq. (11), λ regularizes the magnitude of localization in
LGNN. We test the impact of λ on the performance of LGCN
in Fig. I, w.r.t. GCN. Note the GCN shows a straight line as
it has no such regularization. On one hand, LGCN is less
sensitive for λ ≤ 1. Some decrease in accuracy is observed
on small λ’s, which means the localization should not diverge

from the global model too drastically. Nevertheless, setting λ
around 1 is robust across datasets. On the other hand, when λ
becomes larger, the accuracy decreases more significantly to
become similar to that of GCN. This is an expected behavior
as larger λ’s discourage localization and favor a global model
in line with our analysis in connections to existing GNNs.

G Visualization of Nodes and Weights
In this case study, we visualize the node representations
learned by GCN and LGCN on the Cora dataset using the
t-SNE algorithm, as shown in Figs. II(a) and (b), respec-
tively. We observe that the margins between different classes
in LGCN are larger than the margins in GCN, and the nodes
of each class form more compact clusters in LGCN. The find-
ings imply that our proposed approach learns more powerful
representations.

Next, to demonstrate that LGCN generates localized
weights for different nodes, we visualize the weights in the
last layer `. Specifically, we concatenate the rows of a weight
matrix into a single vector, and visualize it using t-SNE. In
Fig. II(c), we plot the global weight matrix W` (indicated by
the large red circle), as well as the localized weight matrices
W`

v for all nodes v ∈ V (indicated by the small circles). It is
not surprising that the global model resides around the center
of mass of all localized models, as it tries to simultaneously
optimize for different local contexts across the graph. On the
other hand, the localized models appear in clear clusters that
correspond to the node classes, which naturally suggest that
nodes of the same class have similar local contexts.

	Additional Implementation Details
	Additional Experimental Settings
	Analysis of Number of Parameters
	Evaluation on Smaller Validation Sets
	Complexity Study
	Effect of Regularization
	Visualization of Nodes and Weights

