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Problem: graph neural networks

• Graph neural networks (GNNs) [1, 2, 3]

• Node classification
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Problem: limitation of GNNs

• Different local context of each node
– bio: 𝑣1
– bioinf: 𝑣2
– Cs: 𝑣3
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Can we allow each node to be parameterized by its own weight matrix?



Problem: Our Idea

• Localization

– Localize the

global model

for each node

• Significance

– Global vs.

local

– Node- and

edge-level
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Proposed Model: Localization

• General formulation of Localization

– Localized model

– Local context of node 𝑣 on graph 𝐺 = (𝑉, 𝐸)
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Proposed Model: Node-level Localization

• Global model: Conventional GNNs

• Node-level localization
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Proposed Model: Edge-level Localization

• Localization of GNNs

– Edge-level localization
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Proposed Model: Loss

• Semi-supervised node classification

– Overall loss
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Parameters set of global GNN Parameters set of localization

Contains all scaling factors Contains all shifting factors
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Datasets, evaluation and baselines

• Datasets

• Evaluation
– Accuracy, micro-F

• Baselines
– Embedding models: DeepWalk [1], Planetoid [2]

– GNN models: GCN [3], GAT [4], GIN [5]

– GNN-FiLM [6]: GCN-FiLM, GAT-FiLM, GIN-FiLM
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Node classification

• LGNN consistently 

achieves significant 

performance boosts

• GAT-based models 

generally attain better 

performance than 

GCN- and GIN-based 

models

• Increasing the number 

of parameters alone 

cannot achieve the 

effect of localization
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Ablation study

• Utilizing only one module consistently outperforms the global model

• The node-level localization tends to perform better than edge-level localization.

• Modeling both jointly results in the best performance
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Conclusions

• Motivation

– We identified the need to localize GNNs for different nodes

• Proposed model: LGNN

– Encode graph-level general patterns using a global weight matrix

– Node-level and edge-level localization

• Experiments

– Extensive experiments demonstrate that LGNN significantly outperforms state-

of-the-art GNNs.
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Paper, code, data… 
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