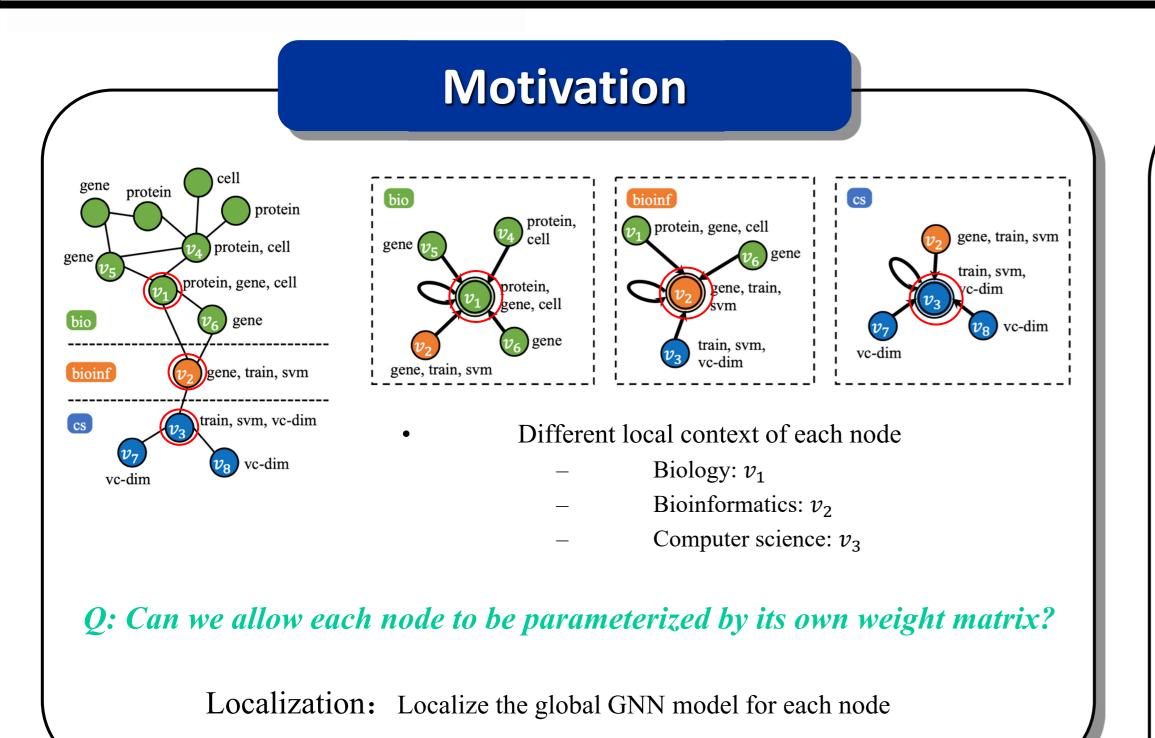


Node-wise Localization of Graph Neural Networks

Zemin Liu, Yuan Fang, Chenghao Liu, Steven C.H. Hoi

School of Information Systems In Proceeding of 30th International Joint Conference on Artificial Intelligence (IJCAI-21) 21st -26th August, 2021



The proposed model: LGNN

Experiments

Experimental setup

Dataset	# Nodes	# Edges	# Classes	# Features
Cora	2,708	5,429	7	1,433
Citeseer	3,327	4,732	6	3,703
Amazon	13,381	245,778	10	767
Chameleon	2,277	36,101	5	2,325

Evaluation

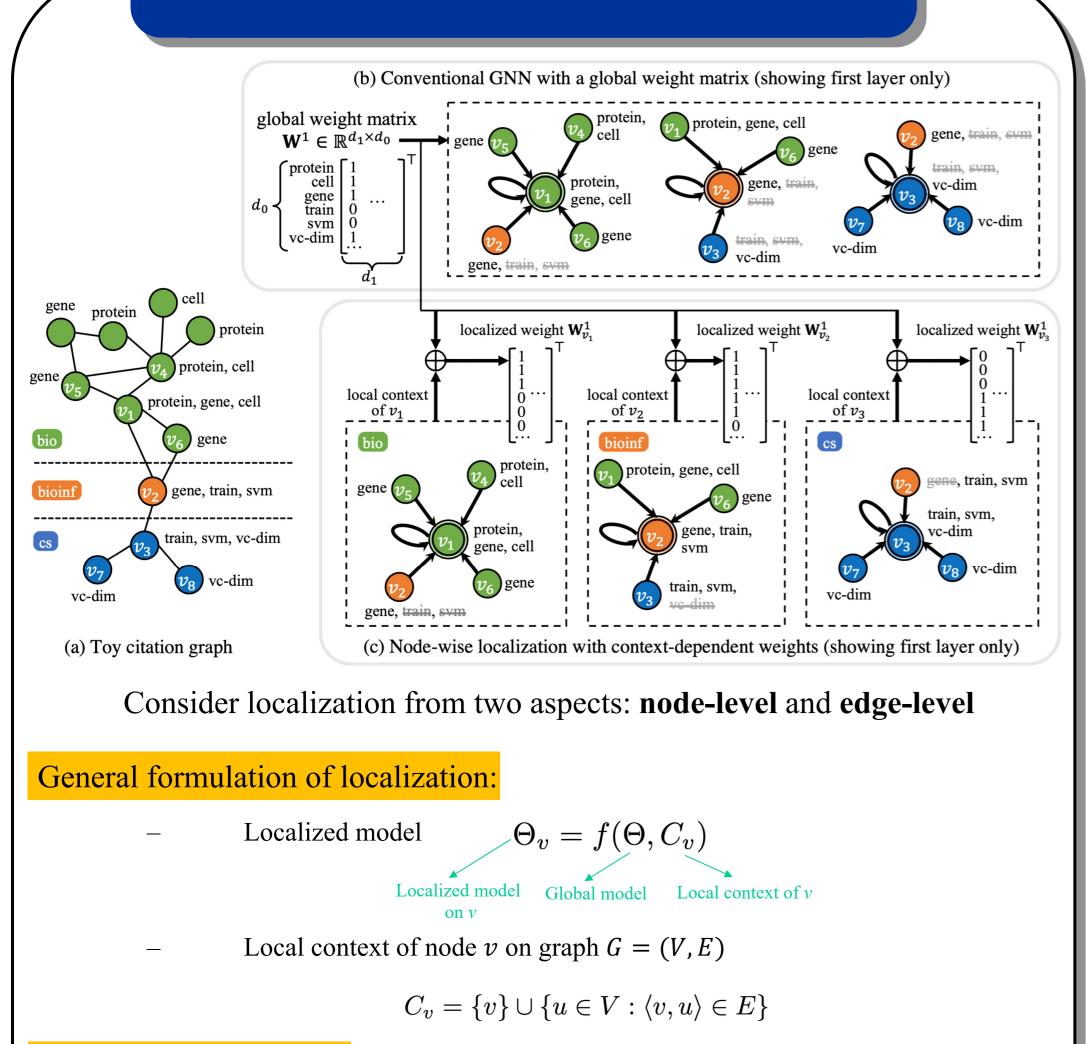
Accuracy, Micro-F

Baselines

- Embedding models: DeepWalk [1], Planetoid [2]
- GNN models: GCN [3], GAT [4], GIN [5]
- GNN-FiLM [6]: GCN-FiLM, GAT-FiLM, GIN-FiLM

Node classification

Methods	# Params	Cora		Citeseer		Amazon		Chameleon	
	(Cora)	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F
DeepWalk	693K	73.8±0.3	74.9±0.1	61.6±0.2	60.5±1.0	80.1±1.6	77.3±1.3	41.2±1.3	40.1±1.1
Planetoid	345K	66.1 ± 0.4	$64.5{\pm}0.5$	64.5 ± 0.3	$62.9 {\pm} 0.4$	69.8±1.7	64.5 ± 1.5	39.3±1.8	37.7±1.7
GCN	11K	81.5±0.7	$80.8{\pm}0.5$	70.4±0.5	68.3±0.7	81.9±0.5	$81.0{\pm}0.8$	46.7±4.3	46.4±2.4
GCN-64	92K	$82.0 {\pm} 0.3$	$80.9 {\pm} 0.3$	71.1 ± 0.3	$69.2 {\pm} 0.4$	82.1±0.5	$81.2 {\pm} 0.8$	48.3 ± 3.3	46.3 ± 1.8
GCN-96	138K	$81.9 {\pm} 0.2$	$80.8 {\pm} 0.3$	71.3 ± 0.4	$69.4 {\pm} 0.5$	82.2 ± 0.4	$81.5 {\pm} 0.7$	45.5 ± 2.4	43.8 ± 2.5
GCN-FiLM	35K	$78.1 {\pm} 0.6$	$76.9 {\pm} 0.5$	69.8 ± 1.1	67.9 ± 1.0	79.2 ± 1.0	77.1 ± 1.5	42.8 ± 1.1	39.9 ± 1.3
LGCN	104K	83.5 ±0.3	82.1±0.4	72.2 ±0.4	70.2 ±0.4	83.7 ±1.5	82.3 ±2.0	50.9 ±1.1	49.7 ±0.7
(improv.)	-	(1.8%)	(1.5%)	(1.3%)	(1.2%)	(1.8%)	(1.0%)	(5.4%)	(7.1%)
GAT	92K	82.9±0.6	82.0±0.6	72.4±0.7	$70.4 {\pm} 0.8$	82.4±1.3	80.1±1.9	47.2±1.1	46.2±2.1
GAT-64	738K	83.1±0.4	$81.9 {\pm} 0.6$	71.6 ± 1.5	$69.8 {\pm} 1.6$	83.0±0.9	81.2 ± 1.4	51.2 ± 1.5	50.2 ± 1.3
GAT-96	1108K	$83.2 {\pm} 0.6$	$81.9 {\pm} 0.6$	71.4 ± 0.9	$69.6 {\pm} 0.9$	83.1±1.0	81.5 ± 1.4	51.9 ± 1.2	50.2 ± 1.8
GAT-FiLM	277K	$82.0 {\pm} 0.5$	$80.6 {\pm} 0.6$	71.2 ± 1.0	69.2 ± 1.1	83.3±0.6	$81.9 {\pm} 0.8$	46.8 ± 5.7	45.1 ± 5.2
LGAT	836K	83.6 ±0.4	82.3±0.4	72.8 ±0.4	70.8±0.5	83.7 ±0.7	82.3±0.8	52.6 ±1.0	51.1 ±0.9
(improv.)	-	(0.5%)	(0.4%)	(0.6%)	(0.6%)	(0.5%)	(0.5%)	(1.3%)	(1.8%)
GIN	11K	80.2±0.5	78.8±0.3	68.5±0.7	66.5±1.0	79.6±1.7	78.5±2.6	45.8±3.0	41.2±4.0
GIN-64	92K	80.3 ± 1.1	79.1 ± 1.0	67.8 ± 1.5	66.1 ± 1.1	79.8 ± 1.1	$79.0{\pm}1.4$	45.7 ± 4.5	40.7 ± 5.7
GIN-96	138K	79.9 ± 1.1	$78.9 {\pm} 1.0$	68.6 ± 1.4	$66.6 {\pm} 1.6$	$80.2{\pm}2.1$	79.0 ± 3.2	45.9 ± 3.5	41.5 ± 4.1
GIN-FiLM	35K	$79.8 {\pm} 0.7$	$78.5 {\pm} 0.5$	67.7±1.4	$65.8 {\pm} 1.5$	78.6 ± 2.8	77.2 ± 3.3	38.8 ± 2.6	$34.2{\pm}2.9$
LGIN	126K	82.6 ±0.8	81.6 ±0.8	71.3 ±0.4	69.5 ±0.5	84.0 ±1.2	82.7±1.7	48.3 ±1.9	47.3 ±1.9
(improv.)	-	(2.9%)	(3.2%)	(3.9%)	(4.4%)	(4.7%)	(4.7%)	(5.2%)	(14.0%)



Node-level localization:

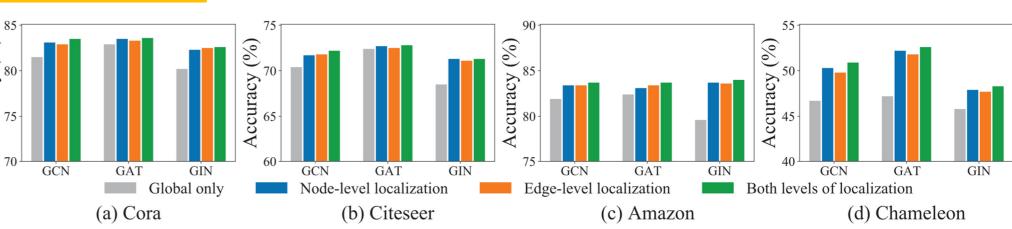
$$\mathbf{W}_{v}^{l} = \mathbf{W}^{l} \odot \left[\left(\mathbf{a}_{v}^{l} \right)_{\times d_{l}} \right]^{\top} + \left[\left(\mathbf{b}_{v}^{l} \right)_{\times d_{l}} \right]^{\top} \qquad \text{Localize the weight matrix}$$
$$\mathbf{a}_{v}^{l} = \sigma \left(\mathbf{M}_{v}^{l} \mathbf{c}_{v}^{l} \right) + \mathbf{1}, \quad \mathbf{b}_{v}^{l} = \sigma \left(\mathbf{M}_{v}^{l} \mathbf{c}_{v}^{l} \right) \qquad \text{Scaling and shifting factors}$$

LGNN consistently achieves significant performance boosts

GAT-based models generally attain better performance than GCN- and GIN-based models

Increasing the number of parameters alone cannot achieve the effect of localization

Accuracy



Utilizing only one module consistently outperforms the global model The node-level localization tends to perform better than edge-level localization.

Modeling both jointly results in the best performance

Conclusions

Motivation

• We identified the need to localize GNNs for different nodes

Proposed model: LGNN

 $= 0 (\mathbf{W}_a \mathbf{c}_v) + \mathbf{I}, \quad \mathbf{D}_v = 0 (\mathbf{W}_b \mathbf{c}_v)$ $\mathbf{c}_{v}^{l} = \text{Mean}\left(\left\{\mathbf{h}_{u}^{l-1}: \forall u \in C_{v}\right\}\right)$ Local context

Edge-level localization:

 $\mathbf{h}_{v}^{l} = \sigma \left(\operatorname{AGGR} \left(\left\{ \mathbf{W}_{v}^{l} \mathbf{h}_{u}^{l-1} \odot \mathbf{a}_{u,v}^{l} + \mathbf{b}_{u,v}^{l} : \forall u \in C_{v} \right\} \right) \right) \quad \operatorname{Aggregation}$ $\mathbf{a}_{u,v}^{l} = \sigma \left(\mathbf{N}_{a}^{l} \mathbf{c}_{u,v}^{l}
ight) + \mathbf{1}, \quad \mathbf{b}_{u,v}^{l} = \sigma \left(\mathbf{N}_{b}^{l} \mathbf{c}_{u,v}^{l}
ight)$ Scaling and shifting factors $\mathbf{c}_{u,v}^{l} = \text{CONCAT}\left(\mathbf{h}_{v}^{l-1}, \mathbf{h}_{u}^{l-1}\right)$ Local context

Overall loss:

Prediction for semi-supervised node classification

$$\mathbf{z}_{v,k} = \text{SOFTMAX}\left(\mathbf{h}_{v,k}^{\ell}\right) = \frac{\exp\left(\mathbf{h}_{v,k}^{\ell}\right)}{\sum_{k'=1}^{K} \exp\left(\mathbf{h}_{v,k'}^{\ell}\right)}$$

Overall loss

Parameters set of global GNN Parameters set of localization

$$-\sum_{v \in V_Y} \sum_{k=1}^{K} Y_{v,k} \ln \mathbf{z}_{v,k} + \lambda_G \|\Theta_G\|_2^2 + \lambda_L \|\Theta_L\|_2^2$$

$$+\lambda \left(\|A - 1\|_2^2 / |A| + \|B\|_2^2 / |B| \right)$$

Contains all scaling factors Contains all shifting factors

- Encode graph-level general patterns using a **global weight matrix**
- Node-level and edge-level localization

Experiments

• Extensive experiments demonstrate that LGNN significantly outperforms state-of-the-art GNNs.

Reference

[1] Perozzi B, et al. 2014. Deepwalk: Online learning of social representations. KDD. [2] Yang Z, et al. 2016. Revisiting semi-supervised learning with graph embeddings. ICML. [3] Kipf, T. N., et al. 2017. Semi-supervised classification with graph convolutional networks. ICLR.

[4] Veličković, P., et al. 2018. Graph attention networks. ICLR.

[5] Xu K, et al. 2019. How powerful are graph neural networks? ICLR.

[6] Brockschmidt M. 2020. Gnn-film: Graph neural networks with feature-wise linear modulation. ICML.