Motivation

- Different local context of each node
 - Biology: \(v_1\)
 - Bioinformatics: \(v_2\)
 - Computer science: \(v_3\)

Q: Can we allow each node to be parameterized by its own weight matrix?

Localization: Localize the global GNN model for each node

The proposed model: LGNN

Conclusions

- LGNN consistently achieves significant performance boosts
- GAT-based models generally attain better performance than GCN- and GIN-based models
- Increasing the number of parameters alone cannot achieve the effect of localization
- Utilizing only one module consistently outperforms the global model
- The node-level localization tends to perform better than edge-level localization.
- Modeling both jointly results in the best performance

Experiments

- Evaluation
 - Accuracy, Micro-F
- Baselines
 - Embedding models: DeepWalk [1], Planetoid [2]
 - GNN models: GCN [3], GAT [4], GIN [5]
 - GNN-FiLM [6]: GCN-FiLM, GAT-FiLM, GIN-FiLM

Node classification

<table>
<thead>
<tr>
<th>Method</th>
<th>#Params (G)</th>
<th>#Params (Loc)</th>
<th>#Classes</th>
<th>#Features</th>
<th>DeepWalk</th>
<th>Planetoid</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCN</td>
<td>11k</td>
<td>65.31k</td>
<td>105.00k</td>
<td>80.16k</td>
<td>78.31k</td>
<td>77.51k</td>
</tr>
<tr>
<td>GNN-FiLM</td>
<td>110k</td>
<td>69.00k</td>
<td>110.00k</td>
<td>93.88k</td>
<td>91.21k</td>
<td>87.51k</td>
</tr>
<tr>
<td>LGNN</td>
<td>100k</td>
<td>82.14k</td>
<td>100.00k</td>
<td>83.75k</td>
<td>92.32k</td>
<td>89.01k</td>
</tr>
<tr>
<td>GAT</td>
<td>70k</td>
<td>11.00k</td>
<td>70.00k</td>
<td>83.09k</td>
<td>83.11k</td>
<td>83.11k</td>
</tr>
<tr>
<td>GAT-FiLM</td>
<td>70k</td>
<td>11.00k</td>
<td>70.00k</td>
<td>83.09k</td>
<td>83.11k</td>
<td>83.11k</td>
</tr>
<tr>
<td>GIN</td>
<td>100k</td>
<td>110.00k</td>
<td>100.00k</td>
<td>93.88k</td>
<td>91.21k</td>
<td>87.51k</td>
</tr>
<tr>
<td>GIN-FiLM</td>
<td>100k</td>
<td>110.00k</td>
<td>100.00k</td>
<td>93.88k</td>
<td>91.21k</td>
<td>87.51k</td>
</tr>
<tr>
<td>LGNN-FiLM</td>
<td>120k</td>
<td>110.00k</td>
<td>120.00k</td>
<td>84.12k</td>
<td>82.71k</td>
<td>47.31k</td>
</tr>
</tbody>
</table>

Ablation study

- Utilizing only one module consistently outperforms the global model
- The node-level localization tends to perform better than edge-level localization
- Modeling both jointly results in the best performance

Reference