

Correlation-Sensitive Next-Basket Recommendation

Duc-Trong Le, Hady W. Lauw, Yuan Fang

IJCAI 2019 Macau, China

- Correlation-Sensitive Recommendation
- Basket-Sequence Correlation Networks (Beacon)
 - Item-Item Correlation Matrix
 - Correlation-Sensitive Components
- **Experiments** on TaFeng, Delicious, Foursquare

Correlation-Sensitive Recommendation

TASK:

Modeling concurrently **correlative & sequential** associations in basket sequences to predict **the next basket of correlated items.**

Correlation-Sensitive Next-Basket Recommendation with Basket-Sequence Correlation Networks (*Beacon*)

SINGAPORE MANAGEMENT

UNIVERSITY

Item-Item Correlation Matrix C

<u>Objective</u>: Leverage correlations between item-item pairs

- A pair with frequent co-occurrence has a higher score than less frequent pairs.
- A pair with exclusive connection have a higher score than non-exclusive pairs.

$$\begin{split} C &= D^{-\frac{1}{2}} F D^{-\frac{1}{2}}, \qquad \qquad C \to C + \sum_{n=2}^{N} \mu^{n-1} \operatorname{Norm}(C^{n}), \\ D_{ii} &= \sum_{j} C_{ij} \qquad \qquad \qquad N \text{-th order matrix} \quad \mu \in (0,1) \end{split}$$

Correlation-Sensitive Basket Encoder

- Input: Given a basket $B_{ extsf{t}}$ $\mathbf{x}_t \in \{0,1\}^{|V|}$ $C \in \mathbb{R}^{|V| imes |V|}$
- The immediate representation of B_t : $\mathbf{z}_t = \mathbf{x}_t \circ \boldsymbol{\omega} + \operatorname{ReLU}(\mathbf{x}_t C - \eta \mathbf{1}),$ Item Noise-Importance Canceling Parameters Parameter

$$\mathbf{Z}_t, oldsymbol{\omega} \in \mathbb{R}^{|V|} \qquad \quad \eta \, \in \, \mathbb{R}^+$$

The L-dimensional latent representation:

$$\mathbf{b}_t = \operatorname{ReLU}(\mathbf{z}_t \Phi + oldsymbol{\phi}), \ \Phi \in \mathbb{R}^{|V| imes L} \quad oldsymbol{\phi} \in \mathbb{R}^L \ \mathbf{b}_t \in \mathbb{R}^L$$

SINGAPORE MANAGEMENT

UNIVEDSITY

Sequence Encoder

 Input: Given the L-dimensional latent representation of basket B_t at time t

$$\mathbf{b}_t \in \mathbb{R}^L$$

• The recurrent hidden output h_t at time t: $\mathbf{h}_t = \tanh(\mathbf{b}_t \Psi + \mathbf{h}_{t-1} \Psi' + \boldsymbol{\psi})$ $\Psi \in \mathbb{R}^{L \times H}, \Psi' \in \mathbb{R}^{H \times H}$

$$oldsymbol{\psi} \, \in \, \mathbb{R}^{H} \; \; \mathbf{h}_t \in \mathbb{R}^{H}$$

Correlation-Sensitive Score Predictor

• Input: Given the hidden output of the last basket B_T :

$$\mathbf{h}_t \in \mathbb{R}^H$$

• The **sequential signal** for next-item adoptions:

$$\mathbf{s}^{(S)} = \sigma(\mathbf{h}_{\ell(S)}\Gamma),$$
$$\mathbf{s}^{(S)} \in \mathbb{R}^{|V|} \quad \Gamma \in \mathbb{R}^{H \times |V|}$$

The correlation-sensitive score predictor:

$$\mathbf{y}^{(S)} = \alpha (\mathbf{s}^{(S)} \circ \boldsymbol{\omega} + \mathbf{s}^{(S)}C) + (1 - \alpha)\mathbf{s}^{(S)}$$
Basket-Sensitive
$$\mathbf{x} \in [0, 1] \quad \mathbf{y}^{(S)} \in \mathbb{R}^{|V|} \quad \mathbf{x} \in \mathbf{SMU}$$

SINGAPORE MANAGEMENT

UNIVERSITY

Next-Basket Recommendation Strategy

• The predicted ranking $r^{(S)}$ of the item set based on $y^{(S)}$ $r^{(S)}: y^{(S)} \rightarrow \{1, 2, ..., N\}$

where $r_i^{(S)}$ is the ranking of item *i*.

• Approximately recommended basket B_{T+1} of size K:

$$B_{T+1}|K = \{i|r_i^{(S)} \le K\}$$

Experimental Setup

- Task: Next-basket recommendation
 - For each testing sequence S, hide the last target basket B.
 - Given $S' = S \setminus B$, require each model to the next-basket recommendation with the ground-truth basket.
- Datasets

Dataset	#Sequence	#Item	#Average Length	#Average Basket Size
TaFeng (E-commerce)	77209	9964	7.0	5.9
Delicious (Bookmark Tag)	61908	6520	21.4	3.8
Foursquare (Check-ins)	100980	5527	22.2	1.8

Pre-processing: Filter out too few items; sequences < 2 baskets.

• **Metric**: *F1@K, Half-life utility (HLU)*

RQ1: Does *Beacon* outperform against baselines?

	Model	L H	TT	F1@J	K (%)		
Dataset			Н	@5	@ 10	HLU	
	POP	-	-	4.66	4.02	6.64	
TaFeng	MC	-	-	4.11	3.61	5.78	
	MCN	8	-	4.56	4.02	6.34	
	DREAM	8	-	5.85	4.90	6.96	
	BSEQ	32	16	4.48	4.04	6.34	
	triple2vec	64	-	4.66	3.88	4.85	
	Beacon	8	64	6.36 [†]	5.26 [†]	7.83 [†]	
	POP	-	-	3.88	4.04	6.05	
	MC	-	-	4.27	4.59	6.52	
Delicious	MCN	32	-	4.20	4.59	6.50	
Dencious	DREAM	32	-	3.13	3.47	4.93	
	BSEQ	64	32	3.86	3.97	5.95	
	triple2vec	32	-	3.76	4.04	5.16	
	Beacon	64	64	4.93 [†]	5.47 [†]	7.76 [†]	
Foursquare	POP	-	-	2.73	2.90	4.84	
	MC	-	-	3.58	3.43	5.53	
	MCN	64	-	3.09	2.89	5.08	
	DREAM	64	-	2.84	3.00	4.98	
	BSEQ	64	32	2.80	2.89	4.82	
	triple2vec	64	-	2.73	2.90	4.53	
	Beacon	64	64	3.61	3.59 [†]	6.32 [†]	

School of Information Systems

†, ‡, § denote statistically significant improvements (p<0.05) of *Beacon* over MCN, DRM, BSEQ

RQ2: Is the learning of item importance ω useful?

Dataset	Model	F1@K(%)		
Dataset	Widdel	@5	@10	IILU
	Beacon _{corr-impt-}	3.87	3.44	5.13
TaFeng	Beacon _{corr-}	5.78 [†]	4.86†	7.18 [†]
	Beacon (full)	6.36 §	5.26 §	7.83 §
	Beacon _{corr-impt-}	4.02	4.43	6.38
Delicious	Beacon _{corr-}	4.67†	5.10^{+}	7.15†
	Beacon (full)	4.94 [§]	5.47 [§]	7.76 §
Foursquare	Beacon _{corr-impt-}	2.98	3.29	5.39
	Beacon _{corr-}	3.58†	3.52^{\dagger}	6.16
	Beacon (full)	3.61	3.59 §	6.32 §

denotes statistically significant improvements (p<0.05)

Beacon_corr-impt-Without correlations, fix $\omega = 1$ Beacon_corr-Without correlations, learn ω Beacon (full)With correlations, learn ω

RQ3: Is the modeling of correlations useful?

Dataset	Model	F1@K(%)		ни
Dataset	Widdei	@5	@10	
	Beacon _{corr-impt-}	3.87	3.44	5.13
TaFeng	Beacon _{corr-}	5.78†	4.86†	7.18†
	Beacon (full)	6.36 §	5.26 §	7.83 §
	Beacon _{corr-impt-}	4.02	4.43	6.38
Delicious	Beacon _{corr-}	4.67†	5.10^{\dagger}	7.15†
	Beacon (full)	4.94 §	5.47 §	7.76 §
Foursquare	Beacon _{corr-impt-}	2.98	3.29	5.39
	Beacon _{corr-}	3.58†	3.52†	6.16†
	Beacon (full)	3.61	3.59 §	6.32 §

§ denotes statistically significant improvements (p<0.05)

Beacon_corr-impt-
Beacon_corr-Without correlations, fix $\omega = 1$ Beacon_corr-
Beacon (full)Without correlations, learn ω

A Qualitative Example on Delicious

Target	Tag basket prediction $(K = 5)$			
bookmark	Beacon	МС	POP	
Manual	web, design,	digital, sociales,	art, design,	
de jQuery ⁶	programming,	web, internet,	education,	
	javascript, tools	periodismo	video, tools	
The \$300	twitter, ux,	design, peace,	art, design,	
Million (propinquity,	education,	education,	
Button ⁷	critical, writing	blog, tips	video, tools	

⁶http://www.desarrolloweb.com/manuales/manual-jquery.html ⁷https://articles.uie.com/three_hund_million_button

Conclusion

- Modeling concurrently correlative & sequential associations in basket sequences to predict nextbasket of correlated items.
- Propose Beacon show statistically significant improvements over:
 - Traditional Basket Sequence Models (MCN, DRM, BSEQ, triple2vec)

in terms of top-K recommendations.

THANK YOU Q&A

RQ4: How does α affect the performance?

