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Outline
* Motivating examples
 Modeling Contemporaneous Basket Sequences (CBS)
« CBS with Siamese Networks (CBS-SN)
« CBS with Concordant Fraternal Networks (CBS-CFN)
« CBS with Discordant Fraternal Networks (CBS-DFN)
 Experiments on Alibaba, MovieLens-10M
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The Notion of Basket Sequence

Cross-session Purchased Products
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Correlative associations among items in a basket
Sequential associations across baskets in a sequence
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The Notion of Contemporaneous Basket
Sequences (CBS)
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Next-ltem Recommendation with CBS
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TASK:
Modeling correlative & sequential associations in CBS
concurrently to predict the next “target” item
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Next-ltem Recommendation with CBS
Binary Representation
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Outline

 Modeling Contemporaneous Basket Sequences (CBS)
« CBS with Siamese Networks (CBS-SN)
« CBS with Concordant Fraternal Networks (CBS-CFN)
« CBS with Discordant Fraternal Networks (CBS-DFN)
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CBS with Siamese Networks (CBS-SN)

 Hypothesis: CBS reflect the same
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CBS with Concordant Fraternal Networks
(CBS-CFN) « Hypothesis: CBS reflect different
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CBS with Discordant Fraternal Networks

(CBS;GZOEL\I) * Hypothesis: Short-term dependencies
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Outline

* Motivating examples
« Modeling Contemporaneous Basket Sequences (CBS)
« CBS with Siamese Networks (CBS-SN)
« CBS with Concordant Fraternal Networks (CBS-CFN)
« CBS with Discordant Fraternal Networks (CBS-DFN)
 Experiments on Alibaba, Movielens-10M
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Experimental Setup

« Task: Next item recommendation
— For each testing sequence pair < S, T >
— Hide the last target basket B to create |B| testing instances.
— Require each model to product a ranked list of candidates
based on the testing instances with ground truth items.

 Datasets
Dataset #Sequence #ltem #ﬁ‘\e/re];ﬁe BZQ\I:(;aS?iie
Alibaba Support 11.2 5.5
(E-commerce) Target 23740 | 13498 5 3 18
MovieLens-10M | Support 34.5 2.5
(Movie Rating) Target 189858 | 8202 16.6 1.8

Pre-processing: Filter out too few items; sequences < 2 baskets.

* Metric: Mean Reciprocal Rank
iS) -
VRR — B &veB rank .of v for (S, T\B) ¥ SMU_
#total testing instances e
T




RQ1: Is modelling sequential data useful?
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RQ1: Is modelling sequential data useful?
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L is the latent dimension of the Dense Layer
H is the LSTM hidden state size (BSEQ_8 — H = 8)
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RQ2: Is modelling CBS useful?
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RQ3: Do CBS Twin Networks outperform

against other baselines?

LSTM Hidden State Size H = 32
Higher is better

Model L| MRR Model L| MRR
POP ~170.004 POP -1 0.006
DRM yppor: 64| 0.011 DRM.,,pport 96| 0.002
DRM;4ger 32| 0.004 DRMyqrger 16| 0.001
BSEQ,,,,0r 96| 0.011 BSEQ.ppore 8| 0.075
BSEQ,ge: 96| 0.013 BSEnget 64| 0.050
CBS-SN__ 96/ 0.014 CBS-SN 8] 0.070
CBS-CEN 96| 0.015%) CBS-CEN 32| 0.072
CBS-DFN 96| 0.008 CBS-DFN 8| 0.078*°
Alibaba MovielLens -10M

POP: The Popular-based recommendation method
DRM: The dynamic recurrent model with basket sequences
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Conclusion

« Modeling Contemporaneous Basket Sequences In
predicting the next-item adoption.

* Propose three Twin Network Structures (CBS-SN, CBS-
CFN & CBS-DFN) contribute statistically significant
Improvements over:

— Single Basket Sequence Models (DRM, BSEQ)
— Markov Chain-based Models (MC, FMC, MC-NET)

In term of top-K recommendations.
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Thank you for listening!
Q&A
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