School of Information Systems

Modeling Contemporaneous Basket Sequences with Twin Networks for Next-Item Recommendation

Duc-Trong Le, Hady W. Lauw, Yuan Fang

IJCAI 2018 Stockholm, Sweden

Outline

- Motivating examples
- Modeling Contemporaneous Basket Sequences (CBS)
 - CBS with Siamese Networks (CBS-SN)
 - CBS with Concordant Fraternal Networks (CBS-CFN)
 - CBS with Discordant Fraternal Networks (CBS-DFN)
- Experiments on Alibaba, MovieLens-10M

The Notion of Basket Sequence

Cross-session Purchased Products

Correlative associations among items in a basket Sequential associations across baskets in a sequence

The Notion of Contemporaneous Basket Sequences (CBS)

School of Information Systems

Next-Item Recommendation with CBS

TASK: Modeling correlative & sequential associations in CBS concurrently to predict the next "target" item

Next-Item Recommendation with CBS Binary Representation

Outline

- Motivating examples
- Modeling Contemporaneous Basket Sequences (CBS)
 - CBS with Siamese Networks (CBS-SN)
 - CBS with Concordant Fraternal Networks (CBS-CFN)
 - CBS with Discordant Fraternal Networks (CBS-DFN)
- Experiments on Alibaba, MovieLens-10M

CBS with Siamese Networks (CBS-SN)

CBS with Concordant Fraternal Networks

CBS with Discordant Fraternal Networks

Outline

- Motivating examples
- Modeling Contemporaneous Basket Sequences (CBS)
 - CBS with Siamese Networks (CBS-SN)
 - CBS with Concordant Fraternal Networks (CBS-CFN)
 - CBS with Discordant Fraternal Networks (CBS-DFN)
- Experiments on Alibaba, Movielens-10M

Experimental Setup

- Task: Next item recommendation
 - For each testing sequence pair < S, T >
 - Hide the last target basket B to create |B| testing instances.
 - Require each model to product a ranked list of candidates based on the testing instances with ground truth items.

Datasets

School of

Information Systems

Dataset		#Sequence	#Item	#Average Length	#Average Basket Size
Alibaba (E-commerce)	Support	23740	13498	11.2	5.5
	Target			5.3	1.8
MovieLens-10M (Movie Rating)	Support	189858	8202	34.5	2.5
	Target			16.6	1.8

Pre-processing: Filter out too few items; sequences < 2 baskets.

• Metric: Mean Reciprocal Rank

$$MRR = \frac{\sum_{B} \sum_{v \in B} \frac{1}{\text{rank of } v \text{ for } (S, T \setminus B)}}{\text{\#total testing instances}}$$

RQ1: Is modelling sequential data useful?

 \rightarrow -MC $-\Box$ -FMC $-\Delta$ -MC-NET \rightarrow BSEQ_8 \rightarrow BSEQ_16 - BSEQ_32

Higher is better

Alibaba – Support Sequence Only

Alibaba – Target Sequence Only

L is the latent dimension of the Dense Layer H is the LSTM hidden state size ($BSEQ_8 \rightarrow H = 8$)

RQ1: Is modelling sequential data useful?

-D-FMC - Δ -MC-NET - \rightarrow -BSEQ 8 - \rightarrow -BSEQ 16 **--O-MC —**BSEO 32 Higher is better 0.06 0.08 0.05 0.06 MRR MRR 0.03 0.04 0.02 0.02 0.000.00 0 16 32 48 64 80 96 32 48 80 0 1664 96 L L MovieLens – 10M MovieLens-10M

Support Sequence Only

Target Sequence Only

L is the latent dimension of the Dense Layer H is the LSTM hidden state size ($BSEQ_8 \rightarrow H = 8$)

RQ2: Is modelling CBS useful?

Alibaba

MovieLens-10M

L is the latent dimension of the Dense Layer LSTM Hidden State Size H = 32

RQ3: Do CBS Twin Networks outperform against other baselines?

LSTM Hidden State Size H = 32

Higher is better

	Model	L	MRR
	POP	-	0.004
	DRM _{support}	64	0.011
	DRM_{target}	32	0.004
	BSEQ _{support}	96	0.011
	$BSEQ_{target}$	96	0.013
-	CBS-SN	96	0.014
	CBS-CFN	96	0.015 ^{‡§}
	CBS-DFN	96	0.008

Model MRRPOP 0.006 _ DRM_{support} 96 0.002DRM_{target} 0.00116 BSEQ_{support} 0.0758 BSEQ_{target} 0.05064 **CBS-SN** 8 0.070**CBS-CFN** 32 0.072**CBS-DFN** 8 **0.078**^{‡§}

Alibaba

MovieLens -10M

POP: The Popular-based recommendation method DRM: The dynamic recurrent model with basket sequences

Conclusion

- Modeling Contemporaneous Basket Sequences in predicting the next-item adoption.
- Propose three Twin Network Structures (CBS-SN, CBS-CFN & CBS-DFN) contribute statistically significant improvements over:
 - Single Basket Sequence Models (DRM, BSEQ)
 - Markov Chain-based Models (MC, FMC, MC-NET)

in term of top-K recommendations.

Thank you for listening! Q&A

School of Information Systems