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Abstract
Object detection in images is a crucial task in
computer vision, with important applications rang-
ing from security surveillance to autonomous ve-
hicles. Existing state-of-the-art algorithms, includ-
ing deep neural networks, only focus on utilizing
features within an image itself, largely neglecting
the vast amount of background knowledge about
the real world. In this paper, we propose a novel
framework of knowledge-aware object detection,
which enables the integration of external knowl-
edge such as knowledge graphs into any object de-
tection algorithm. The framework employs the no-
tion of semantic consistency to quantify and gener-
alize knowledge, which improves object detection
through a re-optimization process to achieve better
consistency with background knowledge. Finally,
empirical evaluation on two benchmark datasets
show that our approach can significantly increase
recall by up to 6.3 points without compromising
mean average precision, when compared to the
state-of-the-art baseline.

1 Introduction
Many computer vision tasks ultimately seek to interpret the
world through images and videos. While significant progress
has been made in the past decade, there still exists a striking
gap between how humans and machines learn. Although cur-
rent machine learning approaches, including state-of-the-art
deep learning algorithms, can effectively find patterns from
the training data, they fail to leverage what an average per-
son has at his or her disposal—the vast amount of back-
ground knowledge about the real world. Given that images
and videos are reflections of the world, exploiting background
knowledge can have a tremendous advantage towards inter-
preting these data.

Task and insight
In this paper, we study the key computer vision task of object
detection [Everingham et al., 2010]. Given an image, the goal
is to identify a set of regions or bounding boxes, and to further
classify each bounding box with one of the pre-defined object
labels, as illustrated in Figure 1.

(a) Detecting cat and table (b) Detecting bear

Figure 1: Object detection on images from MSCOCO15.

Recent advances in deep convolutional neural networks
[Sermanet et al., 2013; Girshick et al., 2014], in particular
Fast or Faster R-CNN [Girshick, 2015; Ren et al., 2015],
show great promise in object detection. However, like pre-
vious approaches, these methods only account for patterns
present in the training images, without leveraging much of
the knowledge an average person would have. For example,
humans have the common sense or implicit knowledge that a
domestic cat sometimes sits on a table, but a bear does not
barring very rare circumstances. This background knowledge
would natrually help reinforce the simultaneous detections of
cat and table (e.g. in Figure 1a), even if none of the train-
ing images portrays a cat together with a table. On the
other hand, if an image is predicted to contain both bear and
table, which conflicts with our background knowledge, the
detections are more prone to be false.

While such background knowledge appears random and
difficult to organize, there have been extensive research and
commercial efforts to encode it into machine readable forms
often known as knowledge graphs [Paulheim, 2017]. A
knowledge graph is a graph that models semantic knowledge,
where each node is a real-world concept, and each edge rep-
resents a relationship between two concepts. For instance,
Figure 2 showcases a toy knowledge graph. In particular, the
relationship “cat sits on table” reinforces the detections
of cat and table in Figure 1a. We note that knowledge
graphs already demonstrate considerable success in other do-
mains such as Web search and social networks [Dong et al.,
2014]. Beyond a toy graph, large-scale knowledge graphs are
often constructed through crowdsourcing or automated ex-
traction from semi-structured and unstructured data, which
are beyond the scope of this paper.
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Figure 2: A toy knowledge graph modeling seven concepts as nodes
(e.g., cat and table), as well as their relationships as edges (e.g.,
“cat sits on table”).

Challenges and approach
Even with an existing knowledge graph, to effectively lever-
age the knowledge therein for object detection, two major
technical challenges still remain.

First, how do we quantify and generalize knowledge?
Quantification is necessary as knowledge graphs entail sym-
bolic representations but most object detection algorithms op-
erate over subsymbolic or numerical representations. More-
over, the quantification shall not only apply to images with
contexts matching directly observed knowledge, but also gen-
eralize to images with new contexts. In our approach, for ev-
ery pair of concepts on the knowledge graph, we compute a
numerical degree of semantic consistency for them. For ex-
ample, since the relationship “cat sits on table” is present
on the knowledge graph, cat and table are semantically
consistent concepts, but bear and table are not. Concepts
can also be connected through a chain of indirect relation-
ships, such as “cat licks plate” and “plate placed on
table”. This gives rise to the generalization ability—we
can infer that cat and table tend to appear together with-
out directly observing “cat sits on table”.

Second, how do we incorporate semantic consistency to
achieve knowledge-aware object detection? We hinge on the
key constraint that more semantically consistent concepts are
more likely to occur in an image with comparable probability.
For instance, letting (o, p) denote a bounding box containing
object o with probability p, it is more plausible to have two
bounding boxes (cat, 0.8) and (table, 0.9) in the same
image, than (bear, 0.8) and (table, 0.9). In particular, for
the latter, it is more likely to have (bear, 0.8) and (table,
0.01) or (bear, 0.01) and (table, 0.9) instead. We cast
such a constraint as an optimization problem.

Contribution
We make three major contributions in this paper. First, we
advocate incorporating knowledge into object detection, an
emerging paradigm still limited in visual tasks. Second, we
formulate a knowledge-aware framework that quantifies se-
mantic consistency based on knowledge graphs in a gener-
alizable manner, and further re-optimizes object detection to
achieve better consistency. Last, we conduct extensive exper-
iments on two benchmark datasets, which significantly im-
proves recall by up to 6.3 points while keeping the same level
of mean average precision.

2 Related Work
In recent years, deep convolutional neural networks (CNNs)
have become the de-facto baseline for computer vision tasks
such as image classification and object detection. Their
strong performance stems from the ability to learn high-level
image features [Krizhevsky et al., 2012; Simonyan and Zis-
serman, 2014; Szegedy et al., 2015; He et al., 2016]. For
object detection, earlier research such as Regions with CNN
features (R-CNN) [Girshick et al., 2014] and its fast vari-
ant [Girshick, 2015] employs CNNs to classify objects, but
depends on precomputed region proposals for object local-
ization. Subsequently, networks such as Overfeat [Sermanet
et al., 2013] and Faster R-CNN [Ren et al., 2015] leverages
CNNs for not only object classification but also object local-
ization. Faster R-CNN in particular introduces a region pro-
posal network that efficiently shares convolutional features
for both region proposal and classification. Furthermore, us-
ing contextual information from the entire image has also
been explored to improve object detection, by generating a
context feature to enhance the classification of individual re-
gions [Bell et al., 2016].

There is also an emerging trend to exploit information out-
side of images, i.e., external background knowledge such as
texts and knowledge graphs, for certain computer vision tasks
such as image classification [Deng et al., 2014], visual moti-
vation prediction [Vondrick et al., 2016], visual question an-
swering [Wu et al., 2016] and visual relationship extraction
[Lu et al., 2016]. However, to date, using external knowledge
has received limited attention for the task of object detection.
An early work [Rabinovich et al., 2007] introduces a con-
ditional random field model to maximize the agreement of
labels and semantic contexts from their own training data, as
well as from an external online service called Google Sets1

which returned a set of similar concepts based on a few in-
put examples. One recent work [Hong et al., 2017] uses co-
occurrence statistics to re-weight the detection scores in in-
door scenes. Note that both methods cannot generalize to im-
ages with contexts not observed in their training or external
data, while our knowledge graph-based approach has a better
generalization potential.

Finally, background knowledge can often be organized as
a knowledge graph, which is a data structure capable of mod-
eling both real-world concepts and their interactions. The use
of knowledge graphs have become widespread and largely
successful in many data-driven applications including Web
search and social networks [Dong et al., 2014]. Numer-
ous research and commercial efforts have been spent to con-
struct large-scale knowledge graphs [Paulheim, 2017], which
often require continuous expansion and refinement. Typi-
cally, knowledge graphs are constructed through human cu-
ration [Lenat, 1995], crowdsourced contribution [Liu and
Singh, 2004], as well as automatic extraction from semi-
structured [Suchanek et al., 2007] or unstructured data [Fang
and Chang, 2011]. More recently, knowledge has also been
systematically harvested from multimodal data including im-
ages [Krishna et al., 2017].

1The product was discontinued in 2011.



3 Proposed Approach
We describe our knowledge-aware framework in this section,
starting with the notations and problem statement, followed
by the notion of semantic consistency, as well as the integra-
tion of knowledge into object detection.

3.1 Notations and Problem
Consider a set of pre-defined concepts or object labels L =
{1, 2, . . . , L}.2 We assume an existing object detection algo-
rithm that outputs a set of bounding box B = {1, 2, . . . , B}
for each image, and assigns a label ` ∈ L to each bounding
box b ∈ B with probability p(`|b). For each image, these
probabilities can be encoded by a B × L matrix P , such that
Pb,` = p(`|b).

Our goal is to produce a new matrix P̂ based on not only
the initial matrix P , but also the semantic consistency be-
tween concepts which are derived from given knowledge. In
other words, P̂ is a knowledge-aware enhancement of P . Ul-
timately, the new matrix P̂ enables us to improve object de-
tection, such that a bounding box b is assigned a potentially
new label ̂̀= argmax` P̂b,`. The overall framework is sum-
marized in Fig. 3.

3.2 Semantic Consistency
Knowledge is fundamentally symbolic and logical. However,
most state-of-the-art algorithms function on subsymbolic or
numerical representations. Thus, towards a knowledge-aware
framework, the first step is to quantify such knowledge, espe-
cially in a manner that can generalize to images with unob-
served contexts. To this end, we propose to measure a numer-
ical degree of semantic consistency for each pair of concepts.
A high degree of semantic consistency between two concepts
implies that the two concepts are likely to appear together in
the same image.

Formally, let S be an L × L matrix such that S`,`′ is de-
fined as the degree of semantic consistency between concepts
` and `′, ∀(`, `′) ∈ L2. Naturally, S shall be symmetric, i.e.,
S`,`′ = S`′,`. Note that, when ` = `′, S`,`′ captures the self-
consistency, which is meaningful since multiple instances of
the same concept can appear in the same image.

In other words, additional background knowledge about
various concepts can be quantified and modeled by the ma-
trix S. In the following, we describe two alternatives of con-
structing S from additional knowledge: one using simple fre-
quency, and the other based on a knowledge graph.

Frequency-based knowledge
To compute semantic consistency, one immediate approach
is to utilize the frequency of co-occurrences for each pair of
concepts. Such co-occurrences can be identified from given
background data, which can be potentially multi-modal in-
cluding text corpora and photo collections.

Let n(`, `′) denote the frequency of co-occurrences for
concepts ` and `′, and n(`) denote the frequency of `. Let
N be the total number of instances in the background data.
Then, we define semantic consistency below, based on point-
wise mutual information. Simply put, when ` and `′ occur

2In this paper, we use “concept” and “label” interchangeably.
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Figure 3: Overview of knowledge-aware framework.

independently, or they co-occur less frequently than if they
were to occur independently, the value would be zero; other-
wise, the value is positive. In particular, the more likely two
concepts co-occur than if they were independent, the more
positive the value, bounded by logN from the above.

S`,`′ = max

(
log

n(`, `′)N

n(`)n(`′)
, 0

)
(1)

While it is straightforward to compute Eq. (1), there is two
major drawbacks. First, collecting enough background data
with high-quality annotations is often difficult and expensive,
especially when the baseline detection model is given as a
blackbox without its accompanying training data. Second,
the resulting matrix S only works for known co-occurrences
in the background data, but does not generalize to unseen co-
occurrences in new images. In other words, if two concepts
never co-occur in the background data, their semantic consis-
tency would be exactly zero, and thus are not helpful to new
images containing these two concepts.

Graph-based knowledge
Next, we consider a knowledge graph for modeling semantic
consistency. Unlike the toy example in Figure 2, a typical off-
the-shelf knowledge graph often captures at least millions of
concepts and their complex relationships, providing immense
background knowledge external to the images.

Using a large-scale knowledge graph has a significant
advantage—it can better generalize to a pair of concepts even
if they are not connected by any edge. In particular, when two
concepts are not involved in a direct relationship, potentially
we can still establish a chain of relationships between them.
For instance, people and plate in Figure 2 are not directly
connected. This does not necessarily mean that they are not
semantically consistent. Quite the contrary, they should en-
joy a fair degree of semantic consistency based on common
sense. Nonetheless, despite a missing edge between them,
there is still a chain of edges “person pets cat” and “cat
licks plate” to indicate that they are semantically consis-
tent to some extent. Furthermore, multiple direct relation-
ships or chains of relationships can exist between two con-
cepts. In Figure 2, cat and table can be related through
the edge “cat sits on table”, and a chain of edges “cat
licks plate” and “plate placed on table”. Each rela-
tionship or chain is called a path from cat to table. Dif-
ferent paths between the two concepts complement each other
for increased robustness.



To quantify semantic consistency on a knowledge graph,
we employ random walk with restart [Tong et al., 2006].
Starting from a node v0 on the graph, we move to a random
neighboring node of v0, and record it as v1. Once at v1, we
repeat this process. In general, when we are at vt, we move to
one of its neighbors randomly, and denote the new node we
have just arrived as vt+1. In addition, to avoid being trapped
in a small locality, at each move, there is a probability of α to
restart the random walk by “teleporting” to the starting node
v0, instead of moving to one of the neighbors. Formally, a
random walk is a sequence of nodes 〈v0, v1, v2 . . . , vt〉, and
p(vt = `′|v0 = `;α) represents the probability of reaching
the concept `′ in t steps given that we start from `.

This probability can be used to formulate semantic consis-
tency, such that a larger probability from ` to `′ implies that
they are more semantically consistent. Intuitively, when the
number of paths from ` to `′ increases or the length of these
paths decreases, the semantic consistency between ` and `′
becomes larger, so does the probability of reaching `′ from `.
Interestingly, as we take longer random walks, this probabil-
ity eventually converges to a unique steady state as follows.

R`,`′ = lim
t→∞

p(rt = `′|r0 = `;α). (2)

Note thatR`,`′ is not symmetric in general. Thus, in Eq. (3)
we define a symmetric matrix S based on the geometric mean.
The geometric mean has a roundtrip random walk interpreta-
tion, and has been shown to be superior than the arithmetic
or harmonic means [Fang et al., 2013]. The matrix S can be
efficiently computed even on a very large knowledge graph
[Zhu et al., 2013].

S`,`′ = S`′,` =
√
R`,`′R`′,` (3)

One caveat is the huge effort required to build and refine
a large-scale knowledge graph, which is an active research
area itself. Fortunately, a suite of off-the-shelf solutions are
available, many of which offer open datasets or APIs. For a
thorough discussion on this matter, we refer the reader to a
survey paper [Paulheim, 2017] and the citations therein. In
our experiments, we adopt MIT ConceptNet [Liu and Singh,
2004], a crowdsourced knowledge graph with more than 4
million concepts and 9 million relationships.

3.3 Knowledge-Aware Re-optimization
Given a matrix that quantifies the semantic consistency be-
tween pairwise concepts, we need to further integrate it
with an existing model to enable knowledge-aware detection
through a re-optimization process. In the following, we for-
mulate a cost function based on semantic consistency, and
further discuss its efficient optimization.

Cost function
The key intuition is that two concepts with a higher degree
of semantic consistency are more likely to appear in the same
image with comparable probability. That is, for two different
bounding boxes b and b′ in one image, Pb,` and Pb′,`′ should
not be too different when S`,`′ is large. This constraint can be
formalized by minimizing the cost function in Eq. (4), where
{Pb,` : b ∈ B, ` ∈ L} represent the detections from any

existing algorithm, and {P̂b,` : b ∈ B, ` ∈ L} represent our
proposed knowledge-aware detections.

E(P̂ ) = (1− ε)
B∑

b=1

B∑
b′=1
b′ 6=b

L∑
`=1

L∑
`′=1

S`,`′

(
P̂b,` − P̂b′,`′

)2

+ ε

B∑
b=1

L∑
`=1

B‖S`,∗‖1
(
P̂b,` − Pb,`

)2
(4)

On the one hand, the first term of Eq. (4) captures the
constraint on the semantic consistency. For a pair of de-
tected bounding boxes b and b′, if S`,`′ is large, minimizing
the objective function would force Pb,` and Pb′,`′ to become
smaller; if S`,`′ is small, Pb,` and Pb′,`′ are less constrained
and can become very different.

On the other hand, the second term requires that
knowledge-aware detections should not depart too much from
detections of existing algorithms. Existing algorithms use
features specific to each image which form the basis of our
knowledge-aware approach. Note that the squared error has
a coefficient B‖S`,∗‖1 in order to balance different con-
cepts. Without this coefficient, the cost function would give
more importance to the first term over summations involv-
ing Pb,`,∀b ∈ B when ‖S`,∗‖ is larger. The overall trade-
off between the two terms is controlled by a hyperparameter
ε ∈ (0, 1), which can be selected on a validation set.

Optimization
To minimize Eq. (4), we find its stationary point where its
gradient w.r.t. P̂b,` is zero, ∀b ∈ B, ` ∈ L.

∂E(P̂ )

∂P̂b,`

∝ (1− ε)
B∑

b′=1
b′ 6=b

L∑
`′=1

S`,`′

(
P̂b,` − P̂b′,`′

)

+ εB‖S`,∗‖1
(
P̂b,` − Pb,`

)
(5)

Setting the above to zero, we obtain below an equivalent
configuration over optimal P̂b,`.

P̂b,` = (1− ε)
∑B

b′=1,b′ 6=b

∑L
`′=1 S`,`′ P̂b′,`′∑B

b′=1,b′ 6=b

∑L
`′=1 S`,`′

+ εPb,` (6)

It can be shown that the exact solution to Eq. (6) is the limit
of the series in Eq. (7) for i ∈ {1, 2, . . .}. In particular, for
any arbitrary initialization P̂ (0)

b,` , P̂ (i)
b,` always converges to the

same solution as i→∞.

P̂
(i)
b,` = (1− ε)

∑B
b′=1,b′ 6=b

∑L
`′=1 S`,`′ P̂

(i−1)
b′,`′∑B

b′=1,b′ 6=b

∑L
`′=1 S`,`′

+ εPb,` (7)

Note that the solution can be computed in polynomial time.
The theoretical complexity isO(B2L2I), where I is the num-
ber of iterations. Convergence typically happens very fast in
fewer than 30 iterations. To further speed up the computation,
we could apply an approximation using Bk nearest bounding
boxes and Lk nearest concepts. That is, a pair of bounding
boxes b and b′ are considered only if either of them is among



the Bk bounding boxes with smallest distances to the other; a
pair of concepts ` and `′ are considered only if either of them
is among the Lk labels with largest semantic consistency to
the other. Thus, the practical complexity is only O(BL), as-
suming that I,Bk, Lk are small constants.

4 Evaluation
We empirically evaluate the proposed approach on two
benchmark datasets. Results of our knowledge-aware detec-
tion is promising, significantly outperforming the baseline
method in recall while maintaining the same level of mean
average precision.

4.1 Experimental setup
Datasets
We use benchmark data MSCOCO15 [Lin et al., 2014] and
PASCAL07 [Everingham et al., 2010], summarized in Ta-
ble 1. For MSCOCO15, we combine their training and valida-
tion sets for training the baseline, except for a subset of 5000
images named “minival”. We further split minival into 1000
and 4000 images, named “minival-1k” and “minival-4k” re-
spectively. We use minival-1k to choose hyperparameter for
our approach, and minival-4k for offline testing. Online eval-
uation on the MSCOCO15 server3 is performed on the test
set, since its ground truth is not publicly available. The test
set contains two subsets of roughly equal size, namely “test-
dev” and “test-std”, where the latter only allows for limited
submissions. For PASCAL07, we use their training set for
training the baseline, validation set for choosing our hyperpa-
rameter, and test set for evaluation.

Model training
We employ the state-of-the-art Faster R-CNN and VGG-16
as the baseline [Simonyan and Zisserman, 2014; Ren et al.,
2015], using the public Python Caffe implementation4. We
call this baseline FRCNN hereafter. Models are trained using
stochastic gradient descent with a momentum of 0.9, a mini-
batch size of 2 and a weight decay of 5e-4. Layer weights are
initialized from a VGG-16 model pre-trained on ImageNet.
New layers defined by Faster R-CNN are randomly initial-
ized from a Gaussian distribution with a standard deviation
of 0.01. We use a learning rate of 1e-3 for the first 350K/50K
iterations on MSCOCO15/PASCAL07, followed by 1e-4 for
another 140K/10K iterations.

For our knowledge-aware approach, we re-optimize the
output of FRCNN. We only retain top 500 bounding
boxes whose scores are at least 1e-5. On the valida-
tion data, we choose the hyperparameter ε in Eq. (4) from
{0.1, 0.25, 0.5, 0.75, 0.9}. To speed up the computation of
Eq. (7), we only consider 5 nearest neighbors for both the
bounding boxes and labels as an approximation. The updates
are performed for 10 iterations, which already show conver-
gence. We compare several variants of our approach.

On the one hand, we adopt frequency-based knowledge,
combining the training sets of both benchmarks as the back-
ground data. We name this variant KF-All. Furthermore, to

3http://mscoco.org/home/
4https://github.com/rbgirshick/py-faster-rcnn

# Images
Dataset # Concepts training validation test

MSCOCO15 80 80K 40K 40K
PASCAL07 20 2.5K 2.5K 5.0K

Table 1: Summary statistics of benchmark datasets.

mAP Recall Recall@100 by area
@100 @100 @10 small medium large

minival-4k
FRCNN 24.5 35.9 35.2 14.2 41.5 55.6
KF-500 24.4 37.1 35.6 14.3 42.8 57.3
KF-All 24.5 37.9 36.2 14.6 43.9 58.6
KG-CNet 24.4 38.9 36.6 14.4 45.2 60.0

test-dev
FRCNN 24.2 34.6 34.0 12.0 38.5 54.4
KF-500 24.3 37.4 35.9 13.7 42.1 58.0
KF-All 24.3 38.2 36.4 14.2 43.0 59.2
KG-CNet 24.2 39.2 36.9 14.5 44.0 60.7

test-std
FRCNN 24.2 34.7 34.1 11.5 38.9 54.4
KG-CNet 24.1 39.2 37.0 14.2 44.4 60.5

Table 2: Comparison of our knowledge-aware variants with the
baseline method on MSCOCO15.

demonstrate that the accuracy of the results depend on the
quality of the background data, we consider a second variant
named KF-500, by sampling only 500 images from the train-
ing sets as the background data.

On the other hand, for the graph-based knowledge, we
employ MIT ConceptNet 55 as our knowledge graph. We
only use its English subgraph, and filter out “negative” rela-
tionships (NotDesires, NotHasProperty, NotCapableOf, No-
tUsedFor, Antonym, DistinctFrom and ObstructedBy) and
self-loops. The resulting graph has 1.3 million concepts and
2.8 million relationships. We set the random walk restart-
ing probability α = 0.15, a typical value known to be stable
[Fang et al., 2013]. We call this variant KG-CNet.

Accuracy metrics
The main metrics are mean average precision (mAP) and re-
call at top 100. On MSCOCO15, we also report recall at
top 10 and by object areas (small, medium and large); on
PASCAL07, we further report recall by concepts. In partic-
ular, a bounding box is judged correct only if its intersection
over union (IoU) w.r.t. the ground truth is above some thresh-
old. We use the IoU threshold as standardized in each bench-
mark: On MSCOCO15, it is varied over {0.50, 0.55, . . . ,
0.95} and their average results are reported; for PASCAL07,
it is fixed at 0.5.

4.2 Main results
We report the results on MSCOCO15 in Table 2. Both KF-All
and KG-CNet significantly increase recall@100 over the base-
line method FRCNN by up to 3.6 and 4.6 points, respectively.

5http://conceptnet-api-1.media.mit.edu/
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Table 3: Comparison of our knowledge-aware variants with the baseline method on PASCAL07.

Other recall metrics, at top 10 and by areas, also show sig-
nificant improvement up to 4.8 and 6.3 points, respectively.
At the same time, both approaches do not compromise mAP.
Moreover, comparing with KF-All, KF-500 attains smaller im-
provements across all recall metrics, which is not surprising
given fewer background data.

Next, we present the results on PASCAL07 in Table 3.
Likewise, both KF-All and KG-CNet beat FRCNN in re-
call@100 by 2.7 and 3.1 points, respectively, without affect-
ing mAP. In particular, KF-All outperforms the baseline in 17
out of the 20 concepts, whereas KG-CNet outperforms the
baseline in all 20 concepts. As usual, KF-500 shows smaller
improvements than KF-All in most cases.

Note that KG-CNet generates consistently better results
than KF-All on MSCOCO15, but to a much lesser extent
on PASCAL07. We hypothesize that the discrepancies are
caused by the complexity of the benchmarks. In particular,
MSCOCO15 are more complex than PASCAL07 [Lin et al.,
2014]: The former contains an average of 3.5 concepts and
7.7 instances per image, whereas the latter has fewer than 2
concepts and 3 instances per image. The simpler scenes in
PASCAL07 would thus require less generalization, and the
frequency-based variant could benefit from this situation.

We also observe that both KF-All and KG-CNet deliver
more significant improvements on MSCOCO15 than on
PASCAL07. We believe that the underlying reason is sim-
ilar in that the knowledge-aware variants are able to benefit
more from the semantically richer scenes in MSCOCO15.

4.3 Case study
Finally, we showcase the ability of the knowledge graph-
based variant in detecting additional objects and thus improv-
ing recall, on real images from MSCOCO15.

The example in Figure 4a depicts an office scene, contain-
ing ground truth objects keyboard and laptop, among
others. Although the baseline misses the keyboard, it is
picked up by KG-CNet after re-optimization. The reason is
that the probability of keyboard is promoted given the pres-
ence of laptop, since the two concepts share very high se-
mantic consistency (135 times of the median value among all
pairwise concepts). Of course, other equipment like mouse
may also have contributed.

Another example in Figure 4b depicts an outdoor scene
with ground truth objects person and surfboard. Like-
wise, the baseline fails to detect surfboard, but KG-CNet
identifies it correctly. In particular, the two concepts are also
semantically consistent (5 times of the median value).

(a) Office scene: FRCNN (left) fails to detect keyboard, but
KG-CNet (right) does due to the presence of laptop.

(b) Outdoor scene: FRCNN (left) fails to detect surfboard, but
KG-CNet (right) does due to the presence of person.

Figure 4: Two scenes from MSCOCO15 (best viewed in color).
In each scene, the left image contains the output of the baseline
method FRCNN, whereas the right image contains the output of our
proposed KG-CNet. Ground-truth objects are marked with orange
boxes, and correct detections of IoU at least 0.75 in top 100 are
marked with blue boxes.

5 Conclusion

In this paper, we study the problem of object detection in a
novel knowledge-aware framework. Compared to existing
algorithms which only focus on features within an image,
we propose to leverage external knowledge such as knowl-
edge graphs. Towards this goal, we derive and quantify se-
mantic consistency from knowledge graphs that can general-
ize to new images with unobserved contexts. Next, we in-
tegrate knowledge into existing object detection algorithms,
by re-optimizing the detections to attain better semantic con-
sistency. Finally, we demonstrate the superior performance
of our proposed approach through extensive experiments on
two benchmark datasets. As future work, we plan to explore
or construct knowledge graphs that are specifically tailored
to visual tasks, instead of using a general-purpose knowledge
graph without emphasizing on visual relationships.
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