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• Motivating examples and Models

• Factorization Machine (FM)
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(CBFM)

• Experiments on BeiRen, Foursquare
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Personalized Item Recommendation
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Factorization Machine (FM)
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Optimization:

𝑂𝑃𝑇_𝐹𝑀(𝑇) = argminΘ {ℎ} 𝑙(ℱ 𝒉; Θ , 𝛿)

Loss function

Adoption Estimation
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For each adoption < 𝑢𝑖 , 𝑣𝑗 >:



The Notion of Basket – Shopping Scenarios
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Basket-Sensitive Personalized Item 

Recommendation
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Modeling Association Types - 𝜸𝟏
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Modeling Association Types -𝜸𝟐
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Modeling Association Types -𝜸𝟑
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Modeling Association Types - 𝜸𝟒
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Real-Valued Function

with Association Types
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𝐹 𝑢𝑖 , 𝐵𝑖 , 𝑣𝑗; Θ ∝ 𝛾1. 𝑥𝑖
𝑇𝑦𝑗 + 𝛾2.  𝑣𝑘 ∈ 𝐵𝑖 𝑦𝑗
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+𝛾3.  
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where 𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘 ∈ ℝ
𝐾 are latent vectors; 𝛾1, 𝛾2, 𝛾3, 𝛾4 ∈ 0,1

Adoption 

Estimation
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Given N users, M items; 

Tuple  𝑡 = < 𝑢𝑖 , 𝐵𝑖 , 𝑣𝑗 , 𝛿 > ∈ 𝑇; 𝑡. 𝛿 ∈ −1, 1 ;
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Same-Intent Tuples
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𝑡1 = < Mary, {𝑨, 𝑪, 𝑩}, 𝑫, 1 > 𝑡2 =< Mary, {𝑨, 𝑩, 𝑫}, 𝑪, 1 >

Same-Intent Tuples



Constrained BFM (CBFM)

• Given same-intent tuples (𝑡1, 𝑡2), we expect 
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𝑃𝑀𝐼 𝑡1, 𝑡2 ∗ ℱ 𝒉
𝑡1; Θ − ℱ 𝒉𝑡2; Θ

2

Pointwise Mutual 

Information

Adoption Estimation 

Difference 

should be small

• Not all tuple pairs have strong intended effect, only 

consider the constraint in optimization task:

where 𝑡, 𝑡𝑚 are the current tuple and its same-intent tuple that has 

the maximum ℱ 𝒉𝑡
𝑚
; Θ score

𝑃𝑀𝐼 𝑡, 𝑡𝑚 ∗ ℱ 𝒉𝑡; Θ − ℱ 𝒉𝑡
𝑚
; Θ
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Optimization
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Stochastic Gradient Descent with Adaptive Learning Rate
𝛼, 𝜆𝜃 ∈ ℝ

+; 𝜎 𝑎 = 1/(1 + 𝑒−𝑎)

Constraint

Log-loss function
Regularization

Log-loss function
Regularization
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Experimental Setup
• Task: Next adoption recommendation

– For each testing tuple 𝑡 = < 𝑢𝑖 , 𝐵𝑖 , 𝑣𝑗 , 𝛿 >

– Hide the observed adoption 𝑣𝑗, require each model to 

product a ranked list of candidates for 𝑢𝑖 based on 𝐵𝑖
• Datasets

Pre-processing: Filter out too few or too popular items; Sample 

negative tuples (𝑡. 𝛿 = −1)

• Metric: Half-life Utility (HLU)

𝐻𝐿𝑈 =
1

|𝑇test|
× 𝐶 ×  𝑡∈𝑇test

2
1−𝑟𝑡
𝛽−1 ; 𝐶 = 100, 𝛽 = 5
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Dataset #User #Item #Transaction
Avg. #Item

/ Transaction

BeiRen

(Grocery shopping)
9245 5581 87224 6.1

Foursquare

(Point-of-Interest)
1548 3619 31377 2.7



What are effects of the Association Types?
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User &

Candidate Item

Candidate &

Basket Items

Among

Basket Items 

User &

Basket Items 

𝜸𝟏 𝜸𝟐 𝜸𝟑 𝜸𝟒

Latent dimension K = 8

Association
BeiRen Foursquare

𝜸𝟏 𝜸𝟐 𝜸𝟑 𝜸𝟒

1 0 0 0 1.94 5.45

1 1 0 0 3.35 8.11

1 1 1 0 3.75* 8.51*

1 1 0 1 3.59 7.08

1 1 1 1 3.74 8.02

Higher is better



How does the constraint influence the 

prediction performance?
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Foursquare

Latent dimension K = 8; 

BeiRen

Higher is better



Do CBFM & BFM outperform the Association 

Rules-based method?
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Latent dimension K = 8

FoursquareBeiRen

Higher is better



Conclusion

• Take into account of a user’s current basket information

in making personalized item recommendations.

• Propose two models (BFM & CBFM) contribute

statistically significant improvements over:

– Factorization Machine (FM)

– Association Rule (ASR)

in terms of top-K recommendations.
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Thank you for listening!

Q&A
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Backup slides
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What is the relationship between 

Model Complexity & Response Time?
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Half-life Utility and Response Time on BeiRen



Negative Tuple Sampling

• For each positive tuple 𝑡 =< 𝑢𝑖 , 𝐵𝑖 , 𝑣𝑗 , 1 >, we sample 

two negative tuples 𝑡¬ =< 𝑢𝑖 , 𝐵𝑖
¬, 𝑣𝑗
¬, −1 >:

– As 𝑣𝑗
¬, we pick an item never selected by the user

– 𝐵𝑖
¬ contains items that never co-occur with either 

user, 𝑣𝑗
¬, and other current items in 𝐵𝑖

¬
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