School of Information Systems

Basket-Sensitive Personalized Item Recommendation

Duc-Trong Le, Hady W. Lauw, Yuan Fang

IJCAI 2017 Melbourne, Australia

Outline

- Motivating examples and Models
 - Factorization Machine (FM)
 - Basket-Sensitive Factorization Machine (BFM)
 - Constrained Basket-Sensitive Factorization Machine (CBFM)
- Experiments on BeiRen, Foursquare

Adopted ui Candidate ui ui ...

Learn a real-value function from adoptions to rank candidate items

$$F(u_i, v_j; \Theta)$$

Matrix Factorization:

 $\{\mathcal{V}_*\}$

$$F(u_i, v_j; \Theta) \propto \phi_i * \phi_j$$
 where $\phi_i, \phi_j \in \mathbb{R}^K$

 $\{v_j\}$

Factorization Machine (FM)

The Notion of Basket – Shopping Scenarios

INGAPORE MANAGEMENT

Basket-Sensitive Personalized Item Recommendation

Learn a real-value function to rank candidate items

$$F(u_i, B_i, v_j; \Theta)$$

Capture personalization

Capture correlations

Among Basket Items

Capture correlations in the current basket

Capture personalization (Maybe redundant)

Candidate

Basket Items

Basket-Sensitive Factorization Machine (BFM)

Same-Intent Tuples

Same-Intent Tuples

Constrained BFM (CBFM)

• Given same-intent tuples (t_1, t_2) , we expect

$$PMI(t_1, t_2) * \left(\mathcal{F}(\boldsymbol{h}^{t_1}; \Theta) - \mathcal{F}(\boldsymbol{h}^{t_2}; \Theta) \right)^2$$
 should be small

Pointwise Mutual Information Adoption Estimation Difference

 Not all tuple pairs have strong intended effect, only consider the constraint in optimization task:

$$PMI(t,t^m) * \left(\mathcal{F}(\boldsymbol{h}^t;\Theta) - \mathcal{F}(\boldsymbol{h}^{t^m};\Theta)\right)^2$$

where t, t^m are the current tuple and its same-intent tuple that has the maximum $\mathcal{F}(\mathbf{h}^{t^m}; \Theta)$ score

Optimization

 $\alpha, \lambda_{\theta} \in \mathbb{R}^+; \ \sigma(a) = 1/(1 + e^{-a})$

Outline

- Motivating examples and Models
 - Factorization Machine (FM)
 - Basket-Sensitive Factorization Machine (BFM)
 - Constrained Basket-Sensitive Factorization Machine (CBFM)
- Experiments on BeiRen, Foursquare

Experimental Setup

- Task: Next adoption recommendation
 - For each testing tuple $t = \langle u_i, B_i, v_j, \delta \rangle$
 - Hide the observed adoption v_j , require each model to product a ranked list of candidates for u_i based on B_i
- Datasets

Dataset	#User	#Item	#Transaction	Avg. #Item / Transaction
BeiRen (Grocery shopping)	9245	5581	87224	6.1
Foursquare (Point-of-Interest)	1548	3619	31377	2.7

Pre-processing: Filter out too few or too popular items; Sample negative tuples ($t. \delta = -1$)

• **Metric**: Half-life Utility (HLU)

What are effects of the Association Types?

Higher is better

Association			on	PoiPon	Foursquare
γ1	Y 2	γ ₃	Y 4	Deiken	Foursquare
1	0	0	0	1.94	5.45
1	1	0	0	3.35	8.11
1	1	1	0	3.75*	8.51*
1	1	0	1	3.59	7.08
1	1	1	1	3.74	8.02

γ₁ User & Candidate Item Y₂ Candidate & Basket Items *γ*₃
 Among
 Basket Items

γ₄ User &

Basket Items

Latent dimension K = 8

How does the constraint influence the prediction performance?

Latent dimension K = 8;

Do CBFM & BFM outperform the Association Rules-based method?

Latent dimension K = 8

Conclusion

- Take into account of a **user's current basket information** in making personalized item recommendations.
- Propose two models (BFM & CBFM) contribute statistically significant improvements over:
 - Factorization Machine (FM)
 - Association Rule (ASR)

in terms of top-K recommendations.

Thank you for listening! Q&A

Backup slides

What is the relationship between Model Complexity & Response Time?

Half-life Utility and Response Time on BeiRen

Negative Tuple Sampling

- For each positive tuple t =< u_i, B_i, v_j, 1 >, we sample two negative tuples t[¬] =< u_i, B_i[¬], v_j[¬], −1 >:
 - As v_i^{\neg} , we pick an item never selected by the user
 - B_i^{\neg} contains items that never co-occur with either user, v_i^{\neg} , and other current items in B_i^{\neg}

