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Graph-based semi-supervised learning

Data points: X € X = {xq, ..., X}
Labels: Y € Y, the label of X Labeled data
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Central notion in SSL: smoothness

1 Two points X;, Xj are close

U

Their respective labels y;, y;

are likely to be the same




Current graph-based smoothness does not
precisely realize the nature of smoothness

Realizing { Pointwise Nature }

through [ Probabilistic Modeling }




Goal 1: Pointwise nature of smoothness

Inherently a property occurring

“everywhere’ )

on every point
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Relating the behaviour of each point to
that of its close points
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Precisely expressing pointwise smoothness

[ If two points are close, their labels are likely to be the same.

P1. How to judge if two points are close?

(Data Closeness)
Vague!
(Rigollet, 2007; . «] ”
Lafferty 4. 2007) P2. Meaning of labels hkely to be the same”? v,
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(Label Coupling)




Existing graph-based methods only express
aggregate, not pointwise, smoothness
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aggregate pairwise “Average” smooth across the graph
it Not pointwise formulation (P1 & P2)
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Not an exp]icit realization @F smoothness!
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Goal 2: Probabilistic model of smoothness

P1. How to judge if two points are close?
How close is sufficiently close? = Deterministic binary decision

Probabilistic formulation

P2. Meaning of labels “likely to be the same”?

Deterministic x Probabilistic /

|
[ Probabilistic Modelling: P(Y'|X), or F} (X|Y) and P(Y) J
1
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Our Proposal: Probabilistic Graph-based
Pointwise Smoothness (PGP)

e P1. Data Closeness

® Capture closeness distribution of two points X, X " on graph

* P2. Label Coupling
* Couple the label distribution of two close points X, X /
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P1. Data Closeness:
Random walk on graph

* Consider a random walk on the graph {Ve:t =0,1, ...}

® A traversal from X; to X; Ve =x;,Viyr1 = xj)

a traversal from :> “connects” X, X' as
to X' close points

® The event that Xi) X; close: (X =|= xi;X, — xj) ‘

® Distribution of traversal from X; to X; in the long run (t — o)

e (X, X ’) is a pair of limiting random variables:

Vi, Vier) -5 (X, X)

®
)




P2. Label Coupling:
Statistical indistinguishability

X is x; itself
(X = x;)

or Y of X distributes similarly
X is close to X;
X' = x;)
P(Y[X = x;)

are alike

P(Y|X, X' = x;)

V

Statistical Indistinguishability
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P2. Label Coupling:
Statistical indistinguishability

p(YIX =2) (C (YIX, X =)

N

a-statistical indistinguishable

Intuition: indistinguishability will slowly fade along a “chain” of close points
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Constraint-based solution for P(X|Y = y)

Labelled data:
p(X =x]Y =y)
=p(Y =yl X =u)p(X =u;)/p(Y =y)

( )1 (
Y =y|X =2:)Z;

X

Unlabelled data (smoothness Pl & P2)'

QX—:CZ\Y—D: l—a)p(X, X'=x;]Y =y)

= (1) p(X =2, X =2,y =)

Z(1-a)Y, p(X' =u|X=0;,Y=y)p(X =2;|]Y=y) @

L (1= a) X, p (X = 2ilX = 2,) p(X = a,]¥ =) ““iq(“;ls;ﬂ“ﬁ‘“;
i to —
= (1 - ) X, Wi/ 2, QX = Y =3 ’ ’




Experiment 1: PGP is smooth “everywhere"

Dataset

L: labeled point

’ Non-smooth area
Size: magnitude of decision function

Color: predicted class O Misclassification
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Experiment 2: PGP is consistently the best

L[ = 10
Digit1 Text ISOLET Cancer USPS  Yeast
GRF | .894 451 .627 871 .638 .510
LSVM | 833 428 .719 886 .698 .562
GGS | .855 567 .677 867 .666 .540
MP | 901 558 .692 898 .713 .574
PARW | 881 587 .721 .893 .706 .575
| PGP | 910 .592 .734 910 .704 .593 |




Conclusion

e Smoothness is pointwise in nature

® Probabilistic modelling of smoothness




