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Graph-based Semi-supervised Learning: 

Realizing Pointwise Smoothness Probabilistically



Graph-based semi-supervised learning
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Data points: 𝑋 ∈ 𝒳 = 𝑥1, … , 𝑥𝑛
Labels: 𝑌 ∈ 𝒴, the label of 𝑋 Labeled data

+
Structures in 

unlabeled data

Affinity: pairwise geodesic distance



𝑥𝑖

Central notion in SSL: smoothness

Two points 𝑥𝑖 , 𝑥𝑗 are close“
Their respective labels 𝑦𝑖 , 𝑦𝑗
are likely to be the same
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𝑥𝑗



Current graph-based smoothness does not 

precisely realize the nature of smoothness

Pointwise Nature

Probabilistic Modeling

Realizing

through
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𝑥1

Goal 1: Pointwise nature of smoothness
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𝑥2𝑥3

𝑥5
𝑥4

𝑥6

Inherently a property occurring 

“everywhere” 
on every point

Relating the behaviour of each point to 

that of its close points



Precisely expressing pointwise smoothness

If two points are close, their labels are likely to be the same.

P1. How to judge if two points are close?

P2. Meaning of labels “likely to be the same”?

(Data Closeness)

(Label Coupling)

(Rigollet, 2007; 

Lafferty+, 2007)

Vague!
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𝑥𝑖 𝑥𝑗

𝑦𝑖 𝑦𝑗



Existing graph-based methods only express 

aggregate, not pointwise, smoothness

min෍

𝑖𝑗

𝑊𝑖𝑗 𝑦𝑖 − 𝑦𝑗
2

aggregate pairwise 

differences

“Average” smooth across the graph

Not pointwise formulation (P1 & P2)

Not an explicit realization of smoothness!
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Goal 2: Probabilistic model of smoothness

P1. How to judge if two points are close?

P2. Meaning of labels “likely to be the same”?

How close is sufficiently close? → Deterministic binary decision 

Probabilistic formulation

Deterministic Probabilistic

Probabilistic Modelling: 𝑃 𝑌 𝑋 , or 𝑃(𝑋|𝑌) and 𝑃(𝑌)
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Our Proposal: Probabilistic Graph-based 

Pointwise Smoothness (PGP)

 P1. Data Closeness

 Capture closeness distribution of two points 𝑋, 𝑋′ on graph

 P2. Label Coupling 

 Couple the label distribution of two close points 𝑋, 𝑋′

9



P1. Data Closeness: 

Random walk on graph

 Consider a random walk on the graph {𝑉𝑡: 𝑡 = 0,1, … }

 A traversal from 𝑥𝑖 to 𝑥𝑗 (𝑉𝑡 = 𝑥𝑖 , 𝑉𝑡+1 = 𝑥𝑗)

 The event that 𝑥𝑖 , 𝑥𝑗 close: (𝑋 = 𝑥𝑖 , 𝑋
′ = 𝑥𝑗)

 Distribution of traversal from 𝑥𝑖 to 𝑥𝑗 in the long run (𝑡 → ∞)

 (𝑋, 𝑋′) is a pair of limiting random variables:

a traversal from 𝑋
to 𝑋′

“connects” 𝑋, 𝑋′ as 

close points
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𝑥𝑖

𝑥𝑗



P2. Label Coupling: 

Statistical indistinguishability

𝑋 is 𝑥𝑖 itself

(𝑋 = 𝑥𝑖)

𝑋 is close to 𝑥𝑖
(𝑋′ = 𝑥𝑖)

or 𝑌 of 𝑋 distributes similarly

𝑃 𝑌 𝑋 = 𝑥𝑖
𝑃(𝑌|𝑋, 𝑋′ = 𝑥𝑖)

are alike

Statistical Indistinguishability
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𝑥𝑖

𝑥𝑗2
𝑥𝑗1

𝑥𝑗3

𝑋 = 𝑥𝑖𝑋′ = 𝑥𝑖

𝑋



𝜶-statistical indistinguishable

Intuition: indistinguishability will slowly fade along a “chain” of close points
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P2. Label Coupling: 

Statistical indistinguishability



Constraint-based solution for 𝑃(𝑋|𝑌 = 𝑦)

Labelled data:

Unlabelled data (smoothness P1 & P2):
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unique solution

to 𝑝(𝑋|𝑌 = 𝑦)



Experiment 1: PGP is smooth “everywhere"
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Dataset PGPGRF MP

L: labeled point
Non-smooth area

Misclassification

Size: magnitude of decision function

Color: predicted class



Experiment 2: PGP is consistently the best
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Conclusion
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 Smoothness is pointwise in nature

 Probabilistic modelling of smoothness


