

Node-Time Conditional Prompt Learning in Dynamic Graphs

University of Science and Technology

Xingtong Yu, Zhenghao Liu, Xinming Zhang, Yuan Fang

Motivation

Problem

 Design a prompt learning framework for dynamic graphs

Challenges

- How do we design prompts to bridge temporal variations across time, and divergent task?
- How do we capture evolving patterns across different nodes and time points?

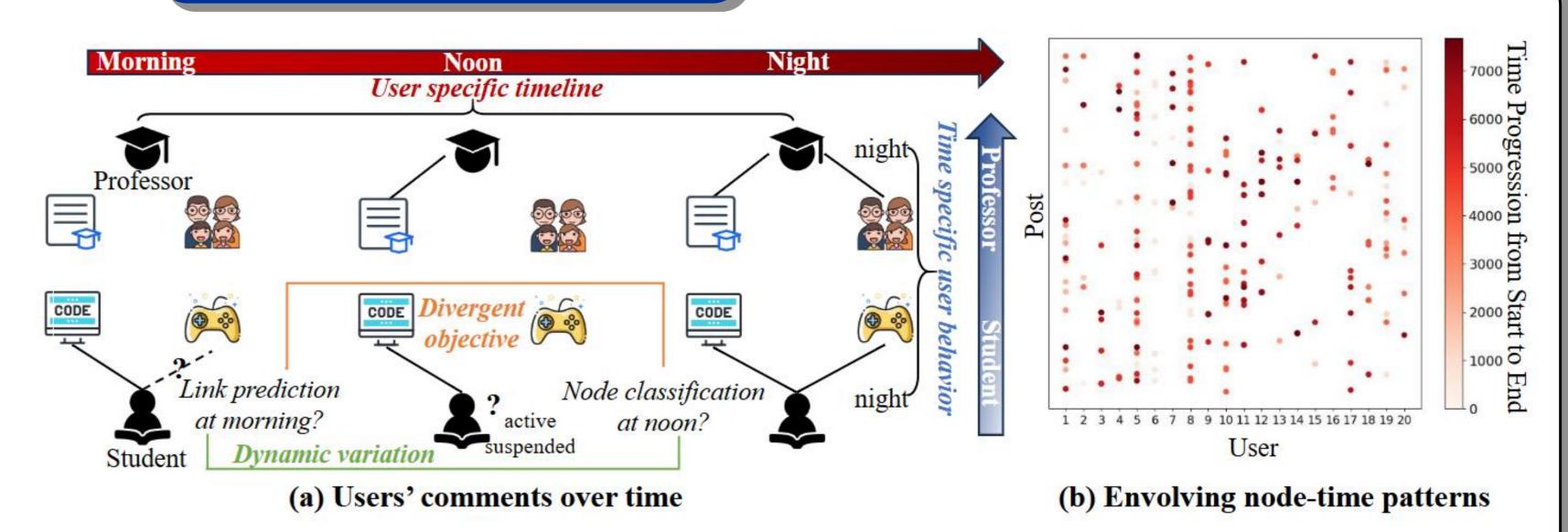


Figure 1: Motivation of DYGPROMPT. (a) Users comment on different topics over time. (b) Evolving node-time patterns in Wikipedia, as node and time mutually characterize each other.

Time Pre-trained Pre-trained dynamic graph encoder Downstream Dynamic graph encoder time encoder encoder Loss (Eq. 11) Time feature Link prediction Node Time condition-net conditioned time prompt Time prompt *Time*-conditioned Node condition-net node prompt Node prompt

Proposed Method: DyGPrompt

(a) Toy dynamic graph (b) Pre-training

(c) Prompt tuning for downstream tasks

Figure 2: Overall framework of DYGPROMPT.

Node feature

Dual prompts

Node prompt $\mathbf{x}_{t,v}^{\text{node}} = \mathbf{p}^{\text{node}} \odot \mathbf{x}_{t,v}$

Time prompt $\mathbf{f}_t^{\text{time}} = \mathbf{p}^{\text{time}} \odot \mathbf{f}_t$

Pre-training loss

(Eq. 3)

Time conditioned node prompts

 $ilde{\mathbf{p}}_t^{ ext{node}} = ext{TCN}(\mathbf{f}_t^{ ext{time}}; \kappa)$

 $\tilde{\mathbf{x}}_{t,v}^{\text{node}} = \tilde{\mathbf{p}}_t^{\text{node}} \odot \mathbf{x}_{t,v}^{\text{node}}$

Dual condition prompts

I node prompts

Node conditioned time prompts

 $ilde{\mathbf{p}}_{t,v}^{ ext{time}} = ext{NCN}(\mathbf{x}_{t,v}^{ ext{node}}; \phi)$

 $ilde{\mathbf{f}}_{t,v}^{ ext{time}} = ilde{\mathbf{p}}_{t,v}^{ ext{time}} \odot \mathbf{f}_t^{ ext{time}}$

Experiment

Table 1: AUC-ROC (%) evaluation of temporal node classification and link prediction.

Table 1. ACC-ROC (%) evaluation of temporal flode classification and flik prediction.												
Methods		Node Classification			Tra	nsductive L	ink Predict	ion	Inductive Link Prediction			
	Wikipedia	Reddit	MOOC	Genre	Wikipedia	Reddit	MOOC	Genre	Wikipedia	Reddit	MOOC	Genre
GCN-ROLAND	58.86±10.3	48.25±9.57	49.93±6.74	46.33±3.97	49.61±3.12	50.01±2.53	49.82±1.44	49.15±3.74	49.60±2.37	49.90±1.64	49.16±2.48	47.25±2.9°
GAT-ROLAND	62.81±9.88	47.95±8.42	50.01±6.34	47.26±3.49	52.34±1.82	50.04±1.98	55.74±3.71	47.69±2.81	52.29±1.97	49.85±2.35	54.01±2.16	49.38±2.7
TGAT	67.00±5.35	53.64±5.50	59.27±4.43	51.26±2.31	55.78±2.03	62.43±1.86	51.49±1.30	69.11±3.89	48.21±1.55	57.30±0.70	51.42±4.27	48.38±4.7
TGN	50.61±13.6	49.54±6.23	50.33±4.47	50.72±2.31	72.48±0.19	67.37±0.07	54.60±0.80	86.46±2.84	74.38±0.29	69.81±0.08	54.62±0.72	87.17±2.68
TREND	69.92±9.27	64.85±4.71	66.79±5.44	50.34±1.62	63.24±0.71	80.42±0.45	58.70±0.78	52.78±1.14	50.15±0.90	65.13±0.54	57.52±1.01	45.31±0.43
GRAPHMIXER	65.43±4.21	60.21±5.36	63.72±4.98	50.15±1.49	59.73±0.35	61.88±0.11	52.42±1.38	60.83±3.25	51.34±0.84	57.64±0.31	51.16±2.59	56.32±3.0
DDGCL	65.15±4.54	55.21±6.19	62.34±5.13	50.91±2.08	54.96±1.46	61.68±0.81	55.62±0.32	68.49±5.31	47.98±1.11	55.90±1.13	55.18±2.73	42.70±3.2
CPDG	43.56±6.41	65.92±6.25	50.32±5.06	49.89±1.34	52.86±0.64	59.72±2.53	53.82±1.50	49.71±2.64	47.37±2.23	56.40±1.17	53.58±2.10	40.01±3.59
GRAPHPROMPT	73.78±5.62	60.89±6.37	64.60±5.76	51.28±2.43	55.67±0.26	67.46±0.31	51.07±0.75	86.78±3.14	48.46±0.28	59.18±0.49	50.27±0.58	87.45±2.5
ProG	60.86±7.43	68.60±5.64	63.18±4.79	51.46±2.38	92.28±0.21	93.32±0.06	58.73±1.58	86.24±2.87	89.75±0.28	90.69±0.08	56.42±1.95	85.43±3.10
TGAT-TIGPROMPT	69.21±8.88	67.70±9.64	73.90±6.68	51.38±2.72	59.54±1.41	78.45±1.44	51.69±1.24	69.71±4.16	49.52±0.85	65.66±2.68	51.58±4.02	48.34±3.2
TGN-TIGPROMPT	44.80±5.45	63.75±5.60	55.42±3.60	50.84±2.75	82.04±2.03	83.26±2.38	65.00±4.73	86.25±2.43	81.75±1.97	79.51±2.58	64.98±4.61	86.19±3.0
TGAT-DYGPROMPT	82.09±6.43	73.50±6.47	77.78 ±5.08	52.03 ±2.24	69.88±0.18	90.76±0.09	53.92±0.97	72.04±4.71	52.58±0.23	75.20±0.17	53.29±0.87	50.82±3.6
TGN-DYGPROMPT	74.47±3.44	74.00 ±3.10	69.06±3.89	<u>51.97</u> ±2.16	94.33 ±0.12	96.82±0.06	70.17 ±0.75	87.02 ±1.63	92.22 ±0.19	95.69 ±0.08	69.77 ±0.66	87.63 ±1.9
Results are reported in percent. The best method is bolded and the runner-up is underlined.												

Table 2: Ablation study reporting AUC-ROC (%), with TGAT as the backbone.

Methods	Node	Time prompt	NCN	TCN	Node o	classifica		Transductiv Wikipedia			Inductive I Wikipedia		
	Prompt	prompt			Wikipedia	Reduit	MOOC	Wikipedia	Reduit	MOOC	Wikipedia	Reduit	W100C
VARIANT 1	l ×	×	×	×	67.00	53.64	59.27	55.78	62.43	51.49	48.21	57.30	51.42
VARIANT 2	✓	×	X	×	72.59	61.82	63.50	68.12	88.59	51.24	51.89	74.84	51.37
Variant 3	×	\checkmark	×	×	73.22	62.51	62.59	66.51	87.06	51.26	50.28	69.71	50.50
VARIANT 4	✓	\checkmark	×	×	72.25	63.11	62.87	68.36	90.31	52.17	52.56	75.13	51.33
Variant 5	✓	×	\checkmark	×	81.40	73.12	77.15	69.56	90.10	52.16	52.57	75.50	53.31
Variant 6	×	\checkmark	×	\checkmark	80.34	72.59	76.16	66.62	87.34	51.22	49.05	73.16	52.34
DYGPROMPT	✓	✓	✓	✓	82.09	73.50	77.78	69.88	90.76	53.92	52.58	75.20	53.29

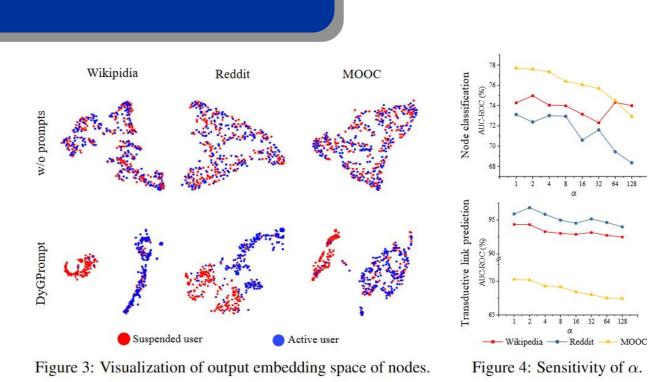


Table 3: AUC-ROC (%) evaluation of DYGPROMPT with different DGNN backbones.

Pre-training	Downstream	Node	classificat	ion	Transducti	ive link pro	ediction	Inductive link prediction		
Backbone	Adaptation	Wikipedia	Reddit	MOOC	Wikipedia	Reddit	MOOC	Wikipedia	Reddit	MOOC
DYREP	- DYGPROMPT	50.61 53.52	49.54 50.98	50.33 51.62	58.45 91.64	58.02 93.84	50.29 72.04	56.87 90.28	57.25 93.08	50.34 72.27
JODIE	- DYGPROMPT	51.37 62.84	49.80 60.93	50.53 67.84	62.40 63.56	59.81 58.89	50.71 52.06	59.59 62.80	61.28 58.17	50.57 52.33
TGAT	- DYGPROMPT	67.00 82.09	53.64 73.50	59.27 77.78	55.78 69.88	62.43 90.76	51.49 53.92	48.21 52.58	57.30 75.20	51.42 53.29
TGN	- DYGPROMPT	50.61 74.47	49.54 74.00	50.33 69.06	72.48 94.33	67.37 96.82	54.60 70.17	74.38 92.22	69.81 95.69	54.62 69.77
TREND	- DYGPROMPT	69.92 70.15	64.85 65.24	66.79 67.58	63.24 64.35	80.42 79.62	58.70 59.45	50.15 51.26	65.13 64.88	57.52 59.13
GraphMixer	- DYGPROMPT	65.43 66.39	60.21 61.42	63.72 64.18	59.73 60.25	61.88 62.31	52.42 52.94	51.34 52.19	57.64 57.43	51.16 52.55

"-" refers to fine-tuning or continually training the backbone on downstream task data without our prompt design.