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Data and Problem
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Time User IP Keywords Auction Shop

04/05/2017 16:21 PID1 IP2 toys - Shop3

04/05/2017 22:12 MID3 IP2 lego Auction1 Shop2

… … … … … …

To determine if PID1 (a PC identifier) is the same user as

MID3 (a mobile device identifier).

Data: User Activity Log

Problem: User ID Linking



Modeling Data as 
Heterogeneous Interaction Graph
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Exploit interactions 

among sparse items



Technical challenges: Heterogeneity 
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Node heterogeneity

• Different types of 
nodes with various 
semantics
• Users

• IPs

• Keywords

• Auctions

• Shops

Edge features

• Time-based historical 
access patterns
• How frequent in past 

24 hour?

• How frequent on 
Sundays?

• How frequent in the 
evenings?
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Overall Framework: 
Heterogeneous Embedding Propagation (HEP)
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Classification loss + Reconstruction loss
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Proposed Model: Classification Loss
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Semi-supervised learning: 
some PID-MID pairs (𝑣𝑖 , 𝑢𝑖) are known 
to be positive or negative (𝑦𝑖).

𝐡 is node embedding
𝑊 is weight matrix



Proposed Model: Reconstruction Loss
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Reconstruction loss
Node embeddings are reconstructed from 
neighbors, aggregated by node type (𝑐).

𝑠𝑣,𝑢 is learnable edge weight (based on edge feature)
 𝐡 is reconstructed node embedding
𝑊′ and 𝐛’’ is type specific weight/bias



Proposed Model: Reconstruction Loss
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Reconstruction loss

Reconstructed embedding ( 𝐡) should be close to 
the target embedding (𝐡).

𝛾 is margin (hyperparameter)
π is distance function between embedding
𝑃𝑛 is negative sampling distribution
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Experiments: Datasets
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 Taobao’s one-week user activity log in a city

 TB-Top: top 10% active users

 TB-Top: random 10% users



Experiments: Baselines
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 Validating data model (as a graph)

 FEM: feature engineering 

 LDA: latent Dirichlet allocation

 GRU: gated recurrent unit

 Validating technical model (HEP)

 Metapath2vec: meta-path based embedding

 EP: embedding propagation

 HEP-: HEP without edge features



Experiments: Results
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Non-graph models (FEM, LDA, GRU): high 

precision but very low recall

HEP: good balance and highest F1
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Conclusion
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 Heterogeneous interaction graph

 Able to capture interactions between items

 Able to mitigate the sparsity issue

 Heterogeneity challenge

 Node types

 Edge features

 Heterogeneous embedding propagation

 Classification loss

 Reconstruction loss


