Unified and Incremental SimRank: Index-free Approximation with Scheduled Principle

Fanwei Zhu zhufanwei@zju.edu.cn

Yuan Fang yfang@smu.edu.sg

Kai Zhang drogozhang@gmail.com Kevin Chen-Chuan Chang kcchang@illinois.edu

Problem

Graphs are ubiquitous nowadays, requiring effective similarity measures based on their link structures.

• SimRank is a popular link-based similarity measure on graphs which enables a variety of applications with different modes of querying.

SimRank queries: S(Q)

SimRank Problems		Query Q=(A,B)	Output	
General	Partial-pair	$A \subseteq V$	s(u, v): a A-by-B similarity matrix,	
definition	Faruai-paii	$B \subseteq V$	with each entry $[S]_{u,v} = s(u, v)$	
Popular modes	Single-pair	A={u}	s(u, v): a single SimRank similarity	
		B={v}	score between u and v	
	Single-source	A={u}	$[S]_u$: a V -by-1 similarity vector,	
		B=V	with each entry $[S]_{u,v} = s(u, v)$	
	All pair	A=V	[S]: a $ V $ -by- $ V $ similarity matrix,	
	All-pair	B=V	with each entry $[S]_{u,v} = s(u, v)$	

Motivations:

- a) Distinct modes of SimRank: it is desirable to support all different modes in a unified manner by one algorithm
- b) Specific accuracy requirement: it is desirable to support flexible tradeoffs of efficiency and accuracy.
- c) Dynamic graphs with frequent updates: it is desirable to support efficient online computation without relying indexes.

Goal: fast approximation for all modes of **SimRank queries**

Unification of computation space

All tours $T_0 = P_A \bowtie P_B$ aggregate to the exact scores, while a subset of tours gives an approximation.

- Organize T_Q into disjoint subsets $T_Q = T_Q^1 \cup \ldots \cup T_Q^\eta$ with T_O^i is more important than T_O^{i-1}
- Incrementally approximate S(Q) through iterations with iteration-i computing an SimRank increment over T_O^i

• Datasets:

Dataset	Directed	Nodes	Edges	Purpose	
4Area	no	12413	91 192	Demonster study and	
WikiVote	yes	1 300	39 456	Parameter study, and comparison to baselines	
CondMat	no	23 1 33	93 497		
enwiki2013	yes	4 206 785	101 355 853		
it2014	yes	41 291 594	1 1 50 7 25 4 36	Comparison to baselines	
Friendster	no	65 608 366	1 806 067 135		
Gnutella	yes	62 586	147 892	Scalability study	
Dblp	no	2 073 13	2575941		

• **Baselines**: the single- pair solution BLPMC; the single-source solutions ProbeSim, PRSim and SimPush; the all-pair solution FLP, and the SimRank Join solution TreeWand.

Hongtai Cao hongtai2@illinois.edu

Zhen Jiang jzjzjzzju@zju.edu.cn

Minghui Wu mhwu@zucc.edu.cn

Proposed approach

UISIM: a unified and incrementally-enhanced framework to efficiently process different modes of SimRank queries.

Benefit-based prioritized approx.

Partition P_{A} and P_{B} based on their importance, and schedule the assemblies based on their "benefit" to the overall approximation.

• Partition partial tours by their hub length $L_h(p)$ (i.e., number of hubs they pass through)

 $P_u = P_u^0 \cup \dots P_u^\eta \ s.t. \ \forall p \in P_u^i, L_h(p) = i$

• Schedule assembly $P_u^i \bowtie P_u^j$ earlier than $P_u^{i'} \bowtie P_u^{j'}$ if:

 $i + j \le i' + j' \& |i - j| \le |i' - j'|$

Index-free sharing of computation

Efficiently realize the scheduled approximation without relying on any precomputed indexes.

- Extend tours in P_{μ}^{i-1} with hub-length-0 extension tours to obtain partial tours in P_u^i $r^i(u|v) = \sum r^{i-1}(u|h) \cdot r^0(h|v)$ $h \in H^{i-1}_{\omega}$
- Skip "mis-matching" partial tours when generating full tours

$$R(P_u^i \bowtie P_v^j) = \sum_{x \in X} \sum_{l \le M} \frac{1}{C^l} (r^{i,l}(u|x) \cdot r^{i,l}(v|x))$$

Experimental evaluation

• Experiental results (partial):

Fig 1. Comparison of accuracy against time with baselines in single pair and single source modes.

• **Conclusion**: 1) UISim always needs less time to achieve the same accuracy as its baseline; 2) UISim achieves a good accuracy very fast while the baselines do not perform well within limited time.