

Datasets

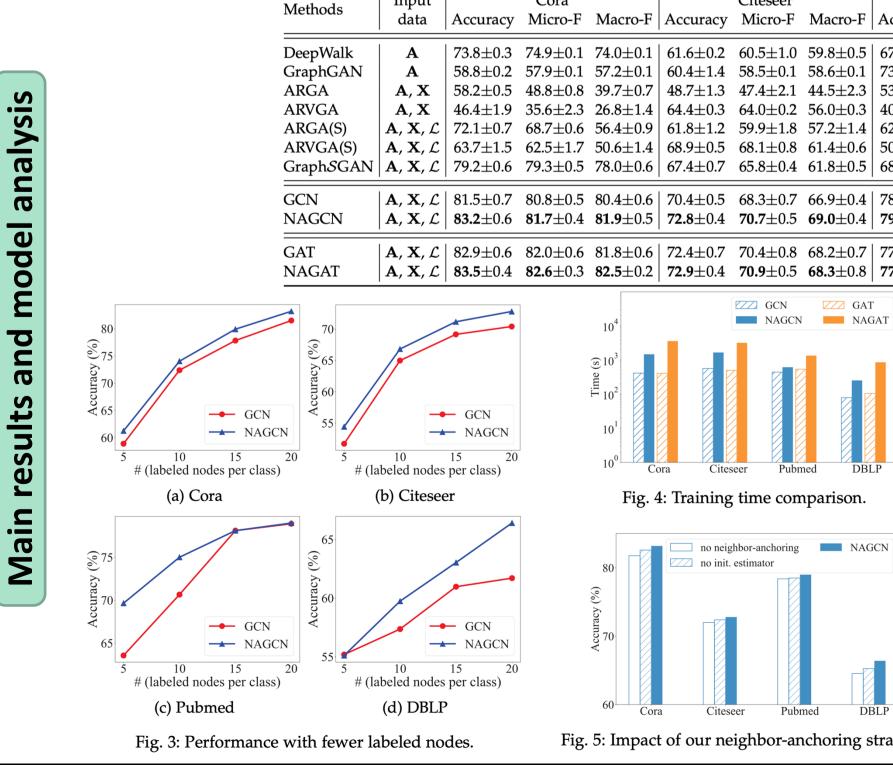
TABLE 1: Summary of datasets.

Datasets	# Nodes	# Edges	# Classes	# Features
Cora	2,708	5 <i>,</i> 429	7	1,433
Citeseer	3,327	4,732	6	3,703
Pubmed	19,717	44,338	3	500
DBLP	1,866	7,153	4	1,084

Baselines

Network embedding models

- DeepWalk
- Unsupervised GAN-based models
- GraphGAN
- ARGA and ARVGA
- Semi-supervised GAN-based models
- ARGA(S), ARVGA(S), GraphSGAN
- End-to-end graph neural networks
- GCN and GAT



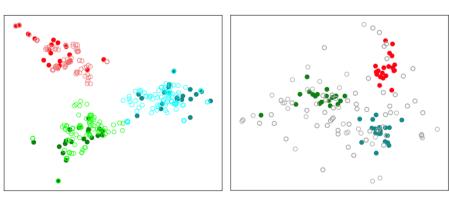
Neighbor-Anchoring Adversarial Graph Neural Networks

Zemin Liu, Yuan Fang, Yong Liu, Vincent W. Zheng

ut a	Accuracy	Cora Micro E	Macro E	Accuracy	Citeseer Micro F	Macro E	A 201170 011	Pubmed	Macro E	Accuracy	DBLP Micro F	Magral
a	Accuracy	WIICIO-F	WIACIO-F	Accuracy	WIICIO-I	Macio-F	Accuracy	WIICIO-F	Macio-r	Accuracy	WIICIO-F	wiacio-
	73.8±0.3	74.9±0.1	$74.0 {\pm} 0.1$	61.6±0.2	60.5±1.0	59.8±0.5	67.4±0.3	65.2 ± 0.1	66.1±0.1	$50.4{\pm}1.0$	$51.8 {\pm} 0.8$	49.1±1.
	$58.8 {\pm} 0.2$	$57.9 {\pm} 0.1$	57.2 ± 0.1	$60.4{\pm}1.4$	$58.5 {\pm} 0.1$	$58.6{\pm}0.1$	73.2 ± 0.1	$75.3 {\pm} 0.1$	73.2 ± 0.1	52.4 ± 2.5	51.1 ± 3.5	52.1±4.
X	$58.2{\pm}0.5$	$48.8{\pm}0.8$	$39.7{\pm}0.7$	48.7 ± 1.3	$47.4{\pm}2.1$	44.5 ± 2.3	53.8 ± 1.3	$46.5 {\pm} 2.7$	41.4 ± 3.5	56.4 ± 1.3	55.1 ± 1.1	$55.2 \pm 1.$
X	$46.4{\pm}1.9$	35.6 ± 2.3	$26.8 {\pm} 1.4$	$64.4 {\pm} 0.3$	$64.0{\pm}0.2$	56.0 ± 0.3	40.7 ± 0.2	$20.1{\pm}0.4$	19.3 ± 0.3	$25.0 {\pm} 0.2$	17.1 ± 1.2	23.7±0.
, L	$72.1 {\pm} 0.7$	$68.7{\pm}0.6$	$56.4{\pm}0.9$	$61.8 {\pm} 1.2$	$59.9 {\pm} 1.8$	57.2 ± 1.4	62.6±1.6	55.3 ± 2.3	50.8 ± 2.4	$59.3 {\pm} 1.8$	$57.8 {\pm} 1.5$	58.0 ± 1.0
, L	63.7±1.5	62.5 ± 1.7	$50.6 {\pm} 1.4$	$68.9 {\pm} 0.5$	$68.1{\pm}0.8$	$61.4{\pm}0.6$	50.7 ± 1.4	$46.0{\pm}0.8$	39.3±0.9	41.7 ± 1.1	$43.9 {\pm} 1.3$	42.3 ± 1.0
, L	79.2±0.6	79.3±0.5	78.0±0.6	$67.4 {\pm} 0.7$	65.8 ± 0.4	61.8 ± 0.5	68.2 ± 0.4	68.7±0.5	67.5±0.5	58.6±0.9	57.4±0.8	56.8±0
, L	81.5±0.7	80.8±0.5	$80.4{\pm}0.6$	$70.4 {\pm} 0.5$	68.3±0.7	$66.9 {\pm} 0.4$	78.9±0.3	$78.8{\pm}0.4$	78.0±0.3	61.7±1.5	62.2±1.2	60.9±0.
, L	83.2 ±0.6	$\textbf{81.7}{\pm}0.4$	81.9 ±0.5	72.8 ±0.4	70.7 ±0.5	69.0 ±0.4	79.0 ±0.3	79.4 ±0.2	78.4 ±0.3	66.4 ±0.7	65.4 ±0.9	64.6 ±0
., L	82.9±0.6	82.0±0.6	81.8±0.6	72.4±0.7	70.4±0.8	68.2±0.7	77.2±0.5	77.7±0.7	76.6±0.5	68.6±3.1	64.1±4.3	57.2±7
, L	83.5 ±0.4	82.6 ±0.3	82.5 ±0.2	72.9 ±0.4	70.9 ±0.5	68.3 ±0.8	77.7±0.4	77.8 ±0.1	77 .0 ±0.3	71.8 ±1.7	69.1 ±1.4	68.6 ±1

GAT

Fig. 4: Training time comparison. no neighbor-anchoring NAGCN



(a) With neighbor-anchoring (b) No neighbor-anchoring

Fig. 6: Visualization of generated samples and real nodes. The solid dots denote real nodes, and different colors indicate different classes; the hollow circles denote fake samples. In (a), the fake samples are drawn in the same color as their reference nodes; in (b), the fake samples are not anchored on any real nodes and are all drawn in grey.

Fig. 5: Impact of our neighbor-anchoring strategy.

Algorithm 1 Model training for NAGNNInput: graph G, labeled set L, number of epochs n_D for the discriminator and n_G for the generator in each iteration, number of fake samples m_D for the discriminator and m_G for the generator.Output: θ_D, θ_G .1: initialize parameters θ^D, θ^G ; 2: while not converged do3: for $i = 1$ to n_D do4: $\hat{\mathcal{V}} \leftarrow$ generate m_D fake nodes for each labeled node5: update θ_D with \mathcal{L} and $\hat{\mathcal{V}}$ according to Equation (4)6: end for7: for $i = 1$ to n_G do7: for $i = 1$ to n_G do9: evaluate the fake samples w.r.t. each labeled node9: evaluate the fake samples using the discriminator10: update θ_G according to Equation (7)11: end for12: end while13: return θ_D, θ_G .Mean feature vector $\bar{\mathbf{x}}_{\hat{v}} \in \underline{\mathbf{x}}_{exv}$ Feature synthesizing multivariate Gaussian distribution $\bar{\mathbf{x}}_{\hat{v}} = \frac{1}{ \mathcal{N}_{\hat{v} } } \sum_{v' \in \mathcal{N}_{\hat{v}}} \mathbf{x}_{v'}$ Feature synthesizing with a multivariate Gaussian distribution $\bar{\mathbf{x}}_{(v,y) \in \mathcal{L}, \mathbf{z} \sim Z}$ $\bar{\mathbf{x}}_{(v,y) \in \mathcal{L}, \mathbf{z} \sim Z}$ $\bar{\mathbf{x}}_{\hat{v}} = \hat{\mathbf{x}}_{G}; (\hat{\mathbf{y}}_{D}) + \lambda_{G} \theta_{G} _{2}^{2}. (7)$ $\bar{\mathbf{x}}_{(v,y) \in \mathcal{L}, \mathbf{z} \sim Z}$ $\bar{\mathbf{x}}_{\hat{v}}$ $\bar{\mathbf{x}}_{\hat{v}}$ $\bar{\mathbf{x}}_{\hat{v}} = \hat{\mathbf{x}}_{\hat{v}}; \hat{\mathbf{y}}_{\hat{v}}$			
discriminator and n_G for the generator in each iteration, number of fake samples m_D for the discriminator and m_G for the generator. Output: θ_D, θ_G . 1: initialize parameters θ^D, θ^G ; 2: while not converged do 3: for $i = 1$ to n_D do \triangleright train discriminator 4: $\hat{V} \leftarrow$ generate m_D fake nodes for each labeled node 5: update θ_D with \mathcal{L} and \hat{V} according to Equation (4) 6: end for 7: for $i = 1$ to n_G do \triangleright train generator 8: generate m_G fake samples w.r.t. each labeled node 9: evaluate the fake samples using the discriminator 10: update θ_G according to Equation (7) 11: end for 12: end while 13: return θ_D, θ_G . Feature synthesizing multivariate Gaussian $(\bar{\mathbf{x}}_{\hat{v}}, \sigma^2 \mathbf{I})$ Feature synthesizing Mean feature vector $\bar{\mathbf{x}}_{\hat{v}} = \frac{1}{ \mathcal{N}_{\hat{v}} } \sum_{v' \in \mathcal{N}_{\hat{v}}} \mathbf{x}_{v'}$ $\bar{\mathbf{x}}_{v'} = \log D(y G(v, \mathbf{z}; \theta_G); \theta_D) + \lambda_G \theta_G _2^2$. (7)	Algorithm 1 Mod	lel training for NAGNN	
eural network eighborhood $Z \triangleq \text{Gaussian}(\bar{\mathbf{x}}_{\hat{v}}, \sigma^{2}\mathbf{I})$ Feature synthesizing with a multivariate Gaussian distribution $\bar{\mathbf{x}}_{\hat{v}} = \frac{1}{ \mathcal{N}_{\hat{v}} } \sum_{v' \in \mathcal{N}_{\hat{v}}} \mathbf{x}_{v'}$ $\bar{\mathbf{x}}_{\hat{v}} = \frac{1}{ \mathcal{N}_{\hat{v}} } \sum_{v' \in \mathcal{N}_{\hat{v}}} \mathbf{x}_{v'}$ $\bar{\mathbf{x}}_{\hat{v}} = \frac{1}{ \mathcal{N}_{\hat{v}} } \sum_{v' \in \mathcal{N}_{\hat{v}}} \mathbf{x}_{v'}$	discriminator number of fak for the generat Output: θ_D , θ_G . 1: initialize paran 2: while not conv 3: for $i = 1$ to 4: $\hat{\mathcal{V}} \leftarrow$ ge 5: update 6: end for 7: for $i = 1$ to 8: generat 9: evaluate 10: update 11: end for 12: end while	and n_G for the generator in \hat{e} is e samples m_D for the discriminator. Ineters θ^D , θ^G ; werged do \triangleright train nerate m_D fake nodes for each θ_D with \mathcal{L} and $\hat{\mathcal{V}}$ according to \mathbf{I} \mathbf{h}_G do \mathbf{h}_G t \mathbf{h}_G do \mathbf{h}_G t \mathbf{h}_G f ake samples w.r.t. each late the fake samples using the disc	each iteration, nator and m_G discriminator labeled node Equation (4) rain generator abeled node
		$Z \triangleq \text{Gaussian}(\bar{\mathbf{x}}_{\hat{v}}, \sigma^2 \mathbf{I})$ Feature synthesizing with a	$ar{\mathbf{x}}_{\hat{v}} = rac{1}{ \mathcal{N}_{\hat{v}} }\sum_{v'\in\mathcal{N}_{\hat{v}}}\mathbf{x}_{v'}$

Conclusions

Problem

• Adversarial learning with graph neural networks

Challenges

- What is the definition of a sample on a graph?
- How do we produce good samples?

Proposed model: NAGNN

- Generator
 - Neighbor-anchoring strategy: produce fake samples
- Discriminator
 - Perform recursive neighborhood aggregation on the fake samples

Acknowledgments

Dr. Yuan Fang acknowledges the Lee Kong Chian Fellowship awarded by Singapore Management University for the support of this poster presentation.