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Abstract—While graph neural networks (GNNs) exhibit strong
discriminative power, they often fall short of learning the
underlying node distribution for increased robustness. To deal
with this, inspired by generative adversarial networks (GANs),
we investigate the problem of adversarial learning on graph
neural networks, and propose a novel framework named NAGNN
(i.e., Neighbor-anchoring Adversarial Graph Neural Networks)
for graph representation learning, which trains not only a
discriminator but also a generator that compete with each other.
In particular, we propose a novel neighbor-anchoring strategy,
where the generator produces samples with explicit features and
neighborhood structures anchored on a reference real node, so
that the discriminator can perform neighborhood aggregation on
the fake samples to learn superior representations.

I. INTRODUCTION

GRAPH neural networks (GNNs) [1], with the key process
of multi-layer neighborhood aggregation, aim to map

the nodes of a graph into a low-dimensional space whilst
preserving their structural information. In the context of node
classification, while GNNs can be powerful discriminative
models by learning the node conditional class distributions,
generative approaches can also be useful by learning the
underlying node distributions conditioned on classes.

Inspired by GANs [2], which exploits the power of both
discriminative and generative models, we investigate the ad-
versarial training of GNNs. In our approach, GANs are utilized
to generate fake nodes in the sparse region of the graph where
there is a low-density of edges [3]. As such, by discriminating
the real and fake nodes, the discriminator can learn a better
decision boundary between classes. However, training GNNs
in an adversarial manner is non-trivial. In particular, two major
challenges still remain with the design of the generator.

First, what is the definition of a sample on a graph?
Nodes are characterized by not only the features, but also the
structures, i.e., the neighbors on the graph. Thus, the generator
must account for both parts, which are necessary for the key
operation of neighborhood aggregation in GNNs. Second, how
do we produce good samples? Previous approaches typically
produce samples from a prior noise distribution freely [3],
without explicit constraints between the real and fake samples.
On the contrary, if each fake sample is generated w.r.t. a
reference real node, the generator and discriminator could
become more conscious of each other’s output, which could
drive the discriminator to better detect their finer differences.

To address the above challenges, we propose a novel
neighbor-anchoring strategy. In this strategy, the generator
produces samples with explicit features and structures, so that
the discriminator can perform neighborhood aggregation on
them. Furthermore, given a reference real node, the generator
produces a sample anchored on the same set of neighbors as
the reference node, i.e., they have the same set of neighbors.
At the same time, the generator utilizes a feature synthesizer,
aiming to produce features that mimic the reference node. By
sharing the same neighbors and thus isolating their effects on
a fake sample and its reference node, the model can focus on
discriminating and generating their features to achieve mutual
improvement, and encourage the fake sample to reside closer
to the real node at the periphery of dense regions.

II. THE PROPOSED MODEL: NAGNN

Overview. The overall framework of NAGNN is illustrated
in Fig. 1. The role of generator is to produce fake samples.
Each fake sample v̂ consists of a feature vector xv̂ , as well as a
local structure or a set of neighbors Nv̂ . On the other hand, the
discriminator employs a GNN to learn node representations,
so as to differentiate the fake sample v̂ from the real node v
based on their final representations fv̂ and fv , respectively.

Discriminator. We employ the multi-layer GNNs to calculate
the final representations fv and fv̂ for real and fake nodes v and
v̂, respectively, which leverage a softmax function for multi-
class output [1], [4]. Thus, the discriminator is also parame-
terized by a classification matrix W ∈ R(K+1)×N under the
K+1 class setting (K is the number of node classes), such that
D(y|v; θD) =

exp (Wyfv)∑K+1

y′=1
exp (Wy′ fv)

. Here Wy ∈ RN denotes the

y-th row of W. Specifically, D(y|v; θD) parameterized by θD,
estimates the probability of class y given node v. The goal of
the discriminator is to classify the real nodes into the their
corresponding classes {1, 2, . . . ,K}, and simultaneously put
the fake samples into the augmented class K + 1. The loss
function for the discriminator can be formulated as follows,

− 1
|L|

∑
(v,y)∈L logD(y|v; θD)

− α · 1
|V̂|

∑
v̂∈V̂ logD(K + 1|v̂; θD) + λD ∥θD∥22 .

Here (v, y) ∈ L is a real node v ∈ V with its observed label y,
whereas V̂ is the set of fake samples produced by the generator.
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Fig. 1: Overall framework of NAGNN.

TABLE I: Node classification performance (in percent) with standard deviation; The best results are bolded.

Methods Input Cora Citeseer Pubmed DBLP
data Accuracy Micro-F Macro-F Accuracy Micro-F Macro-F Accuracy Micro-F Macro-F Accuracy Micro-F Macro-F

DeepWalk A 73.8±0.3 74.9±0.1 74.0±0.1 61.6±0.2 60.5±1.0 59.8±0.5 67.4±0.3 65.2±0.1 66.1±0.1 50.4±1.0 51.8±0.8 49.1±1.1
GraphGAN A 58.8±0.2 57.9±0.1 57.2±0.1 60.4±1.4 58.5±0.1 58.6±0.1 73.2±0.1 75.3±0.1 73.2±0.1 52.4±2.5 51.1±3.5 52.1±4.3
ARGA A, X 58.2±0.5 48.8±0.8 39.7±0.7 48.7±1.3 47.4±2.1 44.5±2.3 53.8±1.3 46.5±2.7 41.4±3.5 56.4±1.3 55.1±1.1 55.2±1.2
GraphSGAN A, X, L 79.2±0.6 79.3±0.5 78.0±0.6 67.4±0.7 65.8±0.4 61.8±0.5 68.2±0.4 68.7±0.5 67.5±0.5 58.6±0.9 57.4±0.8 56.8±0.9

GCN A, X, L 81.5±0.7 80.8±0.5 80.4±0.6 70.4±0.5 68.3±0.7 66.9±0.4 78.9±0.3 78.8±0.4 78.0±0.3 61.7±1.5 62.2±1.2 60.9±0.7
NAGCN A, X, L 83.2±0.6 81.7±0.4 81.9±0.5 72.8±0.4 70.7±0.5 69.0±0.4 79.0±0.3 79.4±0.2 78.4±0.3 66.4±0.7 65.4±0.9 64.6±0.9

GAT A, X, L 82.9±0.6 82.0±0.6 81.8±0.6 72.4±0.7 70.4±0.8 68.2±0.7 77.2±0.5 77.7±0.7 76.6±0.5 68.6±3.1 64.1±4.3 57.2±7.2
NAGAT A, X, L 83.5±0.4 82.6±0.3 82.5±0.2 72.9±0.4 70.9±0.5 68.3±0.8 77.7±0.4 77.8±0.1 77.0±0.3 71.8±1.7 69.1±1.4 68.6±1.3

Moreover, α > 0 controls the importance of fake samples, and
λD > 0 is the regularization parameter for the discriminator.

Generator. In our context, we propose the neighbor anchoring
strategy to generate fake nodes, so that a fake sample v̂ consists
of dual parts: its feature vector xv̂ , and its structure or the set
of neighbors Nv̂ . Sample v̂’s feature vector xv̂ is synthesized
by a neural network such as a multi-layer perceptron (MLP)
as shown in Fig. 1(b), and v̂’s neighborhood is anchored
on v’s neighborhood, i.e., Nv̂ = Nv . With the neighbor-
anchoring strategy, our generator parameterized by θG can be
formulated as a function G(v, z; θG), which outputs a fake
sample v̂ based on a reference node v and some noise vector z
drawn from a predetermined multivariate Gaussian distribution
Z ≜ Gaussian(x̄v̂, σ

2I). Here x̄v̂ represents the mean vector,
and σ2I is the covariance matrix for some choice of real-
valued σ. To synthesize more realistic features, we derive the
initial estimator from the features of v̂’s neighbors, i.e., the
neighbors of v, based on the assumption that the features of
a node is related to the features of its neighbours. Here we
compute the mean feature vector, i.e., x̄v̂ = 1

|Nv̂|
∑

v′∈Nv̂
xv′ ,

although other forms of aggregation such as max- or sum-
pooling can also be adopted. Subsequently, given some noise
z ∼ Z, we employ an MLP to synthesize the feature vector of
sample v̂, i.e., xv̂ = MLP(z), and the generator’s parameters
θG are in fact this MLP’s parameters. Finally, to make the
discriminator believe that the sample v̂ also belongs to the
same class of the reference node v, the loss of the generator
can be defined as follows,

− 1
|L|

∑
(v,y)∈L,z∼Z logD(y|G(v, z; θG); θD) + λG ∥θG∥22 .

III. EMPIRICAL EVALUATION

Based on two base GNN models GCN [1] and GAT [4], we
conduct extensive experiments on four benchmark datasets for
comparison with representative baselines including DeepWalk
[5], GraphGAN [6], ARGA [7] and GraphSGAN [3]. The
comparison presented in Table I demonstrates the effectiveness
of our proposed model NAGNN. More details for the datasets
and baselines can be found in the full paper [8]. We further
conduct model analysis including the performance with fewer
labeled nodes, training efficiency, ablation study, visualization,
parameters sensitivity and a case study. Furthermore, we also
provide a theoretical analysis to substantiate the intuition be-
hind our neighbor-anchoring generator, which can theoretically
verify the advantage of the proposed NAGNN.
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