Semantic Proximity Search on Graphs with Metagraph-based Learning

Yuan Fang¹, Wenqing Lin¹, Vincent Zheng², Min Wu¹, Kevin Chang²³, Xiao-Li Li¹ ICDE 2016 @ Helsinki

¹ Institute for Infocomm Research, Singapore
 ² Advanced Digital Sciences Center, Singapore
 ³ University of Illinois at Urbana-Champaign, USA

Problem and Motivation

- Insights and Overall Framework
- Challenges and Solution
- Experimental Study
- Conclusion

Objects and attributes can often be organized as a heterogeneous graph

"Typed" object graph: capturing users and their attributes on a social network Company X 456 White St Kate (employer) (address) (user) Alice Music Physics (major) (user) (hobby) Object/Attribute Type Clinton Bob College A (school) (surname) (user) 123 Green St Jay (address) (user) College B Tom Economics (school) (major) (user)

Problem: Semantic Proximity Search

Key Criteria of Solution: Semantic differentiation + Online Search

- Problem and Motivation
- Insights and Overall Framework
- Challenges and Solution
- Experimental Study
- Conclusion

Each semantic class can often be explained by some underlying reasons

Family: [Bob & Alice / same surname & address]

Classmates: [Kate & Jay, Bob & Tom / same school & major]

Close friends: [Kate & Alice / same employer & hobby] [Kate & Jay / roommate]

Insight: common substructures, or *metagraphs*, to "explain" semantic classes

Classmates [same school & major]

Close friends [same employer & hobby] [roommate]

Overall Framework

testing

- Problem and Motivation
- Insights and Overall Framework
- Challenges and Solution
- Experimental Study
- Conclusion

Challenges

- Challenge #1: Metagraph-based proximity
 - Definition
 - Learning with efficiency
- Challenge #2: Metagraph matching
 Efficiency

Challenge #1: Meta-graph based proximity (Definition of proximity)

Proximity of two nodes *x*, *y* on graph

x, y co-occur in many important metagraphs

$$\pi(x, y; \mathbf{w}) \triangleq \underbrace{\frac{2 \mathbf{m}_{xy} \cdot \mathbf{w}}{\mathbf{m}_{x} \cdot \mathbf{w} + \mathbf{m}_{y} \cdot \mathbf{w}}}_{\text{co-occurrence not by chance}}$$

 $\mathbf{m}_{xy}[\mathbf{i}] = \#$ times *x*, *y* co-occur in instances of metagraph *i* $\mathbf{m}_{x}[\mathbf{i}] = \#$ times *x* occurs in instances of metagraph *i* $\mathbf{w}[i] =$ weight for metagraph *i*

Challenge #1: Meta-graph based proximity (Basic learning model)

13

Pairwise learning to rank

$$P(q, x, y; \mathbf{w}) \triangleq \frac{1}{1 + e^{-\mu(\pi(q, x; \mathbf{w}) - \pi(q, y; \mathbf{w}))}}$$

Each example is a triplet: for query q, x is ranked before y.

Objective function

$$L(\mathbf{w}; \Omega) = \sum_{(q,x,y)\in\Omega} \log P(q, x, y; \mathbf{w})$$

Challenge #1: Meta-graph based proximity (Need for efficient training)

- □ Expensive to process & match all metagraphs
- □ Yet not all metagraphs are useful

14

Challenge #1: Meta-graph based proximity (Dual-stage training)

Challenge #2: Metagraph matching

- Existing method: backtracking
 - DFS search node by node until an entire matched instance is found
 - Fail to leverage symmetric components
- Symmetry-based matching
 - Many metagraphs are symmetric
 - Avoid redundant computation

- Problem and Motivation
- Insights and Overall Framework
- Challenges and Solution
- Experimental Study
- Conclusion

Experiment setup - datasets

LinkedIn ego networks

- Join all into one bigger graph
- Labelled relationships as semantic classes
 - "College" and "Coworker"
- Facebook ego networks
 - Join all into one bigger graph
 - Rules to simulate circles
 - "Classmates": same school, and same degree or major
 - "Family": same surname, and same location or hometown

Experiment setup - methodology

- Some restrictions on metagraphs
 - Only consider symmetric metagraphs
 - Contains at least 2 users in symmetric positions
 - Number of nodes ≤ 5
 - □ Ignore metagraphs with > 10⁸ instances
- Training and testing
 - 20% queries as training, 80% as testing
 - Randomly repeat the split 10 times
- Ranking metrics
 - NDCG and MAP

Experiment setup – baselines

- 20
- □ **MGP**: metagraph-based proximity (our method)
- MPP: metapath-based proximity
- MGP-U: all metagraphs have uniform weights
- MGP-B: only use the best metagraph
- SRW: supervised random walk

Finding #1: Metagraphs are powerful representations for semantic proximity

21

Finding #2 & #3

Dual-Stage training

reduce overall cost of metagraph matching by 83%
negligible compromise on accuracy

Symmetry-based matching

Reduce matching time for individual metagraphs by 52%

- Problem and Motivation
- Insights and Overall Framework
- Challenges and Solution
- Experimental Study
- **Conclusion**

Conclusion

Metagraphs are powerful May be extended to other tasks on graph

Matching metagraphs are expensive
 Improving its efficiency is crucial