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Objects and attributes can often be organized 
as a heterogeneous graph
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“Typed” object graph: capturing users 

and their attributes on a social network

Object/Attribute

Type



Problem: Semantic Proximity Search

4

Which users are close to /related to Bob?

Family?

Classmates?



Key Criteria of Solution: 
Semantic differentiation + Online Search
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Online 

Search

Existing graph 

proximity

(personalized 

PageRank, 

SimRank, …)

Semantic 

differentiation

• Social circle 

learning

• Relationship 

profiling
?
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Each semantic class can often be explained 
by some underlying reasons
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Family: [Bob & Alice / same surname & address]

Classmates: [Kate & Jay, Bob & Tom / same school & major]

Close friends: [Kate & Alice / same employer & hobby]

[Kate & Jay / roommate]



Insight: common substructures, or 
metagraphs, to “explain” semantic classes
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Family

[same surname & address]

Classmates

[same school & major]

Close friends

[same employer & hobby]

[roommate]



Overall Framework
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Offline

Online

mining 

metagraphs

matching 

metagraphs (ie, 

finding instances)

indexing

training

testing
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Challenges
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 Challenge #1: Metagraph-based proximity

 Definition

 Learning with efficiency

 Challenge #2: Metagraph matching

 Efficiency



Challenge #1: Meta-graph based proximity
(Definition of proximity)
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Proximity of two nodes 𝑥, 𝑦 on graph

𝐰[𝑖] = weight for metagraph 𝑖

𝐦𝑥𝑦 i = # times 𝑥, 𝑦 co-occur in instances of metagraph 𝑖

𝐦𝑥 i = # times 𝑥 occurs in instances of metagraph 𝑖

x, y co-occur in many important metagraphs

co-occurrence not by chance



Challenge #1: Meta-graph based proximity
(Basic learning model)
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 Pairwise learning to rank

 Objective function

Each example is a triplet: 

for query 𝑞, 𝑥 is ranked before y.



Challenge #1: Meta-graph based proximity
(Need for efficient training)
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 Expensive to process & match all metagraphs

 Yet not all metagraphs are useful



Challenge #1: Meta-graph based proximity
(Dual-stage training)

15

Identify seed 

metagraphs

Learn with seed 

metagraphs

Re-learn with 

seed + selected 

metagraphs

Select more 

metagraphs

Based on weights of seed metagraphs and their 

structural relationship with other metagraphs



Challenge #2: Metagraph matching
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 Existing method: backtracking

 DFS search node by node until an entire matched 
instance is found

 Fail to leverage symmetric components 

 Symmetry-based matching

 Many metagraphs
are symmetric

 Avoid redundant
computation
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Experiment setup - datasets
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 LinkedIn ego networks

 Join all into one bigger graph

 Labelled relationships as semantic classes

◼ “College” and “Coworker”

 Facebook ego networks

 Join all into one bigger graph

 Rules to simulate circles

◼ “Classmates”: same school, and same degree or major

◼ “Family”: same surname, and same location or hometown 



Experiment setup - methodology
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 Some restrictions on metagraphs
 Only consider symmetric metagraphs

 Contains at least 2 users in symmetric positions

 Number of nodes ≤ 5

 Ignore metagraphs with > 108 instances 

 Training and testing
 20% queries as training, 80% as testing

 Randomly repeat the split 10 times

 Ranking metrics
 NDCG and MAP



Experiment setup – baselines
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 MGP: metagraph-based proximity (our method)

 MPP: metapath-based proximity

 MGP-U: all metagraphs have uniform weights

 MGP-B: only use the best metagraph

 SRW: supervised random walk



Finding #1: Metagraphs are powerful 
representations for semantic proximity
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Finding #2 & #3
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 Dual-Stage training

 reduce overall cost of metagraph matching by 83%

 negligible compromise on accuracy

 Symmetry-based matching

 Reduce matching time for individual metagraphs
by 52%
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Conclusion
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 Metagraphs are powerful 

 May be extended to other tasks on graph

 Matching metagraphs are expensive

 Improving its efficiency is crucial


