Learning to Query: Focused Web Page Harvesting for Entity Aspects

Yuan Fang¹, Vincent Zheng², Kevin Chang²³ ICDE 2016 @ Helsinki

¹ Institute for Infocomm Research, Singapore
² Advanced Digital Sciences Center, Singapore
³ University of Illinois at Urbana-Champaign, USA

Problem: L2Q

- Challenges and solutionDomain-awareness
 - Context-awareness
- Experimental Study
- Conclusion

Entities and their aspects are abundant, but scattered, on the Web

Entity type	Common aspects
celebrity	spouse, age, net worth, …
car	safety, cost, interior,
business	address, opening hour, phone no.,

People entities alone: 10% of Bing's search volume

Motivation: Focused Web Page Harvesting for Entity Aspects

High level problem: Learning to query (L2Q)

Seed query

Keywords (uniquely) identifying the entity

Target aspect

Utility (precision/recall) A pre-trained classifier *Y*, mapping each page to "relevant" or "not relevant" to the target aspect

In each iteration, $q^* = \arg \max \mathcal{U}^{(Y)}(q)$

- Problem: L2Q
- Challenges and solution
 - Domain-awareness
 - Context-awareness
- Experimental Study
- Conclusion

Subproblem #1: Domain-aware L2Q

$$q^* = \arg\max_{q} \mathcal{U}^{(Y)}(q|P_E, P_D)$$

Subproblem #1: Vocabulary variations

Entity	Example page content	Example query
Marc Snir	many HPC papers in IJHPCA	hpc ijhpca
Philip Yu	his data mining papers in TKDE	data mining tkde
Andrew Ng	his recent AI paper in JMLR	ai jmlr

Subproblem #1: Bridging domain and entity phases

9

Utility regularization (i.e. supervision on target aspect)

- □ Problem: L2Q
- Challenges and solution
 - Domain-awareness
 - Context-awareness
- Experimental Study
- Conclusion

Subproblem #2: Context-aware L2Q

11

In iteration-*i*, a context of already fired queries $\Phi = \{q^{(0)}, q^{(1)}, \dots, q^{(i-1)}\}.$

Queries can retrieve redundant pages

Marc Snir | Argonne National Laboratory www.anl.gov/contributors/marc-snir -

Marc Snir is a parallel computing expert whose ongoing research and engagement in various supercomputing initiatives helps to advance the elite class of ...

Prof. Marc Snir Named "HPC Rock Star" | Department of Com...

https://cs.illinois.edu/news/prof-marc-snir-named-hpc-rock-star ▼ Jun 10, 2010 - Illinois computer science professor Marc Snir was named insideHPC.com's newest Rock Star of HPC. As the Faiman and Murgo Professor of ...

Marc Snir - Department of Computer Science at Illinois https://cs.illinois.edu/directory/profile/snir -

Marc Snir. Michael Faiman and Saburo Muroga Professor. (217) 244-6568 NCSA receives NSF grant to develop Eclipse-based Workbench for HPC ...

Rock Stars of HPC: Marc Snir - insideHPC

insidehpc.com/2010/06/rock-stars-of-hpc-marc-snir/ -

Jun 10, 2010 - This month's HPC Rock Star is Marc Snir. During his time at IBM, Snir contributed to one of the most successful bespoke HPC architectures of ...

Marc Snir | LinkedIn

https://www.linkedin.com/in/snirmarc -

Greater Chicago Area - Director, Mathematics and Computer Science Division at Argonne National Laboratory - Argonne National Laboratory

With exascale computing on the horizon, the performance variability of I/O systems represents a key challenge in sustaining high performance. In many HPC ...

Marc Snir - University of Illinois at Urbana-Champaign snir.cs.illinois.edu/ -

Marc Snir is Director of the Mathematics and Computer Science Division at the Argonne National ... He currently pursues research in parallel computing. He was ...

Marc Snir - Department of Computer Science at Illinois https://cs.illinois.edu/directory/profile/snir -

Marc Snir. Michael Faiman and Saburo Muroga Professor. (217) 244-6568 ... Architecture, Compilers, and Parallel Computing - Parallel Computing ...

Marc Snir | Argonne National Laboratory www.anl.gov/contributors/marc-snir -

Parallel

Snir

Marc

Marc Snir is a parallel computing expert whose ongoing research and engagement in various supercomputing initiatives helps to advance the elite class of ...

Marc Snir - Google Scholar Citations

scholar.google.com/citations?user=Hal6LesAAAAJ -

Argonne National Laboratory & University of Illinois at Urbana Champaign - mcs.anl.gov The NYU Ultracomputer: Designing an MIMD Shared Memory Parallel Computer. A Gottlieb, R Grishman, CP Kruskal, KP McAuliffe, L Rudolph, M Snir.

Parallel computing pioneer Marc Snir to receive 2013 IEEE Se... sc13.supercomputing.org > News and Media > Press Releases ▼

DENVER, CO – Dr. Marc Snir, a parallel computing pioneer whose innovative work has advanced the elite supercomputing systems that drive scientific ...

Subproblem #2: Accounting for redundancy

Collective Utilities

Collective precision

Collective recall

 $\frac{\left|\left(\Omega(q)\cup\Omega(\Phi)\right)\cap\Omega(Y)\right|}{\left|\Omega(q)\cup\Omega(\Phi)\right|}$ $\frac{\left|\left(\Omega(q)\cup\Omega(\Phi)\right)\cap\Omega(Y)\right|}{\left|\Omega(Y)\right|}$

- □ Problem: L2Q
- Challenges and solution
 - Domain-awareness
 - Context-awareness
- Experimental Study
- Conclusion

Experiment setup

Datasets: two domains

- 996 researchers & 143 car models
- Pre-collected pages to simulate the corpus
- Search engine: language model
- Dictionaries for templates
 - Gathered from existing knowledge base
 - Manually compiled

Entity aspects

- **7** attributes for each domain
- Pre-trained aspect classifier with high accuracy

Experiment methodology

- Utilities of two forms: precision & recall
- Evaluation metrics
 - Precision, recall
 - Combined F-score
- Metrics reported are normalized
 - Against ideal precision/recall
 - Ideal metrics computed by "peeking" at unretrieved pages

Finding #1: Effect of domain and context-awareness

16

- **RND**: select query randomly
- □ **P**/**R**: optimize precision/recall without domain and context-awareness
- □ **P**/**R**+**q**: with domain pages, but do not employ templates, and without context
- □ **P**/**R**+**t**: with domain pages and templates, without context
- □ L2QP/L2QR: full approaches optimizing precision/recall

Finding #2(a): Comparing precision with indep. baselines

LM: language feedback model

17

- **AQ**: adaptive querying for text databases
- **HR**: harvest rate for hidden structured databases
- **MQ**: manually designed queries

Finding #2(b): Comparing recall with indep. baselines

LM: language feedback model

- **AQ**: adaptive querying for text databases
- **HR**: harvest rate for hidden structured databases
- **MQ**: manually designed queries

Finding #2(c): Comparing F-score with indep. baselines

-*-L2QBAL -*-LM --AQ -A-HR $\cdot \diamond \cdot$ MQ

- □ **L2QBAL**: optimize for F-score, balancing L2QP & L2QR
- LM: language feedback model
- **AQ**: adaptive querying for text databases
- **HR**: harvest rate for hidden structured databases
- □ **MQ**: manually designed queries

- □ Problem: L2Q
- Challenges and solution
 - Domain-awareness
 - Context-awareness
- Experimental Study
- **Conclusion**

Conclusion

- □ L2Q: a novel paradigm of crawling
- Domain-aware L2Q
 - Templates to handle vocabulary variations
- Context-aware L2Q
 - Collective utilities to account for page redundancy