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Abstract—As the Web hosts rich information about real-world
entities, our information quests become increasingly entity cen-
tric. In this paper, we study the problem of focused harvesting of
Web pages for entity aspects, to support downstream applications
such as business analytics and building a vertical portal. Given
that search engines are the de facto gateways to assess information
on the Web, we recognize the essence of our problem as Learning
to Query (L2Q)—to intelligently select queries so that we can
harvest pages, via a search engine, focused on an entity aspect
of interest. Thus, it is crucial to quantify the utilities of the
candidate queries w.r.t. some entity aspect. In order to better
estimate the utilities, we identify two opportunities and address
their challenges. First, a target entity in a given domain has many
peers. We leverage these peer entities to become domain aware.
Second, a candidate query may “overlap” with the past queries
that have already been fired. We account for these past queries to
become context aware. Empirical results show that our approach
significantly outperforms both algorithmic and manual baselines
by 16% and 10% in F-scores, respectively.

I. INTRODUCTION

The Web is turning into a rich repository of all kinds of
data. In particular, entities and their aspects, such as SPOUSE
of celebrities and SAFETY of cars, form the majority of the
information need of everyday Web users. Bing reported that
people entities alone account for 10% of all their search
volume [1]. Unfortunately, various aspects of the same entity
often scatter across many different pages on the Web. For all
intents and purposes, it is convenient to gather target pages
through a search engine, as search engines can handle universal
queries to cater for different entities and aspects.

However, querying a search engine and downloading the
result pages in a large scale often require significant time and
bandwidth, as well as a considerable financial cost to access
commercial search APIs. Therefore, it is important to ask the
“right” queries so that a search engine can return us the pages
of interest (i.e., target pages). Manually designing the queries
is not feasible for two reasons. First, if we know little about
the target entity to begin with, it is hard to come up with good
queries. Second, a manual approach simply cannot scale to a
large number of entities in different domains. A domain simply
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consists of a particular kind of entities, such as researchers or
cars. Gathering a corpus for different entity aspects is often the
first step towards building various data-centric applications, as
the following examples illustrate.

• Business analytics. Analyzing pages that mention some
specific aspect of a product, such as BATTERY or SCREEN
of iPhone 6s, enables business to drill down and understand
customers’ needs in a finer granularity. In particular, senti-
ment analysis or opinion mining can be performed on the
harvested pages.

• Vertical portal or search. There already exist a few such sites
in different verticals (i.e., domains), such as ArnetMiner.org
for researchers and Edmunds.com for cars. To build these
sites, information extraction is typically applied on the
harvested pages, which must be comprehensive to cover
many aspects of each entity, such as RESEARCH and AWARD
of researchers, as well as PRICE and SAFETY of cars.

Towards these interesting applications, it is thus crucial to
systematically and automatically formulate the right queries
to enable large-scale page harvesting for entity aspects. Note
that, although we can use generic queries for entities in
the same domain (e.g., entity name + research to find
professors’ RESEARCH aspect), entity-specific keywords (e.g.,
data mining for Philip Yu and parallel for Marc Snir)
can be far more superior, as our experiments will show.

It is natural to adopt an iterative process to harvest pages,
which mimics everyday Web users. Suppose users are looking
for Marc Snir’s RESEARCH aspect. They often start with a
seed query like marc snir uiuc to obtain a few initial
pages. From these pages, they learn that Snir studies parallel
computing. This new information enables users to start another
iteration by reformulating the query to include parallel. It is
a more specific keyword about Snir’s RESEARCH, and thus is
more likely to retrieve relevant pages. This process continues
until some budget (e.g., time) is reached.

Learning to query. The iterative querying process is outlined
in Fig. 1. In each iteration, the core task is to select the best
query among a pool of candidate queries based on current
result pages. We call this core task learning to query (L2Q),
which is the focus of this paper.

Firstly, to select the best query, we must quantify what
is considered a good query, by estimating the utility of each
candidate query. Since the ultimate purpose of a query is to
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Fig. 1. High-level flow to harvest pages for entity aspects.

retrieve relevant pages from the Web, the utility of a query
should reflect how well it can accomplish this purpose, such
as the precision and recall (or some combination of them)
of the retrieved pages w.r.t. the target entity and aspect. Of
course, the utility should be inferred without actually firing
any candidate query.

Secondly, an entity does not exist in isolation. There are
often a large number of peer entities in the same domain, which
can reveal useful insights of the domain. Thus, it is necessary
to be domain aware: leveraging the domain of an entity to
bootstrap at the beginning when little about the target entity
is known, as well as to enhance learning during the entire
querying process.

Thirdly, a query does not exist in isolation. Multiple queries
are needed to gather more target pages. That is, there exist a
context of past queries that were already fired for the target
entity. Given the time, bandwidth and sometimes financial
costs to query through a commercial search engine, it is
imperative to become context aware: accounting for the context
of past queries to eliminate redundancy between queries.

Problem formulation. While a few existing crawling ap-
proaches [2], [3], [4], [5] also use queries, they are not
designed for entity aspects. Moreover, many of them have
incomplete or ad-hoc utility models, and often fail to leverage
the domain or context, as we will elaborate in Sect. II. In
the following, we formalize the problem of L2Q, which boils
down to domain and context-aware utility inference.

Data model. We view each page and each query as a bag of
words, respectively. Each word is a term or phrase depending
on the tokenization. Moreover, a query can retrieve a set
of pages through an information retrieval model, such as a
commercial search engine.

Input. Our goal is to gather pages for a target entity, focused
on a given aspect.

The target entity is given by a seed query q(0) that uniquely
identifies it. Examples are marc snir uiuc (name + institute)
and BMW 3 series 328i (make + model). While more so-
phisticated entity disambiguation techniques exist [6], they are
beyond the scope of this paper. Note that the seed query is not
only the initial query to bootstrap the entire process, but also
appended to subsequent queries when submitting them to the
search engine, in order to focus on the target entity.

The target aspect is given by a function Y : P → {1, 0},
which maps each page p ∈ P to relevant (1) or irrelevant (0).
Essentially, we classify entity pages based on the interest. For
instance, if we are only interested in researchers’ RESEARCH

and EDUCATION, their pages about HOBBY would be perceived
as irrelevant. More generally, Y can map a page to a real-
valued relevance score, but for ease of discussion we keep to
the binary function for now. (In implementation, as Sect. VI
will further explain, we employ a pre-trained classifier for each
aspect to materialize Y .)

Output. In each iteration of Fig. 1, we form the candidate
query set Q for the target entity. We then select the best query

q∗ = arg maxq∈Q U (Y )(q), (1)

where U (Y )(q) measures the utility of query q w.r.t. aspect Y .
We will omit the superscript (Y ) and only write U(∗) hereafter
to implicitly assume a target aspect Y . U(∗) shall be inferred
in a domain and context-aware manner, as follows.

Subproblem 1: Domain-aware L2Q. We are given the addi-
tional input of already gathered pages of other entities in the
same domain, which we call domain pages.

However, exploiting domain pages is non-trivial. Entities
often have different word distributions even in the same
domain. For instance, Marc Snir is associated more with
the word parallel, whereas Philip Yu is associated more
with data mining, even though both belong to the domain
of researchers. That is, useful queries for one entity (e.g.,
parallel for Snir) do not necessarily align with another
entity (e.g., Yu) in the same domain. Thus, instead of directly
learning queries from domain pages, we propose to learn some
“templates,” which are query abstractions consistent across
entities. Based on these templates, we need to further infer
the utilities of candidate queries for the target entity.

Subproblem 2: Context-aware L2Q. In iteration-i of Fig. 1,
there is a context of past queries q(0), q(1), . . . , q(i− 1), which
were fired in previous iterations.

However, different queries often retrieve redundant pages.
Consider an example for Snir’s RESEARCH aspect. hpc and
parallel are both useful queries on their own, but their
respective top 5 result pages from Google have 2 pages in
common at the time of writing. Such redundancy implies that
a set of individually best queries are not necessarily the best
set of queries collectively. In other words, the collective utility
of multiple queries is not a simple sum or average of their
individual utilities. Thus, in addition to the candidate queries
themselves, we propose to account for the context of past
queries, in order to capture the effect of redundancy.

Contributions. We summarize the contributions of this paper.

First, we proposed the problem of L2Q. Note that our
settings depart from previous query learning approaches.

Second, we developed models for domain and context-
aware L2Q. We started with a basic utility inference model
for queries, which was then enhanced with the domain and
context. For domain awareness, we devised templates to ad-
dress entity variations; for context awareness, we formulated
collective utilities to manage multiple queries.

Third, we empirically evaluated L2Q in two real-world
domains. Our approach significantly outperforms both algorith-
mic and manual query baselines, by 16% and 10% in average
F-score, with only a minor computational overhead.



II. RELATED WORK

Problem. Our problem can be viewed from two perspectives,
namely Web crawling and query learning.

On the one hand, our setting differs from traditional Web
crawling [7], [8], [9], which follow links in the gathered pages.
In contrast, L2Q is driven by queries—we can intelligently
formulate queries to cater to different entities and aspects via
a search engine. L2Q also differs from deep Web crawling [2],
[10], although they also harvest results through queries. They
only deal with structured records and queries, instead of un-
structured texts in our scenario. Thus, their query space can be
sometimes exhaustively enumerated from the query interface
[10]. However, our query space dynamically expands as we
see new pages. Moreover, there also exist a few approaches
for crawling text databases using free-text queries [3], [4], [5].
Unfortunately, all these query-based approaches fall short in
utility inference or leveraging the domain or context, as we
will discuss later.

On the other hand, our goal is distinct from that of query
completion or suggestion [11], [12]. We aim to use additional
queries to harvest more pages for the given entity aspect,
analogous to using more links in traditional crawling. On the
contrary, query completion or suggestion aim to redirect users
when their original query is ineffective, through means of
generalization, specialization or error correction of the original
query, often based on patterns in a query log.

Utility inference. L2Q systematically measures both preci-
sion and recall as two complementary utilities for queries.
In contrast, query-driven approaches [2], [10], [5] for the
deep Web aim to gather the entire database and thus only
optimize recall, not precision. Other methods [3], [4] lack
an explicit formulation of utilities. Besides, some information
extraction systems like Snowball [13] and KnowItAll [14] also
estimate the utility of their extraction patterns, but as discussed
elsewhere [15], they only estimate precision in an informal
and heuristic way, and do not model recall. On the contrary,
we model both precision and recall in a unified probabilistic
framework. While our probabilistic framework is inspired by
a limited number of studies [16], [15] (which solve different
problems from ours), our solution of domain and context-
awareness encompasses significant novelties beyond them.

Domain awareness. L2Q leverages domain data to bootstrap
and enhance query learning. However, learning from the do-
main is non-trivial due to entity variations—different entities
in the same domain can still have very different word distribu-
tions. Subsequently, we propose to bridge domain and target
entities with templates. While some approaches for query-
based crawling [4], [5] and related problems [16], [15] do not
learn from a separate set of domain data at all, others [2], [3]
do not need to bridge between domain and target data. Lastly,
existing domain adaptation [17] and transfer learning [18], [19]
techniques cannot be applied to our setting. These methods are
intended for classifying or clustering instances from different
domains, which have different feature distributions [17], [19]
or even feature spaces [18]. On the contrary, in our work,
the notion of instance does not exist. In particular, we do not
perceive queries as instances, since we have no supervision or
explicit feature representation for queries.

Context awareness. L2Q is also context-aware: each candidate
query is considered in conjunction with the context of past
queries, since different queries often retrieve redundant pages.
However, the solutions for query-based crawling [3], [4] and
related problems [16], [15] largely overlooked the issue of
redundancy. Finally, while the paradigms of active learning
[20] and relevance feedback [21], [22], [23] also appear
to consider previous context, we emphasize the difference.
Active learning selects the most ambiguous example relative
to previously chosen examples, to re-train and improve their
model. On the other hand, relevance feedback updates the
query model using feedback on the previous query, to improve
their retrieval accuracy. In either case, the objective is not to
avoid redundancy with previous queries.

III. UTILITY INFERENCE FOR L2Q

We begin with a conceptual model to infer the utilities for
queries (Eq. 1), without the domain and context for now.

Insight. We hinge on the intuition of mutual reinforcement
between pages and queries. In general, a “useful” page for the
target aspect Y contains useful queries for Y , and a useful
query can retrieve useful pages for Y . Thus, our measure of
“usefulness,” or utility U(∗), shall uniformly apply to both
pages and queries alike. That is, for a page p and a query q,
high U(p) implies high U(q) if p contains q, and vice versa.
The mutuality can be formalized to relate and estimate U(p)
and U(q) in a unified model.

As the first step, we must quantify the usefulness of pages
and queries. Given the ultimate goal to gather pages, we
can measure two complementary forms of utility: precision
and recall of the retrieved pages w.r.t. Y . From the utilities
(precision or recall) of these pages, we can further infer the
corresponding utilities of related queries.

Interestingly, the line of work on probabilistic precision
and recall is amenable to the utility inference of pages
and queries, although these previous studies address different
problems such as user intent interpretation [16] and relation
extraction [15]. In this paper, we adopt probabilistic precision
and recall as our utility inference model, towards solving the
distinct problem of L2Q. In particular, we will address issues
beyond their considerations—the incorporation of domain and
context into our learning.

Definition of utilities. Assume a universe of pages P . These
pages correspond to a universe of candidate queries Q. (In
other words, Q can be generated from P , such as by taking all
n-grams in P as queries.) As we are concerned about retrieving
pages, to quantify usefulness, we need to examine the pages
behind each notion in the framework.

Let Ω denote a mapping from each of the following notions
to a set of pages in the domain, i.e., Ω(∗) ⊆ P .

• Ω(Y ), pages that are relevant to the target aspect Y .
• Ω(q), pages that can be retrieved by query q.
• Ω(p), the page p itself, i.e., Ω(p) = {p}.

Consider a running example in Fig. 2(a)–(b). For Y as
RESEARCH, suppose there are six pages p1, . . . , p6 in the



(a) Example pages (Y is RESEARCH)

Content Y (pi)

p1 He conducts research on parallel and hpc systems. 1

p2 He published many papers on parallel & hpc research. 1

p3 His research on complexity of parallel algorithms is valuable. 1

p4 He also studies computational complexity at U Illinois. 1

p5 Visit him at Siebel Center, U Illinois. 0

p6 He was a senior manager at IBM before joining U Illinois. 0

(b) Example queries

Query Retrievable pages
q1: parallel research p1 : 1, p2 : 1, p3 : 1

q2: hpc research p1 : 1, p2 : 1

q3: complexity p3 : 1, p4 : 1

q4: u illinois p4 : 1, p5 : 0, p6 : 0

q5: ibm p6 : 0

(c) Reinforcement graph

Fig. 2. Running illustration for Marc Snir.

universe. Among them, p1, . . . , p4 are relevant, i.e., Ω(Y ) =
{p1, . . . , p4}. Meanwhile, as an example, query q2 can retrieve
Ω(q2) = {p1, p2}.

Given the sets Ω(∗), ∀v ∈ P ∪ Q, we can compute v’s
precision or recall w.r.t. Y as its utility.

precision(Y )(v) = |Ω(Y ) ∩ Ω(v))|/|Ω(v)| (2)
recall(Y )(v) = |Ω(Y ) ∩ Ω(v))|/|Ω(Y )| (3)

In reality, we do not observe the entire universe of P , as
there exist additional pages beyond the six pages. Therefore,
precision and recall cannot be computed exactly by counting.
Thus, parallel to Eq. 2–3, we develop the probabilistic coun-
terparts of precision and recall as our two utility measures,
denoted P and R respectively. That is, U can be instantiated
as either P or R.

P(v) , P (ω ∈ Ω(Y )|ω ∈ Ω(v)), (4)

R(v) , P (ω ∈ Ω(v)|ω ∈ Ω(Y )), (5)

where ω is a random page from Ω(∗). For brevity, we have
omitted (Y ) from the notations and only write P or R, to
implicitly mean that we are measuring the utilities w.r.t. the
target aspect Y . Interestingly, these definitions apply uniformly
to pages and queries, enabling us to capture their mutual
reinforcement in a unified way.

Mutual reinforcement. As our intuition, useful pages can lead
to useful queries, and vice versa. For the running example in
Fig. 2(a)–(b), p1 is useful and contains a useful query q1, while
q1 can further discover useful pages p2 and p3.

Such mutual reinforcement can be modeled by a reinforce-
ment graph G = (V,E), as illustrated in Fig. 2(c). The vertex
set of G is V = P ∪Q, and the edge set E can be described
by an adjacency matrix W , such that Wpq = Wqp = 1 if and
only if page p can be retrieved by query q. More generally,
Wpq can also encode the connection strength in [0,∞). For
instance, we can use a retrieval model to quantify the strength
between page p and query q, as a higher retrieval score implies
that q is more likely to retrieve p.

Subsequently, mutual reinforcement exists between neigh-
boring vertices on G. A useful page (say p1) can induce useful
queries (q1 and q2 which are neighbors of p1), and a useful
query (say q2) can retrieve useful pages (p1 and p2 which are
neighbors of q2). More quantitatively, U(q) can be expressed
in terms of U(p), where p is a neighboring page of q, and vice
versa. Denote the neighbor set of v on the graph by N(v), e.g.,
N(p1) = {q1, q2}.

Precision of page. We start with rewriting the utility of preci-
sion P(q) in Eq. 6. In line 1, we expand to joint distributions
with pages in Ω(q) which are also q’s neighboring pages. Line
2 follows from Bayes’ rule. We obtain line 3 as ω’s relevance
to Y only depends on p given that ω = p, and ω = p is
equivalent to ω ∈ {p} = Ω(p). Observe that the first term
is the probability that a page retrieved by q turns out to be
p, among all pages in N(q). We can therefore estimate it as
Wpq/

∑
p′∈N(q)Wp′q . Moreover, the second term is simply

P(p) by the definition in Eq. 4. Thus, we arrive at line 4.
Intuitively, the precision of a query q is the average precision
of the pages that q can retrieve, weighted by q’s probability of
retrieving each page, i.e., P (ω = p|ω ∈ Ω(q)).

P(q) , P (ω ∈ Ω(Y )|ω ∈ Ω(q))
1
=

∑
p∈N(q) P (ω ∈ Ω(Y ), ω = p|ω ∈ Ω(q))

2
=

∑
p∈N(q) P (ω=p|ω∈Ω(q))P (ω∈Ω(Y )|ω=p, ω∈Ω(q))

3
=

∑
p∈N(q) P (ω = p|ω ∈ Ω(q))P (ω ∈ Ω(Y )|ω ∈ Ω(p))

4
=

∑
p∈N(q)

Wpq∑
p′∈N(q) Wp′q

P(p) (6)

Recall of page. Likewise, we derive a counterpart for recall in
Eq. 7. Intuitively, the recall of a query q is the sum of weighted
recalls of the pages that q can retrieve, such that each page
only contributes a part of its recall according to its probability
of being retrieved by q, i.e., P (ω ∈ Ω(q)|ω = p).

R(q) , P (ω ∈ Ω(q)|ω ∈ Ω(Y ))

=
∑

p∈N(q) P (ω ∈ Ω(q), ω = p|ω ∈ Ω(Y ))

=
∑

p∈N(q) P (ω∈Ω(q)|ω=p, ω∈Ω(Y ))P (ω=p|ω∈Ω(Y ))

=
∑

p∈N(q) P (ω ∈ Ω(q)|ω = p)P (ω ∈ Ω(p)|ω ∈ Ω(Y ))

=
∑

p∈N(q)
Wpq∑

q′∈N(p) Wpq′
R(p) (7)

Precision and recall of query. In symmetry, P(p) or R(p)
can be expressed in terms of P(q) or R(q), ∀q ∈ N(p). Their
derivations are similar to Eq. 6–7.

P(p) =
∑

q∈N(p)
Wpq∑

q′∈N(p) Wpq′
P(q) (8)

R(p) =
∑

q∈N(p)
Wpq∑

p′∈N(q) Wp′q
R(q) (9)

Unification. Interestingly, regardless of precision or recall and
whether for page or query, we can unify the above reinforce-
ment rules (Eq. 6–9) into one equation below. ∀v ∈ V ,

U(v) = F ({U(v′)|v′ ∈ N(v)}), (10)



where F represents an aggregation function over the neigh-
bors’ utilities {U(v′)|v′ ∈ N(v)}, which instantiates differ-
ently for precision or recall. As a result, pages (or queries)
that connect to similar neighboring queries (or pages) tend to
have similar utilities.

Regularization. Apart from the mutual reinforcement of util-
ities between neighboring vertices on the graph, the target
aspect itself entails crucial clues for utility inference.

Remember that the target aspect Y is modeled by a
relevance function for pages (to be materialized by a classifier
in Sect. VI). For a page p, we can inject its relevance w.r.t. the
target aspect—given by Y (p)—into the reinforcement rules
to further regularize the utilities. Ideally, every relevant page
should have a precision of 1, whereas all of them should share a
total recall of 1. Consider Marc Snir in Fig. 2. As p1, p2, p3, p4

are the only relevant pages (which we know of), we should
guide each of their precision towards 1, and each of their recall
towards 1

4 in the absence of other evidence so that their recalls
sum up towards 1.

We name such guidance utility regularization, denoted by
P̂ for precision and R̂ for recall. In the above example, we
would have P̂(pi) = 1 and R̂(pi) = 1

4 with i ∈ {1, 2, 3, 4},
to ultimately regularize the estimation of utilities, P(pi) and
R(pi), respectively. More formally, ∀p ∈ P ,

P̂(p) = Y (p), (11)

R̂(p) = Y (p)/
∑

p′∈P Y (p′). (12)

∀v /∈ P , we set P̂(v) = R̂(v) = 0 to mean that there is no
regularization for v.

Finally, we incorporate utility regularization into the rein-
forcement rules (as summarized by Eq. 10), as follows:

U(v) = (1− α)F ({U(v′)|v′ ∈ N(v)}) + α Û(v), (13)

where α ∈ (0, 1) is the regularization parameter, and Û(v)
is the utility regularization for v representing either P̂(v) or
R̂(v).

Solution. The next step is to solve the inference model in
Eq. 13. For a given graph G and regularization Û , the goal is
to find U(v), ∀v ∈ V , that satisfy Eq. 13.

Our inference model is equivalent to random walks with
restarts [24]. In particular, it can be verified that P is the
stationary distribution of the backward random walk on G,
whereas R is the stationary distribution of the forward random
walk on G [16], [15], [25]. In both walks, the restarting
probability equals to our regularization parameter α, and the
preference vector corresponds to our utility regularization Û .
We refer readers to the given literature on the details of the
random walks. Subject to graph irreducibility, each random
walk has a unique stationary distribution.

The stationary distributions can be found using standard
iterative updating. On a graph G = (V,E), the running time
is O(|V | + |E|) for each iteration, and it typically converges
in 50 iterations. Thus, the time cost is linear in the scale of
the graph. Alternatively, there also exist numerous algorithms
[26], [25], [27] to improve the efficiency, which are beyond
the scope of this paper.

TABLE I. EXAMPLES OF ENTITY VARIATION.

Entity Example page content Example query
Marc Snir . . . many HPC papers in IJHPCA . . . hpc ijhpca
Philip Yu . . . his data mining papers in TKDE . . . data mining tkde

Andrew Ng . . . his recent AI paper in JMLR . . . ai jmlr

IV. DOMAIN-AWARE L2Q

As Sect. I discussed, an entity does not exist in isolation.
There often exist many peer entities in the same domain (we
call them domain entities). We must learn what kind of queries
are useful from these domain entities, not only to bootstrap
from the beginning when we know little about the target entity,
but also to enhance the entire querying process.

More specifically, for a given domain we can prepare
some domain entities, and further collect their pages (domain
pages) in advance. Building upon the utility inference model
in Sect. III, we address the subproblem of domain-aware L2Q,
which naturally consists of two phases below.

• Domain phase (D). Learn what kind of queries are useful
from domain pages PD. This phase is only executed once.

• Entity phase (E). Choose the best query for the target aspect
of the given entity, based on both current result pages PE
and “knowledge” learnt from PD in the domain phase. This
phase is executed once for every query selection (i.e., for
each iteration in Fig. 1).

Note that we use subscripts D and E to differentiate the
corresponding notions in the two phases. Accordingly, we
concretize Eq. 1 to formalize domain-aware L2Q, as follows.

q∗ = arg maxq∈QE
UE(q|PE, PD), (14)

where UE(q|PE, PD) denotes that PE, PD are given as input,
which we will henceforth omit to only write UE(q) for brevity.

However, realizing the two phases is non-trivial due to
inherent differences between them. We will first “bridge their
gap” in Sect. IV-A, before discussing the two phases in
Sect. IV-B and IV-C, respectively.

A. Bridging domain and entity phases

The major challenge of domain-aware L2Q arises from
entity variations. Even in the same domain, different entities
are often described by varying words. As Table I illustrates,
hpc ijhpca is a useful query for Snir, but not for Yu or Ng.
Thus, directly learning useful queries from domain entities is
likely to fail, since the learnt queries may not align well with
the target entity.

Templates. To address such variations, we observe that queries
for different entities often match similar abstractions. For
instance, all the three queries in Table I can be abstracted as
“〈topic〉 〈journal〉,” where 〈∗〉 represents a common type in the
domain. A type is just a set of words, such as 〈topic〉 = {hpc,
data mining, ai, . . .} and 〈journal〉 = {ijhpca, tkde,
jmlr, . . .}, which are often available in existing knowledge
bases like Freebase. Alternatively, certain types like 〈person〉
and 〈location〉 can be recognized by NLP tools, and others like
〈phonenum〉 and 〈email〉 by regular expressions.
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Fig. 3. Pipeline of domain-aware L2Q.

We name such query abstractions templates, and use them
to bridge different entities in the same domain. For instance,
from Ng we learn that ai jmlr is useful, so is the template
“〈topic〉 〈journal〉” given that ai ∈ 〈topic〉 and jmlr ∈
〈journal〉. Since Snir’s query hpc ijphca can be abstracted
by the same template, it is also likely to be useful, enabling
us to generalize from Ng. Different from previous concepts
of templates or patterns [16], [13], [28], [15], in this work
we devise templates for a novel purpose—through templates
as the medium, we can capture domain “knowledge” across
entities consistently, to ultimately benefit future target entities.
Formally, we define a template as follows.

DEFINITION 1 (TEMPLATE): Consider a universe of words
W , and a set of types C = {C1, C2, . . . , C|C|} where each
type contains a subset of words, i.e., Ci ⊂ W . Then, for a
given maximum query length L, and some ` ≤ L,

• a query is a sequence of words q = (w1, w2, . . . , w`) such
that each word wi ∈ W;

• a template is a sequence of units t = (u1, u2, . . . , u`) such
that each unit ui is either a word w ∈ W or a type C ∈ C;

• We say that t can abstract q if wi = ui when ui is a word,
or wi ∈ ui when ui is a type, ∀i ∈ {1, . . . , `}. �

Bridging two phases. Given templates as the medium to
generalize domain entities, how exactly do we use them to
bridge the two phases? Note that templates cannot be directly
used by a search engine given their abstraction. Ultimately, we
must still “translate” templates to concrete queries.

As discussed earlier, due to entity variations we cannot
directly take the utilities of the domain queries to the target
entity. Thus, the utility inference model must incorporate
templates—we infer the utilities for the templates in the
domain phase, and then use them to help us understand what
queries are likely to be useful in the entity phase. Techni-
cally, mutual reinforcement also exists between templates and
queries—useful templates often lead to useful queries and vice
versa. In other words, utilities can be extended to templates,
and we need to estimate U(t) for each template t too.

The mutual reinforcement between pages, queries and
templates exists in both phases, as summarized in Fig. 3. In
the domain phase, we induce useful queries QD from domain
pages PD, and further generalize them into templates TD. In
the entity phase, we adopt those templates TE that also appear
with the target entity to match target queries QE , and further
regularize them with target pages PE . In each phase, there
is utility regularization for pages w.r.t. Y , as discussed in
Sect. III. Moreover, the utilities of templates from the domain

(a) Example templates

Query Template
q1: parallel research t1: 〈topic〉 research
q2: hpc research t1: 〈topic〉 research
q3: complexity t2: 〈topic〉
q4: u illinois t3: 〈institute〉
q5: ibm t3: 〈institute〉

(b) Reinforcement graph

Fig. 4. Running illustration extended with templates.

phase, {UD(t)|t ∈ TD}, provide additional regularization for
the target entity, as we will elaborate in the entity phase.

Utilities of templates. Consider a template universe T , which
can be enumerated from queries with a given set of types.
Based on the running example in Fig. 2, we obtain T =
{t1, t2, t3} in Fig. 4(a). Furthermore, we can extend the
reinforcement graph G = (V,E) with templates, such that
V = P ∪ Q ∪ T and E now also captures the reinforcement
between Q and T , as shown in Fig. 4(b).

Following Sect. III, let Ω(t) denote the set of pages that
can be indirectly “retrieved” by template t through any of its
abstracted queries. For instance, through q1 and q2, t1 can
retrieve Ω(t1) = {p1, p2, p3}. The utilities of t, P(t) and R(t),
can then be defined by Eq. 4 and 5 respectively, in a uniform
manner as those of pages and queries. Similar to the mutual
reinforcement between P and Q, we can model that between
Q and T . We summarize the rules between Q and T below,
whose derivations mirror those in Sect. III. As each query is
now connected to both pages and templates, we denote its page
neighbors by NP (q) and template neighbors by NT (q).

P(t) =
∑

q∈N(t)
Wqt∑

q′∈N(t) Wq′t
P(q) (15)

R(t) =
∑

q∈N(t)
Wqt∑

t′∈NT (q) Wqt′
R(q) (16)

P(q) =
∑

t∈N(q)
Wqt∑

t′∈NT (q) Wqt′
P(t) (17)

R(q) =
∑

t∈N(q)
Wqt∑

q′∈N(t) Wq′t
R(t) (18)

As U(q) can be expressed using either its neighboring
pages (Eq. 6–7) or templates (Eq. 17–18), we combine both
sides by taking their average as the final utility of q. Essentially,
here we only consider a balanced influence from pages and
from templates; investigating other combinations is left to
future work. The resulting inference model with templates
can still be solved using the same random walks discussed
in Sect. III.

B. Domain phase

In the domain phase, we generalize from domain entities,
to learn templates for future target entities, as illustrated in
Fig. 3(a). Concretely, we need to specify a reinforcement graph
GD for the domain entities (domain graph), as well as utility
regularization ÛD on this graph. As output, we infer the utilities
UD, in particular those of templates. That is, we apply the
inference rules in Eq. 13 on GD. More explicitly, for any vertex
v on GD, and letting ND denote the neighbor function of GD,
we need to solve

UD(v) = (1− α)F ({UD(v′)|v′ ∈ ND(v)}) + α ÛD(v). (19)



(a) Example pages PD = {p7, p8, p9} (Y is RESEARCH)

Content Y (pi) P̂D(pi) R̂D(pi)
p7 . . . his AI research projects at Baidu . . . 1 1 1/2
p8 . . . published many AI papers at Stanford . . . 1 1 1/2
p9 . . . taught at Stanford . . . 0 0 0

(b) Domain graph

ଽ݌଼݌଻݌
଺ݍ = ai research

଻ݍ = baidu

ଵݐ = 〈topic〉 research

ଷݐ = 〈institute〉଼ݍ = stanford

Fig. 5. Illustration of Andrew Ng as a domain entity.

Domain graph. Take Andrew Ng as an example for domain
entity, with three pages PD = {p7, p8, p9} shown in Fig. 5(a).
Queries QD = {q6, q7, q8} and templates TD = {t1, t3} can
be enumerated from the pages, to form a domain graph in
Fig. 5(b). In general, given some domain pages PD, we can
enumerate the set of queries QD contained in them. (More
details of enumerating the queries will be covered in Sect. VI.)
Furthermore, from these queries we can obtain templates TD
based on a given set of types. Although the domain queries
(from Ng) look different from target queries (from Snir in
Fig. 4), they share some templates (t1 and t3).

Utility regularization. For each domain page pi ∈ PD, we
derive its utility regularization ÛD(pi) as discussed in Sect. III
(Eq. 11–12). Using Ng as an example, we can obtain P̂D(pi)
and R̂D(pi) based on Y (pi), as presented in Fig. 5(a).

Output: templates. By solving the inference rules on the
domain graph (Eq. 19), we can output the templates and their
utilities {UD(t)|t ∈ TD}. In our example for Ng, the precision
model will give PD(t1) > PD(t3) since t3 covers an irrelevant
page p9, whereas the recall model will give RD(t1) < RD(t3)
as t1 fails to cover a relevant page p8.

C. Entity phase

In the entity phase, we leverage templates learnt from
the domain phase, as summarized in Fig. 3(b). Parallel to
Sect. IV-B, we need a reinforcement graph GE for the target
entity (entity graph) and utility regularization ÛE on this graph.
Unlike the domain phase, templates will provide additional
utility regularization, together with current pages of the target
entity. We then select the best query according to the inferred
utilities UE . Essentially, we apply the inference rules in Eq. 13
on GE . For any vertex v on GE , and letting NE denote the
neighbor function of GE , we need to solve

UE(v) = (1− α)F ({UE(v′)|v′ ∈ NE(v)}) + α ÛE(v). (20)

Entity graph. Similar to the domain phase, from the current
result pages PE , we can enumerate a set of queries as candidate
queries. However, it is rather limited to only consider queries
from current pages as the candidates—many potentially useful
queries are unforeseeable due to the incompleteness of PE ,
as the gathering process is still ongoing. To overcome this

limitation, we also consider queries from the domain entities.
(For efficiency consideration, we restrict to queries that occur
with at least 50 domain entities.) That is, the candidate query
set QE contains queries enumerated from both PE and PD.
Subsequently, we enumerate the templates TE from QE , and
obtain the corresponding entity graph.

Utility regularization. As shown in Fig. 3, in addition to
utility regularization on pages, we can leverage templates
learnt in the domain phase to further regularize the target
entity. On the one hand, regularization on current pages PE

only applies to the target entity itself, since other entities have
different pages. On the other hand, regularization on templates
TE can be applied to other entities in the same domain, since
templates are consistent across them. By using both forms of
regularization, we can identify useful queries not only specific
to the target entity, but also general in the domain. As with
the domain phase, we encode regularization ÛE(p) for each
entity page p ∈ PE based on Y (p). For each template, we use
its utility learnt from the domain phase as our regularization.
Using Snir as the target and Ng as the domain entity, Snir will
have utility regularization for t1 and t3, since their utilities are
learnt from Ng in the domain phase (Sect. IV-B). Formally,
∀t ∈ TE ∩ TD,

P̂E(t) = λ PD(t), (21)

R̂E(t) = λ RD(t), (22)

where λ > 0 is an adaptation parameter to control how much
we adapt from the domain entities. In other words, λ adjusts
the trade-off between matching the domain templates and the
entity pages.

Output: best query. By solving the inference rules on the
entity graph (Eq. 20), we obtain the utility UE(q) for every
candidate query q ∈ QE . Finally, we output the query with
maximum utility.

V. CONTEXT-AWARE L2Q

As Sect. I motivated, a query does not exist in isolation.
When assessing the candidate queries in iteration-i, there is
a context of past queries that were already fired, which we
denote as Φ , {q(0), q(1), . . . , q(i− 1)}.

Due to the redundancy between queries, measuring the
utility of each candidate query without accounting for the
context queries is hardly promising. Consider Marc Snir in
Fig. 2 as the target entity, and suppose the context queries
are Φ = {q1, q5}. We illustrate in Table II the effectiveness
of each candidate query q on its own, as well as the overall
effectiveness of q and the context Φ together. For instance,
given Ω(Y ) = {p1, p2, p3, p4}, q2 (retrieving p1, p2) and q3

(retrieving p3, p4) are equally effective on their own. However,
together with Φ, q3 (retrieving p1, p2, p3, p4, p6) is superior to
q2 (retrieving p1, p2, p3, p6), since q2 fails to retrieve any page
beyond those of Φ. In other words, an individual good choice
is not necessarily an overall good choice, when we are given
the context of past queries.

Thus, we address the subproblem of context-aware L2Q:
selecting the best query based on the utility of each candidate
query in conjunction with the context. We can further extend



TABLE II. EFFECTIVENESS OF SNIR’S QUERIES WITH Φ = {q1, q5}.

candidate q own prec. own recall overall prec. w/ Φ overall recall w/ Φ

if q = q2 2/2 = 1 2/4 = 0.5 3/4 = 0.75 3/4 = 0.75

if q = q3 2/2 = 1 2/4 = 0.5 4/5 = 0.8 4/4 = 1

if q = q4 1/3 = 0.33 1/4 = 0.25 4/6 = 0.67 4/4 = 1

.

......
..........

Ω ܻ
Ω(ݍ)
Ω(Φ)Universe of target entity’s pages Ω ܻΩ(Φ)Ω(ݍ)ܣ. ... ܤ

Fig. 6. Venn diagram to illustrate collective utilities.

Eq. 14 as follows. (As usual, we will omit PE, PD from the
utility notation for brevity.)

q∗ = arg maxq∈QE
UE(Φ ∪ {q}|PE, PD). (23)

In other words, we measure the collective utility for a set
of queries consisting of both the candidate query q and the
context queries Φ. In the above example, we should choose
q∗ = q3 to maximize collective precision, and q∗ = q3 or q4

to maximize collective recall.

Parallel to the probabilistic utilities of one query (Eq. 4–
5), we define below the collective utilities of a set of queries
probabilistically, where Ω(Q) ≡

⋃
q∈Q Ω(q).

PE(Φ ∪ {q}) , P (ω ∈ Ω(Y ) | ω ∈ Ω(Φ ∪ {q})), (24)

RE(Φ ∪ {q}) , P (ω ∈ Ω(Φ ∪ {q}) | ω ∈ Ω(Y )). (25)

The main challenge now is to realize the collective utilities.
As it will turn out, we can estimate collective precision based
on collective recall. Thus, we begin with collective recall.

A. Collective recall

As our major insight, RE(Φ∪{q}) can be decomposed into
simpler components, including RE(q) and RE(Φ), as well as
the redundancy between q and Φ. Such a decomposition is
desirable, since we have already established the inference of
RE(q) in Sect. IV, and we can compute RE(Φ) recursively
using the same decomposition. Thus, to compute collective
recall, we only have to focus on solving the redundancy
between q and Φ.

Consider the Venn diagram in Fig. 6. We focus on three
subsets that define collective utilities: i) Ω(Φ), pages retrieved
by any query in the context Φ; ii) Ω(q), pages retrieved by
a candidate query q; iii) Ω(Y ), the relevant pages. These
subsets interact with each other, forming subset A consisting of
relevant pages by Φ and q collectively, and subset B consisting
of irrelevant pages by them collectively. In particular, A can
be aggregated from relevant pages of Φ and those of q, if
we only count their overlap (relevant pages of both Φ and q)
once. Correspondingly, RE(Φ∪{q}) is the sum of RE(Φ) and
RE(q) if we further subtract their “overlap.”

Rewriting. The above intuition can be formalized below. Line
2 is due to the inclusion–exclusion principle, to separate q and
Φ so that we can reuse their recalls. The expression matches
our insight, since the first term is simply RE(Φ), the second
term is RE(q), and the last term captures the redundancy
between q and Φ—the probability that a relevant page can
be retrieved by both of them, which we denote by ∆(Φ, q).

RE(Φ ∪ {q}) , P (ω ∈ Ω(Φ ∪ {q}) | ω ∈ Ω(Y ))
1
= P (ω ∈ Ω(Φ) ∨ ω ∈ Ω(q) | ω ∈ Ω(Y ))
2
= P (ω ∈ Ω(Φ) | ω ∈ Ω(Y )) + P (ω ∈ Ω(q) | ω ∈ Ω(Y ))

− P (ω ∈ Ω(Φ), ω ∈ Ω(q) | ω ∈ Ω(Y ))
3
= RE(Φ) +RE(q)−∆(Φ, q). (26)

Estimation. We only need to estimate the three terms in
Eq. 26. Among them,RE(q) is already available from Sect. IV.

Moreover, RE(Φ) can be recursively computed by further
decomposing Φ = {q(0), q(1), . . . , q(i− 1)} into q(i− 1) and q(i− 1)’s
context queries q(0), . . . , q(i− 2). Thus, we only need to deter-
mine the base case—RE(q(0)), recall of the initial seed query
q(0). As we have not gathered any page for the target entity in
the beginning, there is no reliable way to estimate RE(q(0)).
Thus, we treat it as a parameter r0 ∈ (0, 1), which we call
seed query parameter, to be chosen by cross validation in our
experiments.

Lastly, we estimate ∆(Φ, q), the redundancy between Φ
and q, in the following. Line 1 is a result of Bayes’ rule.
Since Ω(Φ) ≡ PE , we have Ω(Φ)∩Ω(Y ) ≡ {p|Y (p) = 1, p ∈
PE}, i.e., the set of relevant pages among the current result
pages. This set can be equivalently rewritten as Ω(Ỹ ) such that
Ỹ (p) = 1 iff Y (p) = 1 and p ∈ PE . Subsequently, we arrive at
line 2. By the definitions of recall and collective recall, we can
further rewrite it into line 3. While RE(Φ) can be computed
recursively as discussed earlier, R(Ỹ )

E (q) can be found using
the inference rules for recall, with regularization R̂(Ỹ )

E (p) =
Ỹ (p)/

∑
p′∈PE Ỹ (p′),∀p ∈ PE .

∆(Φ, q) = P (ω ∈ Ω(Φ), ω ∈ Ω(q) | ω ∈ Ω(Y ))
1
= P (ω ∈ Ω(q) | ω ∈ Ω(Φ) ∩ Ω(Y ))P (ω ∈ Ω(Φ)|ω ∈ Ω(Y ))
2
= P (ω ∈ Ω(q) | ω ∈ Ω(Ỹ ))P (ω ∈ Ω(Φ)|ω ∈ Ω(Y ))
3
= R(Ỹ )

E (q) · RE(Φ)

B. Collective precision

To optimize collective precision, Φ and q should collec-
tively retrieve as many relevant pages (i.e., A in the Venn
diagram), but at the same time as few total pages (i.e.,
A ∪ B). As our major insight, collective precision can be
decomposed into two components that correspond to A and
A∪B, respectively. In particular, |A| is the coverage of relevant
pages by Φ and q collectively, and |A ∪ B| is their coverage
of all pages collectively, both of which intuitively correspond
to some form of collective recall. Thus, we can compute
collective precision by way of collective recall.

Rewriting. The above intuition can be formalized below.
Bayes’ rule is applied to obtain line 1. Note that P (ω ∈ Ω(Y )),



the prior of relevant pages, is a constant for any query and
thus does not affect query selection. Furthermore, P (ω ∈
Ω(Φ ∪ {q})) ≡ P (ω ∈ Ω(Φ ∪ {q}) | ω ∈ Ω(Y ∗)) such
that Y ∗(p) = 1 for any page. Therefore, we arrive at line
2, which matches our insight. Specifically, the numerator is
simplyRE(Φ∪{q}) by definition, which is proportional to |A|;
the denominator is just R(Y ∗)

E (Φ∪ {q}) by definition, which is
proportional to |A ∪B|.

PE(Φ ∪ {q}) , P (ω ∈ Ω(Y ) | ω ∈ Ω(Φ ∪ {q}))
1
=
P (ω ∈ Ω(Φ ∪ {q}) | ω ∈ Ω(Y ))

P (ω ∈ Ω(Φ ∪ {q}))
P (ω ∈ Ω(Y ))

2∝ P (ω ∈ Ω(Φ ∪ {q}) | ω ∈ Ω(Y ))

P (ω ∈ Ω(Φ ∪ {q}))|ω ∈ Ω(Y ∗))

3
=
RE(Φ ∪ {q})
R(Y ∗)

E (Φ ∪ {q})
(27)

Estimation. To estimate Eq. 27, we only need to compute
the collective recalls w.r.t. Y and Y ∗. For Y , we follow the
discussion in Sect. V-A. For Y ∗, the only difference is that
every page is treated as “relevant,” and we simply derive utility
regularization based on Y ∗(p) instead of Y (p), without any
other change.

VI. EXPERIMENTS

We empirically evaluate the proposed L2Q approach. We
adopt the overall workflow in Fig. 1 to harvest pages iteratively.
In each iteration, the task boils down to the core problem of
L2Q, where we select the best query to gather pages focused
on the target entity aspect via a search engine. After each
iteration, we evaluate the cumulative quality of pages gathered
thus far.

We start with experimental setup in Sect. VI-A. Next, we
showcase the significance of the two subproblems, domain and
context-aware L2Q, in Sect. VI-B. Lastly, we compare the
performance of our “full” L2Q approach with various baselines
in Sect. VI-C.

A. Experimental setup

Corpora. For repeatable results, we conduct experiments over
a corpus collected from the Web in advance, and all queries
will retrieve pages from this corpus only. We prepared corpora
for two domains: researchers and cars. In total, we have
996 researchers randomly chosen from DBLP’s most prolific
authors1 and 143 consumer car models released in 2009. For
each entity, we attempted to collect 50 pages from the Web
to construct the corpora. This number is generally adequate
to cover pages of diverse aspects for each entity, since the
goal of this paper is to achieved focused harvesting of entity
aspects. To retrieve pages from the corpora, we used a language
model with Dirichlet smoothing [29] as the search engine. For
each query, pages in the corpus are ranked and the top 5 are
returned. As such, we can measure the performance of our
approach against an ideal but otherwise infeasible solution (to
be explained in evaluation methodology).

1http://dblp.uni-trier.de/statistics/prolific1.html

TABLE III. ENTITY ASPECTS AND ACCURACY OF THEIR CLASSIFIERS.

Researchers Cars
Aspects Frequency Accuracy Aspects Frequency Accuracy

BIOGRAPHY 8K 0.99 VERDICT 7K 0.91

PRESENTATION 10K 0.99 INTERIOR 7K 0.96

AWARD 11K 0.97 EXTERIOR 5K 0.97

RESEARCH 107K 0.85 PRICE 8K 0.92

EDUCATION 11K 0.99 RELIABILITY 2K 0.97

EMPLOYMENT 3K 0.94 SAFETY 2K 0.99

CONTACT 7K 0.97 DRIVING 16K 0.89

Templates. To construct the types for enumerating templates,
we resorted to three options. First, we constructed a dictionary
to map a keyword or phrase to a type based on Freebase2

and Microsoft Academic Search (MAS)3, such as mapping
data mining to 〈topic〉. Freebase is an open and general
database containing a huge number of types across many
different domains. Thus, we can rely on it to devise templates
for many real-world applications. In addition, we used MAS to
supplement types for the researcher domain. Second, we relied
on Standford CoreNLP [30] to recognize the named entities as
types, such as 〈organization〉, 〈person〉 and 〈location〉. Third,
we devised regular expressions to tag well-formed texts, such
as 〈phonenum〉, 〈url〉 and 〈email〉.

Entity aspects. We tested seven target aspects (Y ’s) on each
domain as shown in Table III. To enable a finer granularity of
evaluation, we segmented each page into paragraphs4, and we
looked at the relevance of each paragraph w.r.t. each given Y .
(Note that query selection is orthogonal to the retrieval units
used.) Specifically, we trained one classifier for each Y based
on conditional random fields, which can classify a paragraph
as relevant to Y or not. Our aspect classifiers can achieve a
high level of accuracy on both domains as shown in Table III,
and thus their output is taken as the ground truth.

Candidate query enumeration. To enumerate candidate
queries from a page, we first tokenize the page into words.
Each word is either a single keyword, or a phrase (e.g.,
data mining) that can be mapped to a type. Subsequently,
we applied a sliding window of ` words over the page for
each ` ∈ {1, 2, . . . , L}. Note that L is the maximum query
length in Definition 1. The ` words in each window are taken
as a candidate query. In particular, we set L = 3, i.e., only
queries containing 1, 2 or 3 words are enumerated from pages.
This maximum length is generally sufficient to capture various
semantic units, as choosing a larger value for L results in no
notable improvement in effectiveness, but increases the query
space and thus computational cost.

Evaluation methodology. In each domain, we randomly re-
served half of the entities as domain entities, and the remaining
as target entities. One of our experiments also varied the
number of domain entities used to showcase the effect of
domain size. Target entities were further divided into two equal
splits, such that one of the split is reserved for parameter
validation, and the other for testing. We repeated the split
randomly for 10 times.

2https://www.freebase.com/
3http://academic.research.microsoft.com/
4Segmentation was done using jsoup from http://www.jsoup.org/.



On the testing set, we evaluate the retrieved pages in terms
of their actual precision and recall (and eventually F-score)
for every target entity and aspect. We then normalize the
results against an ideal solution, for two reasons. Firstly, as
different entities entail varying degrees of difficulty, normal-
ization makes results comparable across entities. Secondly,
the ideal solution, which supposedly achieves a performance
upper bound, enables us to perceive the actual gap with the
best “achievable” performance. Note that, for each entity,
the same normalization factor is applied to all methods (i.e.,
our approach and the baselines) without biasing towards any
method—a better method is still better after normalization.

We thus design an ideal solution as the upper bound to
measure against. Ideally, we would select queries that cover as
many relevant pages as possible, and achieve a high precision
over the covered pages. We then select queries to maximize the
product of their actual coverage and precision, which can be
obtained by feeding each candidate query to the search engine.
Thus, it is clearly infeasible in real applications, and only acts
as a performance upper bound for normalization.

Given multiple target entities and test splits, we report the
average results over all entities and splits. We further average
the results across aspects, omitting the detailed performance
for every aspect due to space constraint.

Settings. In most experiments, we varied the number of queries
(i.e., number of iterations in Fig. 1) between 2 and 5, excluding
the initial seed query. When we do not mention the number
of queries used, the default is 3. We selected the seed query
parameter r0 in Sect. V-A by cross validating on the validation
set. We set the regularization parameter to α = 0.15 in Eq. 13,
which is a typical value robust to random walks on most
graphs. Lastly, we set the adaption parameter to λ = 10
(Sect. IV-C), which turns out to be generally effective and
stable in our experiments.

B. Effect of domain and context awareness

We first validate the significance of the two subproblems,
namely, domain-aware and context-aware L2Q. Thus, we
devised and compared several strategies below, in order to
highlight the usefulness of the domain entities and the context
queries. As we proposed two measures of utility, namely
precision P and recall R, each strategy (except the random
method RND) has two variants: one optimizes P and the other
optimizes R. We then evaluate each variant using the metric
that it intends to optimize.

• RND, which randomly selects a query from all the candi-
dates, to establish a reference point for other strategies.

• P or R, which optimizes precision or recall as Sect. III
discussed, i.e., without domain and context-awareness.

• P+q or R+q, which directly uses queries (+q) of best
precision or recall learnt from the domain phase, to show
the problem of entity variations.

• P+t or R+t, which optimizes precision or recall with tem-
plate-based learning (+t), but without context-awareness.

• L2QP or L2QR, which optimizes precision or recall with
both domain and context-awareness (i.e., the full approach).
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Fig. 7. Validation of domain and context awareness.

(a) Precision for L2QP
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Fig. 8. Effect of domain size on full approaches.

Note that, in Sect. VI-C, we will eventually combine the
two variants and evaluate the combined method.

Domain awareness. The results in Fig. 7 demonstrate that,
while domain entities can be beneficial to L2Q, we must
employ templates due to entity variations. Evidently, P+t is
superior to P in precision, given that P+t learn from domain
entities with templates and P does not utilize the domain at
all. Similarly, R+t outperforms R in recall for the same reason.
However, if we do not abstract queries into templates, we
cannot leverage the domain to the fullest extent. In particular,
P+q directly use queries with best precision among domain
entities, but its performance is worse than the template-based
P+t. We observe a similar outcome between R+q and R+t in
recall. That means, entity variations do exist and it is necessary
to adopt templates. Naturally, when entity variations are more
severe, P+q and R+q could even become worse than P and R,
as in the case of researchers.

We also investigate the effect of domain size. As reported
in Fig. 8, we use between 0% and 100% domain entities. In
general, using more domain entities results in better precision
for L2QP and better recall for L2QR. The improvement is
especially substantial when we increase from 0% to 5%,
meaning that even a small number of domain entities can be
quite useful.

Context awareness. The results also show that it is important
to account for the past queries through collective utilities. In
Fig. 7, our full approach L2QP outperforms P+t in precision.
Note that both L2QP and P+t learn from domain entities
through templates, but L2QP is aware of the context of past
queries whereas P+t is not. Likewise, L2QR is superior to R+t
in terms of recall.



C. Comparison with baselines

We further compare our approaches L2QP, L2QR, and their
combination (to obtain a balance between precision and recall)
with four independent baselines below. The first three baselines
are algorithmic methods adapted from related problems, since
there is no previous work on our exact setting. The fourth
baseline is a manual approach based on a user study.

• Language Model (LM), based on the language feedback
model [22]. In each iteration, it chooses the query with
maximum likelihood on the k most relevant current pages.
In particular, we use k = 1, which results in the best
performance on our corpora.

• Adaptive Querying (AQ), based on the adaptive query se-
lection policy [5]. It was designed to crawl text databases,
using query statistics adaptive to the current results. As it
lacks the notion of relevance, to adopt it for our purpose,
the query statistics are only computed over relevant pages
instead of all pages.

• Harvest Rate (HR), based on the harvest rate heuristic [2].
It was originally meant for crawling structured databases,
using query statistics from current results and domain data.
We first modify its query and record model as a bag of
words, and incorporate the notion of relevance just as we
did for AQ. We then apply templates: the statistics of each
query is computed as the average over its templates. (We
only use templates in HR but not the others, since only HR
exploits domain data.)

• Manual Querying (MQ), based on human designed queries.
For each domain and aspect, we asked nine graduate stu-
dents to provide five queries that they would use to search
for the target entity aspect. For instance, for researchers’
AWARD aspect, sample queries given by the user study in-
clude award, distinguished, award won, and so on. We
observed that there is generally good inter-user agreement,
and thus only report the average performance of the users.
Note that manually designing queries that are specific to
each entity does not scale up, and thus is not a viable
baseline in real-world applications.

Precision and recall. We first compare L2QP and L2QR to the
baselines in terms of precision and recall, with varying number
of queries (i.e., iterations). The results are reported in Fig. 9.

In terms of precision as Fig. 9(a) shows, L2QP achieves
the best performance, surpassing not only the baselines, but
also L2QR, since L2QP is designed to optimize precision.
This observation is consistent in both domains across different
number of queries. On average, L2QP outperforms the best
algorithmic baselines by 28%, and beats the manual baseline
by 14%. Note that, as we use more queries, L2QP and MQ
tend to suffer a minor decrease in precision since there only
exist a limited number of pages relevant to the target aspect
of each entity.

In terms of recall as Fig. 9(b) shows, L2QR likewise
outperforms all the other methods, as it is designed to optimize
recall. On average, L2QR outperforms the best algorithmic
baseline by 11%, and beats the manual baseline by 14%.
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Fig. 9. Comparison of precision and recall.
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Fig. 10. Comparison of F-scores with balanced strategy.

Combining L2QP and L2QR. Although L2QP and L2QR
perform the best in their corresponding utilities, we often seek
a trade-off in the real world, which is usually measured by
F-score. Therefore, we combined L2QP and L2QR, resulting
in a new query selection method L2QBAL that balances pre-
cision and recall. Specifically, we select queries based on the
geometric mean of the collective precision and recall. We do
not optimize the harmonic mean given that our utilities are
probabilistic in nature, which means the estimated precision
and recall have incomparable scales.

We verified that L2QBAL indeed outperforms L2QP and
L2QR in F-score. Subsequently, we compare L2QBAL with the
baselines in terms of F-score. As shown in Fig. 10, L2QBAL
is consistently better than all the baselines for various number
of queries. On average, it beats the best algorithmic baseline
by 16%, and exceeds the manual baseline by 10%. In other



TABLE IV. AVERAGE TIME COST PER QUERY (SECONDS).

Domain Selection Fetch
L2QP L2QR L2QBAL

Researcher 2.1 1.5 2.4 ∼ 18
Car 1.9 1.4 2.2 ∼ 8

words, it is feasible to combine L2QP and L2QR. As L2QBAL
is only a trivial combination, we expect that a more thorough
and principled approach would give even better results, which
is left to future work.

Efficiency. Finally, we investigate the efficiency of the entity
phase. Note that the efficiency of the domain phase is not
of primary concern, as it is only executed once. We con-
sider the selection time (for deciding which query) and fetch
time (for downloading pages from remote servers), in order
to comprehend the former in the overall workflow of page
gathering. Selection is CPU bound and varies for different
methods, whereas fetch is I/O bound and is consistent for
different methods.

For each of our methods, we report in Table IV the time
spent per query on a machine with a 2.2GHz CPU, utilizing
only a single thread. In general, our methods only require 1–2
seconds to select a query, and the entity phase is dominated
by the fetch operation. That is, our methods only impose a
minor overhead over the fetch time. In real-world applications,
our selections are fast enough for online processing, and
they can be further improved by various techniques, such as
parallelizing over entities, and interleaving the selection (CPU)
and fetch (I/O) operations between different entities.

VII. CONCLUSION

In this paper, we studied the task of learning to query for
gathering Web pages focused on an entity aspect of interest.
To intelligently select queries, we quantify the usefulness of
each candidate query based on an utility inference model. Fur-
thermore, we recognize the importance of two subproblems.
Firstly, we must learn from domain entities through templates,
which enable domain-aware L2Q. Secondly, we must consider
the context of past queries through collective utilities, which
enable context-aware L2Q. We empirically evaluated our ap-
proach on two domains, and showed that it outperformed both
algorithmic and manual baselines significantly.
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