Context-Aware Adapter Tuning for Few-Shot Relation Learning in Knowledge Graphs

Ran Liu¹, Zhongzhou Liu¹, Xiaoli Li^{2,3}, Yuan Fang¹

Singapore Management University¹ Institute for Infocomm Research, A*STAR, Singapore² A*STAR Centre for Frontier Al Research, Singapore³

MOTIVATION 0.0 Cosine 0.0 Rank of relation pairs Rank of relation pairs Rank of relation pairs (a) WIKI (b) FB15K-237 (c) UMLS

Figure 1: Pairwise cosine similarity of relations.

Contributions

- 1. Integrate a lightweight adapter module into the meta-learning framework to enable relation-specific adaptations of global prior to local task in the meta-testing stage.
- 2. Inject additional contextual information about the target relation into meta-testing to enrich the few-shot relation instances for better adaptation to novel relations.

Problem

- Assumption in conventional meta-learning: meta-training and meta-testing tasks are independently and identically distributed (i.i.d.).
- Due to the data distribution shift, the learned function from meta-training relation tasks would not be able to make accurate predictions for downstream novel relation tasks in meta-testing.

Preliminaries & Methodology

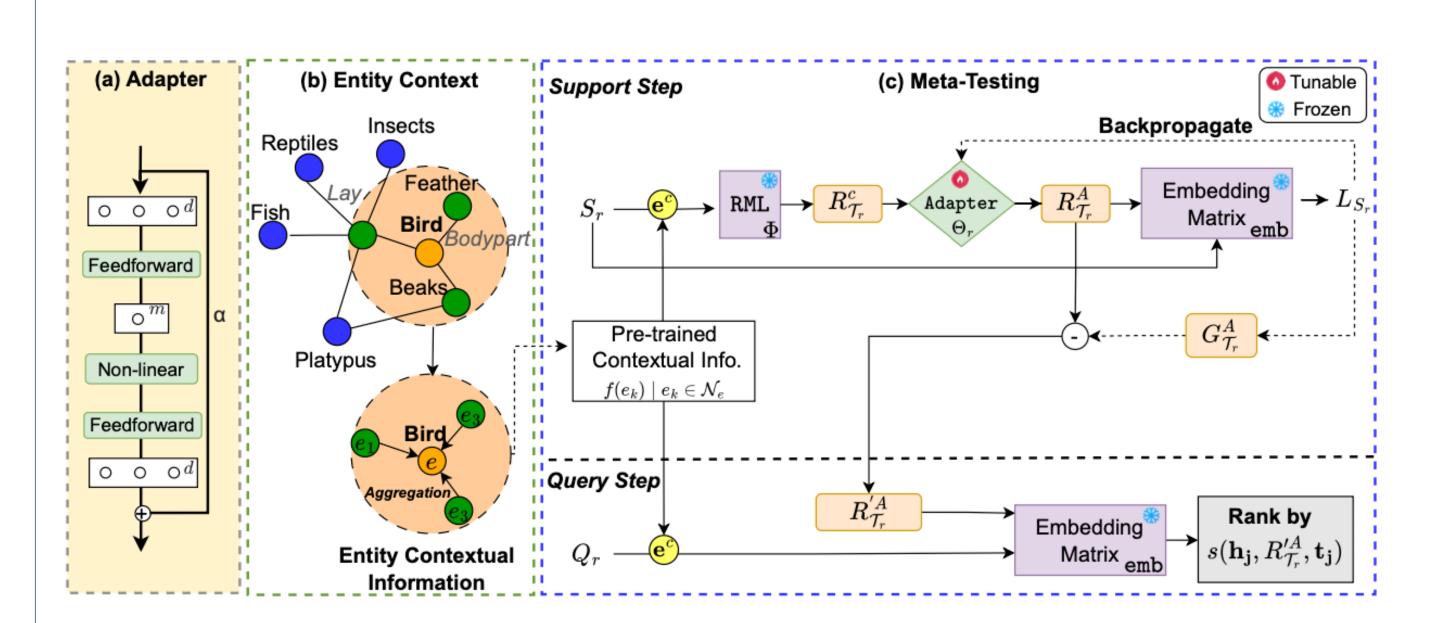


Figure 2: Illustration of key concepts in RelAdapter, hinging on an entity-aware adapter (a, b) in the meta-testing stage (c). Note that we omit the meta-training stage, which is similar to meta-testing but with backpropagation of the query loss to update the model parameters (emb and Φ).

Adapter Structure

$$\begin{split} R_{\mathcal{T}_r}^A &= \mathsf{Adapter}(R_{\mathcal{T}_r}; \Theta_r) \\ &= \alpha \cdot \mathsf{FFN}(R_{\mathcal{T}_r}; \Theta_r) + (1 - \alpha) \cdot R_{\mathcal{T}_r} \end{split}$$

Contextual information

$$\mathbf{e}^c = \mu \cdot \text{Mean}(\{f(e_k) \mid e_k \in \mathcal{N}_e\})$$

$$+ (1 - \mu) \cdot \text{emb}(e)$$

Context-aware relation meta

$$R_{\mathcal{T}_r}^c = \text{Mean}(\{\text{RML}(\mathbf{h}^c, \mathbf{t}^c; \Phi) \mid \mathcal{S}_r\})$$

Relation-specific adaptation

$$R_{\mathcal{T}_r}^A = \mathtt{Adapter}(R_{\mathcal{T}_r}^c; \Theta_r)$$

Gradient update

$$G_{\mathcal{T}_r}^A = \nabla_{R_{\mathcal{T}_r}^A} L_{\mathcal{S}_r},$$

$$R_{\mathcal{T}_r}^{\prime A} = R_{\mathcal{T}_r}^A - \beta G_{\mathcal{T}_r}^A.$$

Support & Query loss

$$\begin{split} L_{\mathcal{S}_r} &= \sum_{(h,r,t) \in \mathcal{S}_r} [\gamma + s(\texttt{emb}(h), R_{\mathcal{T}_r}, \\ & \texttt{emb}(t)) - s(\texttt{emb}(h), R_{\mathcal{T}_r}, \texttt{emb}(t'))]_+ \\ L_{\mathcal{Q}_r} &= \sum_{(h,r,t) \in \mathcal{Q}_r} [\gamma + s(\texttt{emb}(h), R'_{\mathcal{T}_r}, \\ & \texttt{emb}(t)) - s(\texttt{emb}(h), R'_{\mathcal{T}_r}, \texttt{emb}(t'))]_+ \end{split}$$

Ranking score

$$s\left(\operatorname{emb}(h), R_{\mathcal{T}_r}^{\prime A}, \operatorname{emb}(t)\right) =$$

$$\|\operatorname{emb}(h) + R_{\mathcal{T}_r}^{\prime A} - \operatorname{emb}(t)\|$$

Experiments & Conclusion

Table 2: Performance comparison against baselines in the 3-shot setting. (Best: bolded, runners-up: underlined).

		WIKI			FB15K-237			UMLS		
	Models	MRR	Hit@10	Hit@1	MRR	Hit@10	Hit@1	MRR	Hit@10	Hit@1
Supervised Relation Learning	TransE DistMult ComplEx RGCN	.031±.007 .047±.003 .093±.004 .217±.012	.043±.012 .082±.009 .166±.011 .363±.023	.021±.014 .031±.011 .071±.012 .188±.031	.294±.005 .234±.008 .239±.007 .332±.011	.437±.011 .364±.007 .359±.010 .495±.013	.204±.014 .208±.010 .205±.013 .241±.031	.178±.036 .231±.035 .251±.038 .409±.059	.310±.051 .337±.049 .351±.041 .549±.072	.146±.068 .214±.067 .227±.058 .389±.089
Few-shot Relation Learning	GMatching FSKGC GANA FAAN HiRe MetaR	.133±.017 .131±.003 .291±.014 .278±.018 .300±.028 .314±.013	.331±.013 .267±.010 .384±.012 .421±.020 .444±.012 .420±.016	.114±.026 .104±.016 .272±.015 .275±.024 .282±.015 .274±.028	.309±.019 .355±.005 .388±.004 .363±.009 .378±.013 .368±.007	.441±.015 .523±.004 .553±.008 .542±.007 .571±.011 .536±.005	.245±.019 .217±.011 .301±.017 .279±.013 .281±.015 .251±.012	.296±.059 .525±.031 .541±.045 .545±.034 .577±.060 .435±.075	.532±.040 .682±.024 .721±.076 .746±.120 <u>.752</u> ±.066 .601±.095	.257±.087 .490±.038 .502±.047 .505±.068 .533±.089 .417±.103
	RelAdapter	.347 ±.006	.454 ±.012	.317 ±.013	.405 ±.012	.575 ±.014	<u>.297</u> ±.019	.608 ±.067	.780 ±.044	.555 ±.062

Compared to backbone: The big performance improvement of RelAdapter compared to MetaR^[1] shows the importance of adding context-ware adapter in the meta-learning framework, enabling relation-specific and context aware adaptation.

Table 4: Number of parameters of our adapter w.r.t. MetaR.

	WIKI	FB15K-237	UMLS
MetaR Our adapter	$\begin{array}{c c} 241,967,556 \\ 5,125 \end{array}$	$1,\!650,\!206$ $5,\!125$	$234,\!306$ $5,\!125$
% of MetaR	0.002	0.311	2.187

Negligible parameter overhead for Adapter

Table 5: Runtime (in seconds) for meta-training and meta-testing.

Meta-learning stage	Model	WIKI	FB15K-237	UMLS
Meta-train (total runtime)	MetaR RELADAPTER	22,691 $24,085$	$16,\!504$ $17,\!529$	$8,\!802$ $9,\!656$
Meta-test (per prediction)	MetaR RELADAPTER	$0.012 \\ 0.045$	$0.005 \\ 0.008$	$0.043 \\ 0.053$

Parameter efficiency: Compared to MetaR, the only new parameters of RelAdapter belong to the adapter module, which is only a small overhead

ACKNOWLEDGEMENT & REFERENCES

[1] Mingyang Chen, et al. MetaR: Meta relational learning for few-shot link prediction in knowledge graphs. EMNLP 2019.

For complete references please refer to https://arxiv.org/abs/2410.09123

