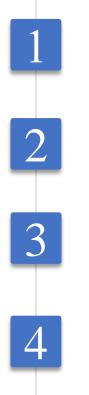


## **Dynamic Heterogeneous Graph Embedding via Heterogeneous Hawkes Process**

Yugang Ji<sup>1</sup>, Tianrui Jia<sup>1</sup>, Yuan Fang<sup>2</sup>, <u>Chuan Shi<sup>1</sup></u>
<sup>1</sup>Beijing University of Posts and Telecommunications, Beijing, China
<sup>2</sup>Singapore Management University, Singapore








## HPGE



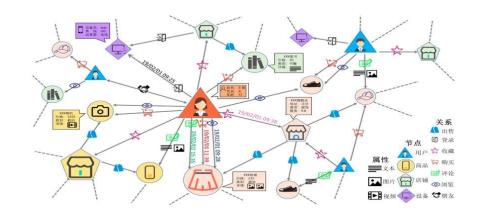




## HPGE

## **Experiments**



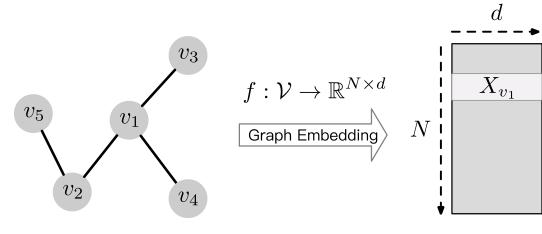



#### Graphs are universal in real-world scenarios

Graph mining can improve users' experiences



Facebook Social Network




Alibaba E-commerce Graph





#### Graph Embedding



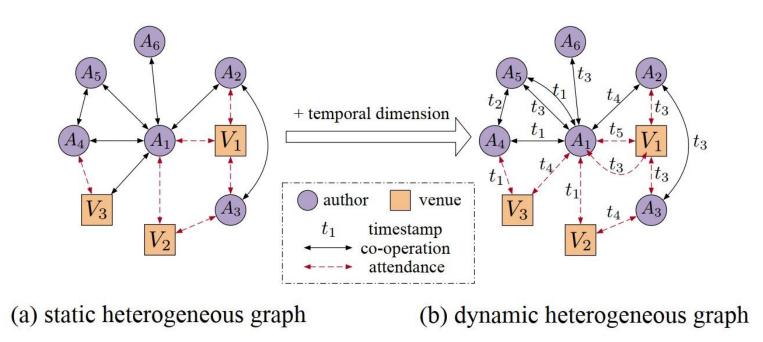
Graph Data

Node Embedding

#### **Drawbacks of existing models**

cannot preserve the heterogeneous semantics

cannot preserve the dynamic evolutions




#### **Dynamic Heterogeneous Graph (DHG)**

Multiple dynamic events

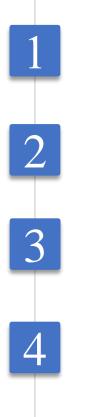
historical events excite current interaction

we focus on the problem of dynamic heterogeneous graph embedding





## <


#### How to model the continuous dynamics of heterogeneous interactions?

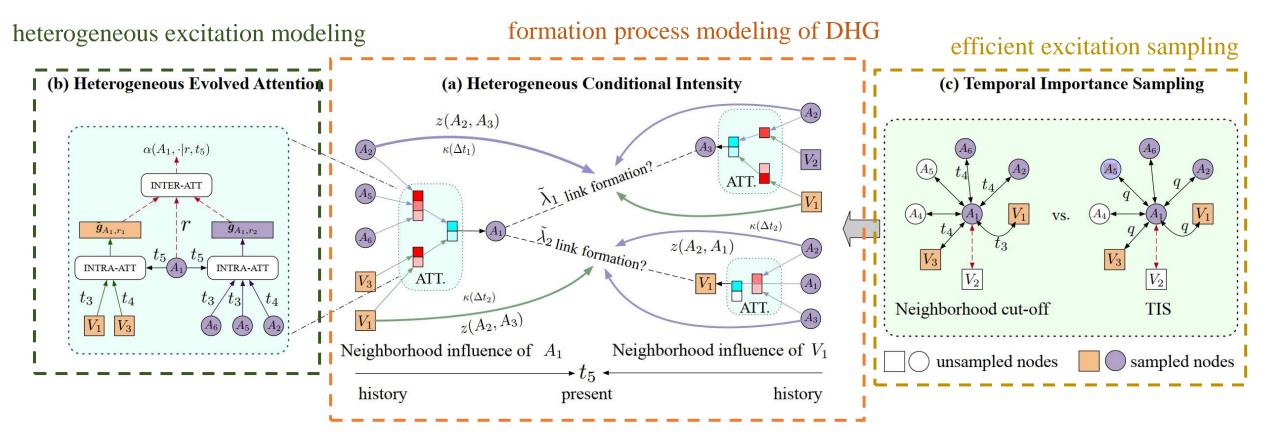
• heterogeneous formation process

#### How to model the complex influence of different semantics?

- historical events are heterogeneous
- current interactions are heterogeneous
- excitations continuously decay





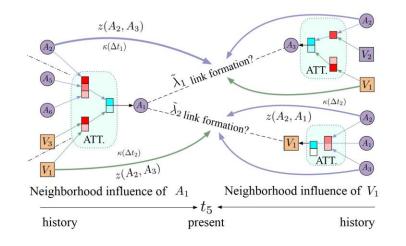

## HPGE



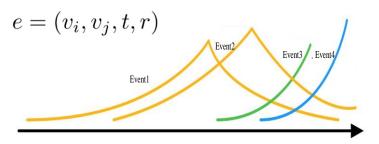


**HPGE** 






Overall framework of HPGE.




## <

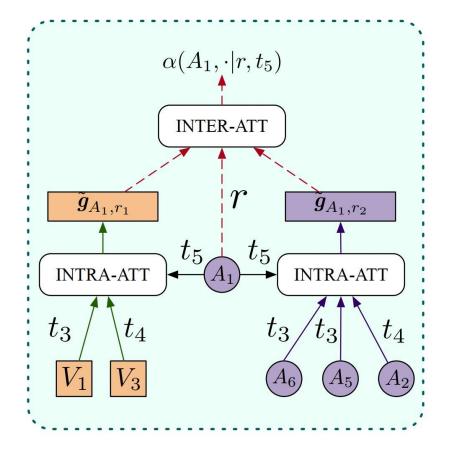
#### Heterogeneous Conditional Intensity



HPGE



| ional intensity                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mu_r(v_i, v_j) = -\sigma(f(\boldsymbol{h}_i \boldsymbol{W}_{\phi(v_i)} - \boldsymbol{h}_j \boldsymbol{W}_{\phi(v_j)}) \boldsymbol{W}_r + b_r)$ |
| $\tilde{\lambda}(e) = \underbrace{\mu_r(v_i, v_j)}$                                                                                              |
| base rate                                                                                                                                        |
| $+ \gamma_1 \sum_{r' \in \mathcal{R}} \sum_{p \in \mathcal{N}_{i,r',$                                                                            |
| neighborhood influence on source $v_i$                                                                                                           |
| $+ \gamma_2 \sum_{r'' \in \mathcal{R}} \sum_{q \in \mathcal{N}_{j,r''} < t} \alpha(q, e) z(v_q, v_i) \kappa_j(t - t_q)$                          |
| neighborhood influence on target $v_j$                                                                                                           |
|                                                                                                                                                  |
| $z(v_p, v_j) = - \  oldsymbol{h}_p oldsymbol{W}_{\phi(p)} - oldsymbol{h}_j oldsymbol{W}_{\phi(j)} \ _2^2$ , Type-aware influence                 |
|                                                                                                                                                  |

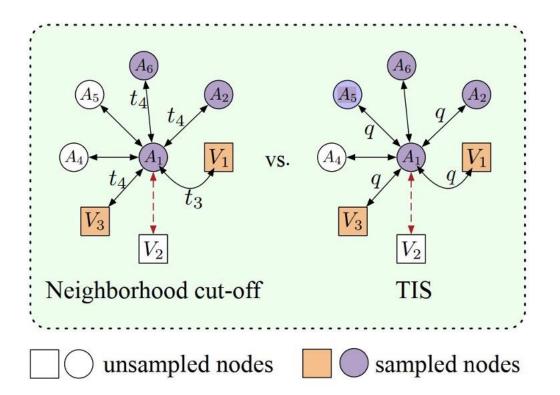

#### **Event-level excitation via intra-attention**

**HPGE** 

$$\xi(v_p, t_p | r', v_i, t) = \operatorname{softmax}(\sigma(\kappa_i(t - t_p)[\boldsymbol{h}_i \boldsymbol{W}_{\phi(v_i)} \oplus \boldsymbol{h}_j \boldsymbol{W}_{\phi(v_j)}] \boldsymbol{W}_{\xi}))$$

## Semantic-level excitation via inter-attention $\beta(r|r', v_i, t) = \operatorname{softmax}(\operatorname{tanh}(\tilde{\boldsymbol{g}}_i \boldsymbol{W}_r) \boldsymbol{w}_r)^{\mathrm{T}},$

## Heterogeneous evolved attention $\alpha(p,e) = \xi(v_p,t_p|r',v_i,t)\beta(r|r',v_i,t)$







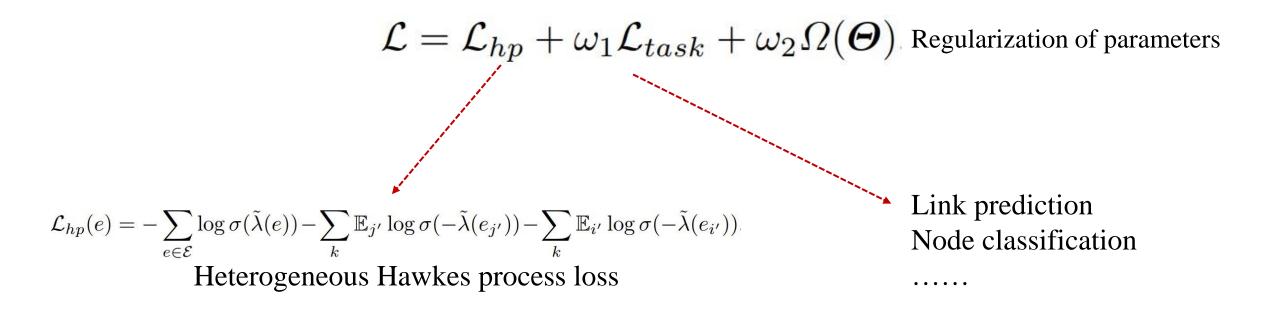

HPGE

## **Temporal Importance Sampling (TIS)**



Samper

$$q(v_p|v_i, r', t) = \frac{\kappa_i(t - t_p)N_i(v_p)}{\sum_{v_{p'} \in \mathcal{N}_{i, r', < t}} \kappa_i(t - t'_p)N_i(v'_p)},$$


Estimator

$$z(\hat{v}_p, v_j) = \frac{1}{n} \cdot \frac{z(\hat{v}_p, v_j)}{q(\hat{v}_p | v_i, r', t)}, \quad \hat{v}_p \sim q(v_p | v_i, r', t)$$





#### Loss Function







## HPGE



#### **Experiments Datasets & Baselines & Tasks**

#### **Datasets**

| Datasets | Node Types     | #Nodes Event Types |         | #Events         | Time Span   |  |
|----------|----------------|--------------------|---------|-----------------|-------------|--|
| Aminer   | Author (A)     | $23,\!037$         | A-A     | 71,121          | 16 years    |  |
| Ammer    | Conference (C) | 22                 | A-C 52, |                 | 10 years    |  |
| DBLP     | Author (A)     | 34,766             | A-A     | 133,684         | 10 yoars    |  |
|          | Venue (V)      | 20                 | A-V     | 98,262          | 10 years    |  |
| Yelp     | User $(U)$     | 494,524            | BrU     | $1,\!145,\!070$ | 60 quarters |  |
|          | Business (B)   | 13,507             | BtU     | 226,728         | ou quarters |  |

Table 1: Statistics of the three public datasets.

#### **Baselines**

- $\diamond$  M2V. & HEP & HAN & HGT
- $\diamond$  CTDNE & E.GCN & M<sup>2</sup>DNE
- ◆ DHNE & DyHNE & DyHATR



- Effectiveness analysis
  - > Node classification
  - Temporal Link Prediction

Model analysis



#### **Node classification**

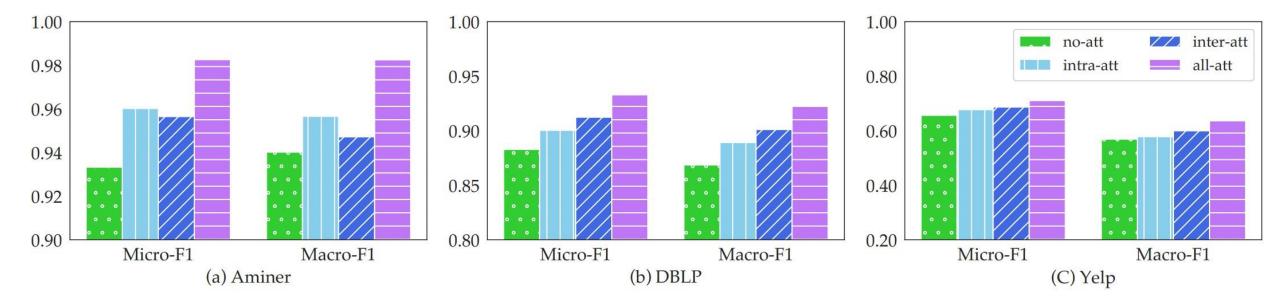
Table 2: Performance evaluation (with standard deviation) on node classification. The best performance is bolded and the second best is underlined.

| Dataset | Aminer           |               | DB           | SLP             | Yelp         |               |  |
|---------|------------------|---------------|--------------|-----------------|--------------|---------------|--|
| Metric  | Micro-F1         | Macro-F1      | Micro-F1     | Macro-F1        | Micro-F1     | Macro-F1      |  |
| M2V     | 0.824(0.029)     | 0.853(0.032)  | 0.874(0.024) | 0.885(0.029)    | 0.537(0.023) | 0.642(0.017)  |  |
| HEP     | 0.949(0.016)     | 0.952(0.013)  | 0.903(0.022) | 0.913(0.018)    | 0.622(0.012) | 0.694(0.009)  |  |
| HAN     | 0.967(0.008)     | 0.970(0.009)  | 0.912(0.014) | 0.914(0.007)    | 0.621(0.019) | 0.691(0.025)  |  |
| HGT     | 0.963(0.007)     | 0.971(0.011)  | 0.920(0.002) | 0.927(0.001)    | 0.633(0.026) | 0.705(0.022)  |  |
| CTDNE   | 0.897(0.038)     | 0.895(0.025)  | 0.872(0.001) | 0.892(0.005)    | 0.512(0.011) | 0.639(0.011)  |  |
| E.GCN   | 0.952(0.020)     | 0.955(0.018)  | 0.887(0.009) | 0.881(0.010)    | 0.611(0.009) | 0.687(0.008)  |  |
| M2DNE   | 0.969(0.015)     | 0.972(0.018)  | 0.891(0.022) | 0.909(0.027)    | 0.619(0.003) | 0.693(0.005)  |  |
| DHNE    | 0.901(0.010)     | 0.913(0.009)  | 0.888(0.007) | 0.909(0.008)    | 0.578(0.001) | 0.665(0.001)  |  |
| DyHNE   | 0.970(0.008)     | 0.978(0.007)  | 0.922(0.003) | 0.922(0.004)    | 0.622(0.011) | 0.721(0.015)  |  |
| DyHATR  | _ 0.973(0.002) _ | -0.969(0.003) | 0.933(0.011) | _0.935(0.010) _ | 0.627(0.008) | _0.717(0.007) |  |
| HPGE    | 0.988(0.002)     | 0.984(0.003)  | 0.951(0.005) | 0.952(0.004)    | 0.649(0.010) | 0.731(0.012)  |  |





#### Temporal link prediction

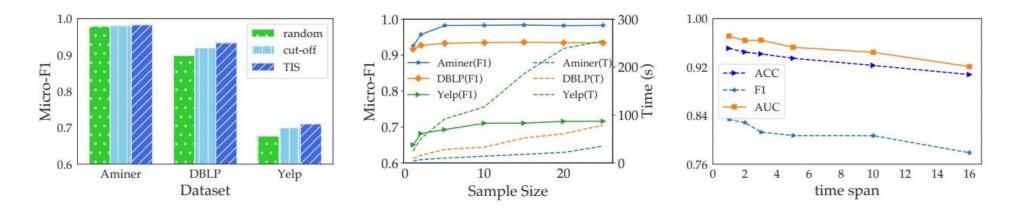

Table 3: Performance evaluation on temporal link prediction. The best performance is bolded and the second best is underlined.

| Dataset | Aminer |       | Yelp  |       |       | DBLP  |              |              |       |
|---------|--------|-------|-------|-------|-------|-------|--------------|--------------|-------|
| Metric  | ACC    | F1    | AUC   | ACC   | F1    | AUC   | ACC          | F1           | AUC   |
| M2V     | 0.806  | 0.359 | 0.759 | 0.790 | 0.419 | 0.702 | 0.798        | 0.375        | 0.656 |
| HEP     | 0.921  | 0.814 | 0.944 | 0.853 | 0.566 | 0.829 | 0.910        | 0.753        | 0.934 |
| HAN     | 0.923  | 0.811 | 0.955 | 0.855 | 0.591 | 0.833 | 0.903        | 0.751        | 0.940 |
| HGT     | 0.938  | 0.822 | 0.963 | 0.859 | 0.588 | 0.833 | 0.899        | 0.761        | 0.941 |
| CTDNE   | 0.824  | 0.382 | 0.763 | 0.806 | 0.342 | 0.635 | 0.713        | 0.345        | 0.653 |
| E.GCN   | 0.904  | 0.767 | 0.922 | 0.822 | 0.526 | 0.785 | 0.853        | 0.714        | 0.905 |
| M2DNE   | 0.929  | 0.790 | 0.951 | 0.854 | 0.547 | 0.818 | 0.896        | 0.734        | 0.939 |
| DHNE    | 0.875  | 0.634 | 0.827 | 0.831 | 0.504 | 0.717 | 0.821        | 0.668        | 0.808 |
| DyHNE   | 0.928  | 0.838 | 0.959 | 0.861 | 0.592 | 0.831 | 0.909        | 0.767        | 0.940 |
| DyHATE  | 0.941  | 0.832 | 0.966 | 0.870 | 0.598 | 0.843 | <u>0.914</u> | <u>0.773</u> | 0.936 |
| HPGE    | 0.953  | 0.835 | 0.976 | 0.873 | 0.603 | 0.850 | 0.938        | 0.793        | 0.957 |



#### Effective attention mechanism

- Effectiveness of intra-attention of events: all-att vs. inter-att vs. no-att
- Effectiveness of inter-attention of semantics: all-att vs. intra-att vs. no-att








#### Effective sampling strategy & Effective sample size

#### **Effective evolution modeling**



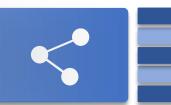
(a) sampling strategies (b) effective sample size (c) varying the dynamics





## HPGE








- We study the problem of dynamic heterogeneous graph embedding via heterogeneous Hawkes process.
- To make full use of dynamic and heterogeneous information, we propose the HPGE to model the formation process of temporal heterogeneous interactions by considering both event-level and semantic-level excitation to preserve all dynamics and semantics.
- Experimental results on three real-world datasets demonstrate the effectiveness of our proposed model.







# Thank you ! Q&A



