
Temporal Heterogeneous Interaction Graph

Embedding for Next-Item Recommendation

Yugang Ji1, Mingyang Yin2, Yuan Fang3, Hongxia Yang2, Xiangwei Wang2, 

Tianrui Jia1 , Chuan Shi1,4

1Beijing University of Posts and Telecommunications, Beijing, China

2Alibaba Group, Hangzhou, China

3Singapore Management University, Singapore

4Pengcheng Laboratory, Shenzhen, China



1 Overview

1

C2:temporal prefer-

ence with hetero-

geneous interactions

C1:complex dynamic

of historical habits

and current demands

◼ The first use of THIGs for next-item recommendation.

◼ Propose THIGE to couple long- and short-term

preferences of heterogeneous nature.

◼ Our THIGE performs better than SOTA, and the

improvement of ROC-AUC is from 0.51% to 5.84%.
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1 Motivation

E-commerce platforms have revolutionized our lifestyles.

Recommender systems improve the shopping experience.

1Images from the Internet.



1 Motivation Next-Item Recommendation

Next-Item Recommendation
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◼ unable to model historical habits

◼ ignoring the types of interactions

◼ cannot utilize structural information

Drawbacks of existing models (sequential)

historical

interactions
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1 Motivation Temporal heterogeneous interaction graph

Temporal heterogeneous interaction graph (THIG)

3
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◼multiple interactions with timestamps

◼ user attributes and item attributes
we focus on the problem of next-item 

recommendation on THIGs



1 Motivation challenges

How to effectively model the complex dynamics, coupling both 

historical habits and evolving demands?

4
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How to make full use of the temporal heterogeneous interactions 

to model the preferences of different types?
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2 THIGE Overall framework

1

◼ temporal embedding layer

◼ short-term preferences modeling

◼ long-term preferences modeling

◼ item preferences modeling

◼ optimization objects



2 THIGE Embedding layer with temporal information

1

Temporal embedding of an item v with timestamp t

◼ static component

◼ temporal component

◼ temporal embedding 

𝒙𝑣 = 𝑾𝜙 𝑣 𝒂𝑣 attributes

projection matrix of type 𝜙 𝑣

𝑾𝜉(Δ𝑡)
timespan Δ𝑡 = 𝑇 − 𝑡

mapping function to map Δ𝑡 as a bucket id 

(one-hot feature)  

projection matrix of buckets 
⊕

𝒙𝑣,𝑡

=



2 THIGE Short-term preference with habit-guidance

1

Evolving information based on GRU

Habit-guided attention mechanism 
GRU
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2 THIGE Long-term preference with heterogeneous interactions

1

Heterogeneous aggregator

Heterogeneous self-attention (multi-head)
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Long-Term Preferences Modeling
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2 THIGE Optimization objective

1

Final embedding of users and items

Optimization objective
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3 Experiments Datasets & Baselines & Tasks

Datasets Baselines

◆DIEN & STAMP

◆SHAN & M3R

◆MEIRec & GATNE

Tasks

◆Comparison with baselines

◆Comparison of model variants

◆Analysis of key factors

12



3 Experiments Comparison with baselines

◼ Compared with the best competitors

◆4.04% improvement on Yelp

◆5.84% improvement on CouldTheme 

◆0.51% improvement on UserBehavior

(ROC-AUC)
13

◼ Perform better than sequential models 

effective overall preference modeling

effective heterogeneity modeling

◼ Perform better than GNN-based models

effective temporal information modeling 



3 Experiments Comparison of model variants

13

Attention effect: THIGE(hm) & THIGE(hb)

Range of preferences: THIGE(L) & THIGE(S)

Temporal effect: HIGE

✔️

✔️

✔️



3 Experiments Analysis of key factors

13

lengths of short-term interactions

sample of long-term interactions

◼ the performance of THIGE is

continuously improved

◼ simply extending the length of the

short term does not work

◼ too many interactions may be abnormal

and introduce noise



3 Experiments Analysis of key factors

13

different types of interactions

number of heads

◼ the performance gradually improves

◼ different types of interactions cannot

be treated independently

◼ h = 8 is a generally suitable and

robust choice
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4 Conclusions

◼ we study the problem of representation learning on THIGs for next-item 

recommendation.

◼ To make full use of dynamic and heterogeneous information, we propose the 

THIGE to model short- and long-term preferences through habit-guided and 

heterogeneous self-attention mechanisms.

◼ Experimental results on three real-world datasets demonstrate the 

effectiveness of our proposed model.
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