

Temporal Heterogeneous Interaction Graph Embedding for Next-Item Recommendation

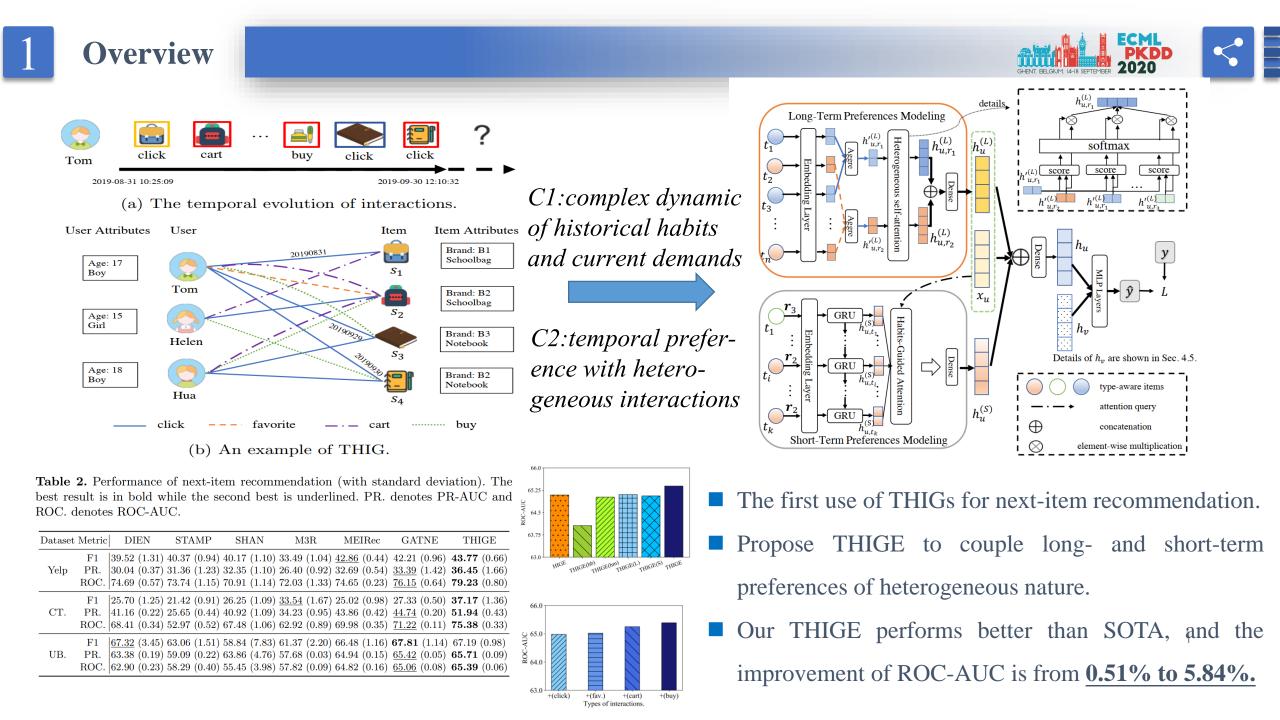
Yugang Ji¹, Mingyang Yin², Yuan Fang³, Hongxia Yang², Xiangwei Wang², Tianrui Jia¹, <u>Chuan Shi^{1,4}</u>

¹Beijing University of Posts and Telecommunications, Beijing, China

²Alibaba Group, Hangzhou, China

³Singapore Management University, Singapore

⁴Pengcheng Laboratory, Shenzhen, China



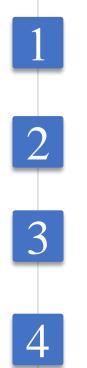
NTENTS

Motivation

THIGE

Experiments

Conclusions



Motivation

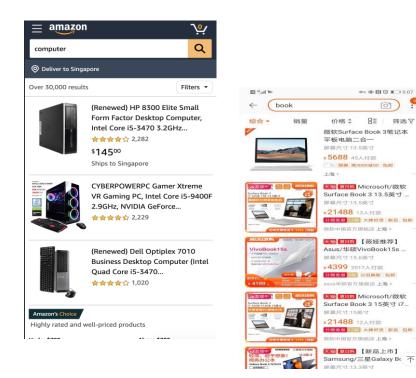
THIGE

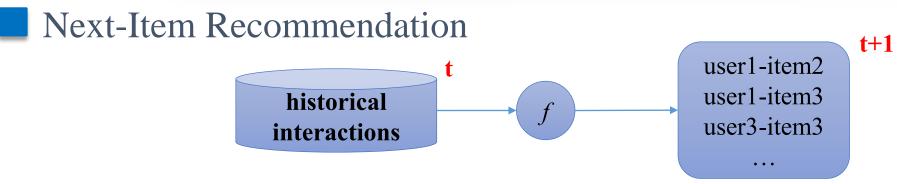
Experiments

Conclusions

E-commerce platforms have revolutionized our lifestyles.

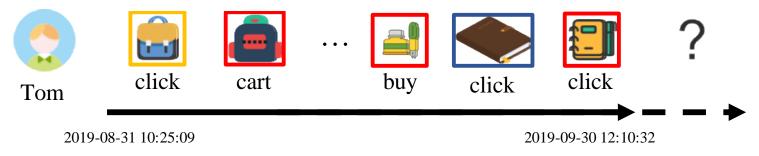
Recommender systems improve the shopping experience.





Drawbacks of existing models (sequential)

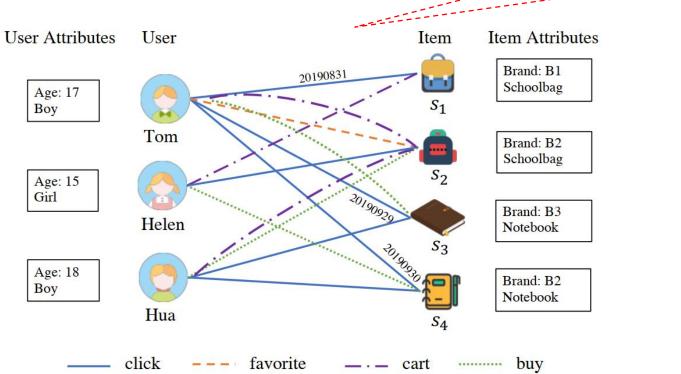
- unable to model historical habits
- ignoring the types of interactions
- cannot utilize structural information



Temporal heterogeneous interaction graph (THIG)

- multiple interactions with timestamps
- user attributes and item attributes

we focus on the problem of next-item recommendation on THIGs



3

How to effectively model the complex dynamics, coupling both historical habits and evolving demands?

How to make full use of the temporal heterogeneous interactions to model the preferences of different types?

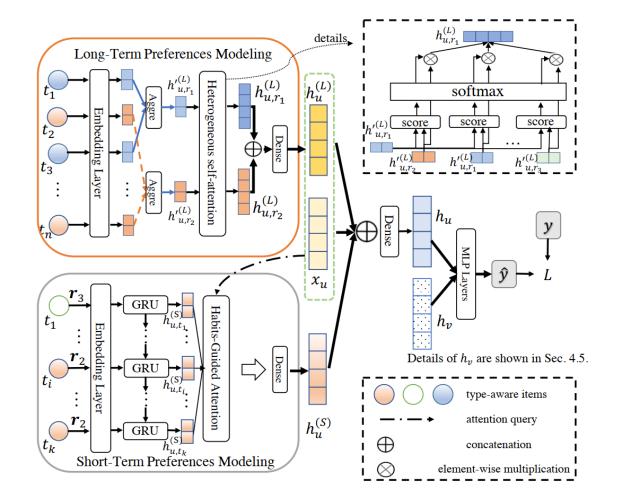
Motivation

THIGE

Conclusions

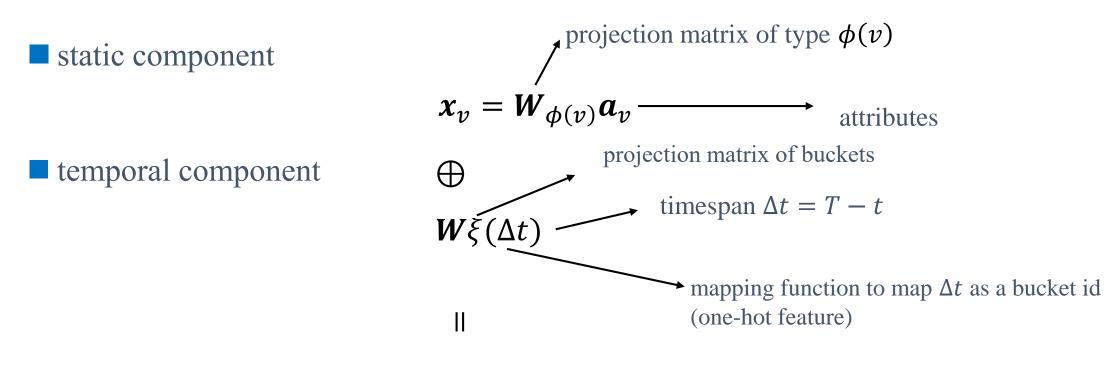
THIGE

Overall framework



temporal embedding layer
short-term preferences modeling
long-term preferences modeling
item preferences modeling
optimization objects

Temporal embedding of an item *v* with timestamp *t*

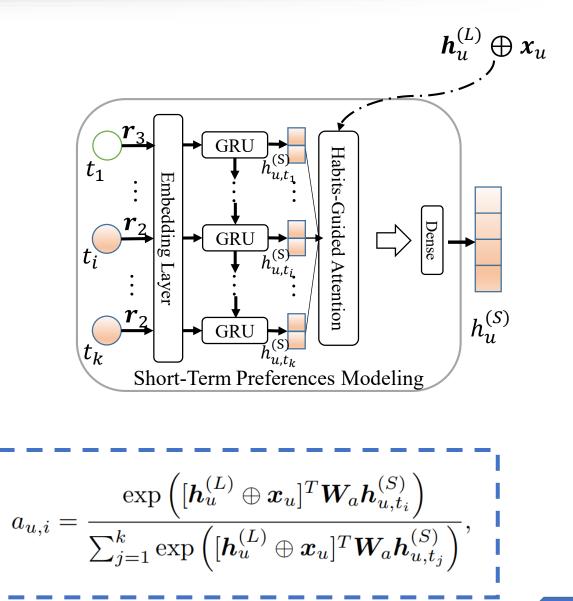


Evolving information based on GRU

$$\boldsymbol{x}_{\boldsymbol{v}_i, t_i, r_i} = \boldsymbol{x}_{\boldsymbol{v}_i, t_i} \bigoplus \boldsymbol{r}_i$$
$$\boldsymbol{h}_{u, t_i}^{(S)} = \text{GRU}(\boldsymbol{x}_{v_i, t_i, r_i}, \boldsymbol{h}_{u, t_{i-1}}^{(S)}), \quad \forall 1 < i \le k,$$

Habit-guided attention mechanism

$$\boldsymbol{h}_{u}^{(S)} = \sigma \left(W^{(S)} \cdot \sum_{i} a_{u,i} \boldsymbol{h}_{u,t_{i}}^{(S)} + b_{s} \right), \quad \forall 1 \leq i \leq k,$$



THIGE

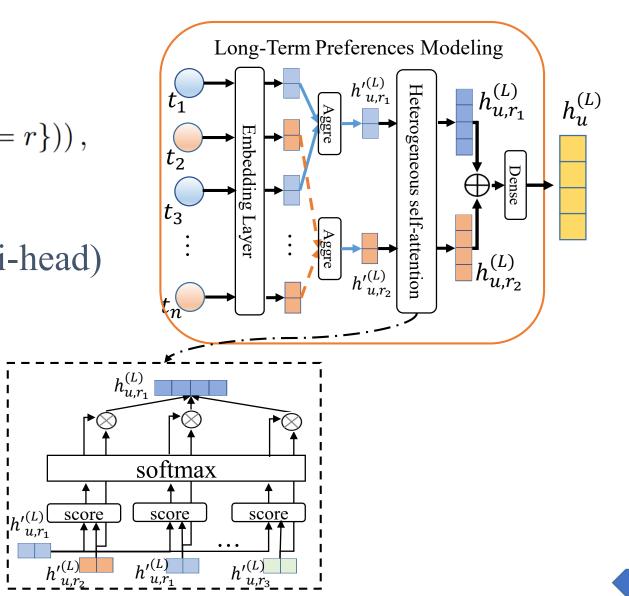
 u,r_1

Heterogeneous aggregator

$$\boldsymbol{h}_{u,r}^{\prime(L)} = \sigma\left(\boldsymbol{W}_r \cdot \operatorname{aggre}(\{\boldsymbol{x}_{v_i,t_i} \mid 1 \le i \le n, r_i = r\})\right),$$

Heterogeneous self-attention (multi-head)

$$oldsymbol{h}_{u,r}^{(L)} = \sum_{r'\in\mathcal{R}} \left(rac{\exp\left(oldsymbol{Q}_{u,r}^Toldsymbol{K}_{u,r'}/\sqrt{d_a}
ight)}{\sum_{r''\in\mathcal{R}}\exp\left(oldsymbol{Q}_{u,r}^Toldsymbol{K}_{u,r''}/\sqrt{d_a}
ight)} V_{u,r'}
ight)$$
 $oldsymbol{h}_u^{(L)} = \sigma\left(oldsymbol{W}^{(L)}(\oplus_{r\in\mathcal{R}}oldsymbol{h}_{u,r}^{(L)}) + b_l
ight),$



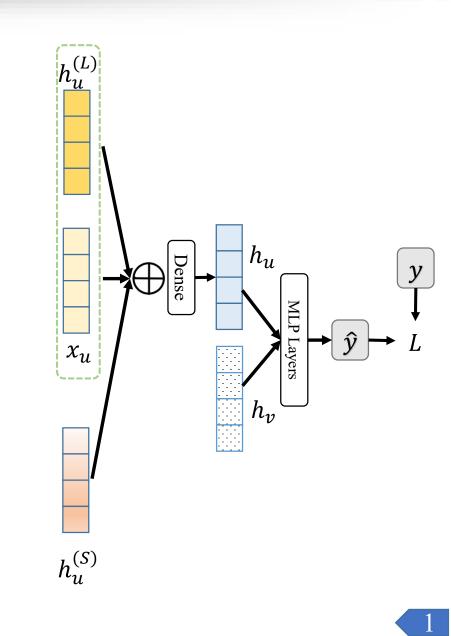
Final embedding of users and items

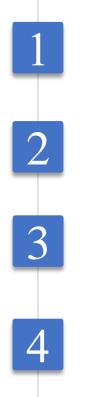
$$oldsymbol{h}_u = \sigma(oldsymbol{W}_u[oldsymbol{x}_u \oplus oldsymbol{h}_u^{(S)} \oplus oldsymbol{h}_u^{(L)}] + b_u),$$

 $oldsymbol{h}_v = \sigma(oldsymbol{W}_v[oldsymbol{x}_v \oplus oldsymbol{h}_v^{(L)}] + b_v),$

Optimization objective

$$\hat{y}_{u,v} = \text{sigmoid}(\text{MLP}(\boldsymbol{h}_u \oplus \boldsymbol{h}_v)),$$
$$L = -\sum_{\langle u,v \rangle} (1 - y_{u,v}) \log(1 - \hat{y}_{u,v}) + y_{u,v} \log(\hat{y}_{u,v}),$$





Motivation

THIGE

Experiments

Conclusions

Datasets

 Table 1. Description of datasets.

Dataset	Yelp	CloudTheme	UserBehavior
# User	$103,\!569$	$144,\!197$	533,974
# Item/Business	$133,\!502$	$272,\!334$	$4,\!152,\!242$
# Interaction	1,889,132	$1,\!143,\!567$	$122,\!451,\!055$
# Interaction type	2	2	4
# Training instance	611,568	865,182	3,203,844
(Training time span)	5 years	2 weeks	1 weeks
# Test instance	108,408	216,295	800,961
(Test time span)	next one quarter	next day	next day

Baselines

- DIEN & STAMP
- ◆ SHAN & M3R
- MEIRec & GATNE

Tasks

- Lasins
- Comparison with baselines
- Comparison of model variants
- Analysis of key factors

Table 2. Performance of next-item recommendation (with standard deviation). The best result is in bold while the second best is underlined. PR. denotes PR-AUC and ROC. denotes ROC-AUC.

Dataset	Metric	DIEN	STAMP	SHAN	M3R	MEIRec	GATNE	THIGE
Yelp	PR.	30.04(0.37)	31.36 (1.23)	32.35 (1.10)	26.40 (0.92)	$\overline{32.69}(0.54)$	<u>33.39</u> (1.42)	43.77 (0.66) 36.45 (1.66) 79.23 (0.80)
CT.	PR.	41.16 (0.22)	25.65(0.44)	40.92 (1.09)	34.23 (0.95)	43.86 (0.42)	<u>44.74</u> (0.20)	37.17 (1.36) 51.94 (0.43) 75.38 (0.33)
UB.	PR.	$\overline{63.38}(0.19)$	59.09 (0.22)	63.86 (4.76)	57.68 (0.03)	64.94 (0.15)	<u>65.42</u> (0.05)	67.19 (0.98) 65.71 (0.09) 65.39 (0.06)

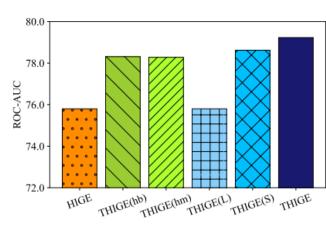
Compared with the best competitors

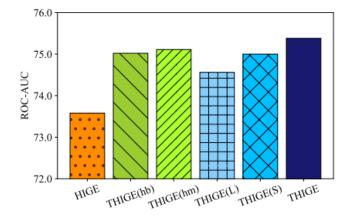
- ◆ 4.04% improvement on Yelp
- ◆ 5.84% improvement on CouldTheme
- ◆ 0.51% improvement on UserBehavior (ROC-AUC)
- Perform better than sequential models effective overall preference modeling effective heterogeneity modeling
- Perform better than GNN-based models effective temporal information modeling 13

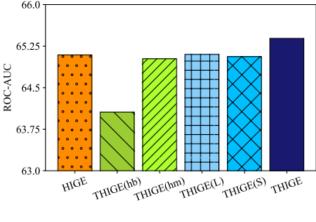
Attention effect: THIGE(hm) & THIGE(hb)

Range of preferences: THIGE(L) & THIGE(S)

Temporal effect: HIGE 🗸







(a) Yelp

(b) CloudTheme

(c) UserBehavior

lengths of short-term interactions

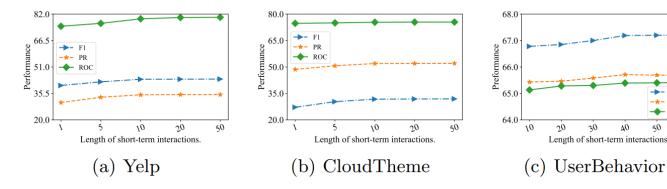
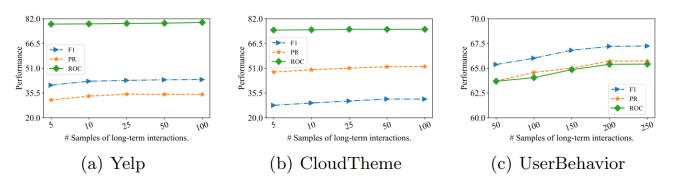


Fig. 4. Analyzing the length of short-term interactions in THIGE. sample of long-term interactions



the performance of THIGE **1**S continuously improved

PR

15

50

simply extending the length of the short term does not work

too many interactions may be abnormal and introduce noise

Fig. 5. Analyzing the samples of long-term interactions in THIGE.

13

different types of interactions

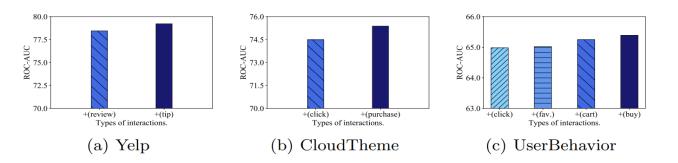


Fig. 6. Analyzing the types of interactions in THIGE.

 the performance gradually improves
 different types of interactions cannot be treated independently

number of heads

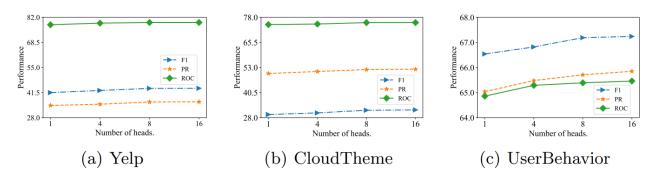


Fig. 7. Analyzing the number of heads in THIGE.

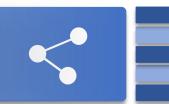
h = 8 is a generally suitable and robust choice

Motivation

THIGE

Experiments

- we study the problem of representation learning on THIGs for next-item recommendation.
- To make full use of dynamic and heterogeneous information, we propose the THIGE to model short- and long-term preferences through habit-guided and heterogeneous self-attention mechanisms.
- Experimental results on three real-world datasets demonstrate the effectiveness of our proposed model.



Thank you ! Q&A

