Modeling Sequential Preferences with Dynamic User and Context Factors (Supplementary Material)

Duc-Trong Le¹, Yuan Fang², and Hady W. Lauw¹

¹ School of Information Systems, Singapore Management University, Singapore ductrong.le.2014@phdis.smu.edu.sg,hadywlauw@smu.edu.sg ² Institute for Infocomm Research, Singapore yfang@i2r.a-star.edu.sg

1 Synthetic Dataset

Here, we first describe the original parameters for the synthetic data generation, and then show the parameters learned by each method.

Original Parameter Values. To generate a synthetic dataset, we construct a simple model with 2 latent groups $(|\mathcal{G}| = 2)$, 2 latent states $(|\mathcal{X}| = 2)$, 2 levels of context factor $(|\mathcal{R}| = 2)$, 4 items $(|\mathcal{Y}| = 4)$, 4 features (|F| = 4) each with 2 binary feature values.

The six-tuple parameter $\theta = (\pi, \sigma, \rho, A, B, C)$ is specified such that:

- Each (group, state) combination predominately generates 1 of the 4 items.
- Each context factor level is characterized by a pair of context features.
- One context factor level predominately supports self-transition to the same state. The other level predominately supports switching to the other state.

The original parameter values used during synthetic data generation are shown in the *Original Values* column of Table 1.

Learned Parameter Values. We run each comparative model on the generated synthetic dataset with 10 thousand sequences, each of length 10. Table 1 also shows the parameter values learned by each model.

- HMM: It seems to take the advantage of the grouping probability to create hidden states and aggregate the emission probabilities of the two groups. Its transition probability also favors that of the *majority* context factor level.
- SEQ-E: It learns the group distribution σ well, but the initial distribution of hidden states π is a bit off. This affects the emission probability. The transition probability amounts to an aggregation of the two context factor levels' transition matrices.
- SEQ-T: It can recover most of the parameters, except the emission probability due to its not taking into account the user bias.
- SEQ*: Importantly, SEQ* is the only model that can virtually recover all of the original parameter values with very light noises.

 $\mathbf{2}$

[Omigrin al	Learned Values			
Parameter	Original	TIMM			CEO*
I	Values	HMM	SEQ-E	SEQ-T	SEQ*
$\pi = [\pi_0, \pi_1]$	[0.80, 0.20]	[0.90, 0.10]	[0.75, 0.25]	[0.80, 0.20]	[0.80, 0.20]
$\sigma = [\sigma_0, \sigma_1]$	[0.90, 0.10]	N.A.	[0.90, 0.10]	N.A.	[0.90, 0.10]
$ ho = [ho_0, ho_1]$	[0.30, 0.70]	N.A.	N.A.	[0.30, 0.70]	[0.30, 0.70]
$A = [A_0, A_1]$					
$A_0 =$	$A_0 =$			$A_0 =$	$A_0 =$
$\begin{bmatrix} A_{000} & A_{001} \end{bmatrix}$	$[0.010 \ 0.990]$	$A_0 =$	$A_0 =$	$[0.008 \ 0.992]$	[0.004 0.996]
$A_{010} A_{011}$	$0.700 \ 0.300$	[0.999 0.001]	$[0.670 \ 0.330]$	$0.703 \ 0.297$	0.696 0.304
$\overline{A}_1 =$	$\tilde{A}_1 =$	0.001 0.999	0.280 0.720	$\tilde{A}_1 =$	$A_1 =$
$\begin{bmatrix} A_{100} & A_{101} \end{bmatrix}$	$[0.990 \ 0.010]$			[0.994 0.006]	[0.993 0.007]
$A_{110} A_{111}$	0.300 0.700			$0.292\ 0.708$	0.293 0.707
$B = [B_0, B_1]$					
$B_0 =$	$B_0 =$		$B_0 =$		$B_0 =$
$\begin{bmatrix} B_{000} & B_{001} \end{bmatrix}$	[0.991 0.003]		[0.989 0.006]		[0.991 0.002]
$B_{002} B_{003}$	0.003 0.003	$B_0 =$	0.003 0.002	$B_0 =$	0.003 0.004
$B_{010} B_{011}$	0.003 0.991	[0.605 0.389]	0.202 0.790	[0.891 0.004]	0.010 0.984
$B_{012} B_{013}$	0.003 0.003	0.003 0.003	0.005 0.003	0.101 0.004	0.003 0.003
$B_1 =$	$B_1 =$	0.002 0.003	$B_1 =$	0.008 0.890	$B_1 =$
$\begin{bmatrix} B_{100} & B_{101} \end{bmatrix}$	[0.003 0.003]	0.605 0.390	[0.002 0.002]	0.003 0.099	[0.002 0.003]
$B_{102} B_{103}$	0.991 0.003		0.980 0.018		0.990 0.005
$B_{110} B_{111}$	0.003 0.003		$0.003 \ 0.005$		0.002 0.004
$B_{112} B_{113}$	$0.003 \ 0.991$		$0.028 \ 0.784$		0.014 0.980
$C = [C_0, C_1]$					
$C_0 =$	$C_0 =$			$C_0 =$	$C_0 =$
$\begin{bmatrix} C_{000} & C_{001} \end{bmatrix}$	[0.10 0.90]			[0.09 0.91]	[0.09 0.91]
$C_{010} C_{011}$	0.20 0.80			0.19 0.81	0.19 0.81
$C_{020} C_{021}$	0.90 0.10			0.90 0.10	0.90 0.10
$C_{020} C_{021}$ $C_{030} C_{031}$	0.90 0.10	N.A.	N.A.	0.90 0.10	0.90 0.10
$C_1 =$	$C_1 =$	11111	11.11.	$C_1 =$	$C_1 =$
$\begin{bmatrix} C_{100} & C_{101} \end{bmatrix}$	$[0.90 \ 0.10]$			$[0.90 \ 0.10]$	[0.90 0.10]
$C_{100} C_{101} C_{111}$	$0.90\ 0.10$ $0.90\ 0.10$			$0.90\ 0.10$ $0.90\ 0.10$	0.90 0.10
$C_{110} C_{111} C_{120} C_{121}$	0.10 0.90			0.08 0.92	0.08 0.92
	$0.10\ 0.90$ $0.30\ 0.70$			$\begin{bmatrix} 0.08 & 0.92 \\ 0.28 & 0.72 \end{bmatrix}$	$0.08\ 0.92$ $0.28\ 0.72$
$\begin{bmatrix} C_{130} & C_{131} \end{bmatrix}$	[0.30 0.70]			[0.28 0.72]	

 ${\bf Table \ 1. \ Synthetic \ Parameters: \ Original \ Values \ vs. \ Learned \ Values \ by \ Various \ Models}$