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1 Theoretical Analysis

The core of gcp-sampling is to adaptively sample tasks during meta-training.
Hence, in this section, we theoretically analyze the advance of such a sampling
method in terms of generalization bound. We first provide a generic generaliza-
tion bound for task sampling. Then, we connect the generalization bound to the
proposed task adaptive sampling (cp-sampling and gcp-sampling).

1.1 The Generalization Bound for Task Sampling Distribution

Given a meta-training dataset Dtr with a category set Ctr and each class in-
cluding L images, we assume a sequence of different meta-training tasks T =
{(S1,Q1), . . . , (Sn0

,Qn0
)}. Each task is generated by first sampling K classes

LK ∼ Ctr and then sampling M and N images per class. Therefore, we have

n0 =
(|Ctr|
K

) ((
L

M+N

)(
M+N
M

))K
different tasks, where

(
i
j

)
denotes the number of

combinations of j objects chosen from i objects.
Let `(θ,S,Q) denote the task loss w.r.t model parameter θ and task (S,Q).

The ultimate goal of meta-learning algorithm is to have low expected task error,
i.e. er(θ) = E

S,Q
`(θ,S,Q). Since the underlying task distribution is unknown, we

approximate it by the empirical task error over the meta-training tasks T, i.e.
êr(θ) = 1

n0

∑n0

i=1 `(θ,Si,Qi). By bounding the difference of the two, we obtain
an upper bound on er(θ).

In the meta-learning framework, we formulate the episodic training algorithm
as A(T, σ) → θ, which produces the model parameter θ based on T and some
hyperparameters σ. Similar to [6], we could view the randomized episodic train-
ing algorithm as a deterministic learning algorithm whose hyperparameters are
randomized. In particular, the episodic training performs a sequence of updates,
for t = 1, . . . , T , in the following way,

θt ← Ut(θt−1,Sit ,Qit), (1)

where Ut(·) is an optimizer. It deals with a sequence of random task indices
σ = (i1, . . . , iT ), sampled according to a distribution P on hyperparameter space
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Σ = {1, . . . , n0}T . This can be viewed as drawing σ ∼ P based on T first,
and then executing a sequence of updates by running a deterministic algorithm
A(T, σ). Based on this, the expected task error and empirical task error are
given by averaging over task distribution P , namely er(P ) = E

θ∼P
E
S,Q
`(θ,S,Q)

and êr(P ) = E
θ∼P

1
n0

∑n0

i=1 `(θ,Si,Qi).
The distribution on the hyperparameter space Σ induces a distribution on

hypothesis space. Then, we can find a direct connection between E
θ∼P

`(θ,Si,Qi)
and the Gibbs loss, which has been studied extensively using PAC-Bayes analysis
[3, 1, 7]. According to the Catoni’s PAC-Bayes bound [1], we could derive a gener-
alization bound w.r.t. adaptive task sampling distribution Q on hyperparameter
space Σ.

Theorem 1 Let P be some prior distribution over hyperparameter space Σ.
Then for any δ ∈ (0, 1], and any real number c > 0, the following inequality
holds uniformly for all posteriors distribution Q with probability at least 1− δ,

er(Q) ≤ c

1− e−c
[
êr(Q) +

KL(Q||P ) + log 1
δ

n0c

]
. (2)

Theorem 1 indicates that the expected task error er(Q) is upper bounded by the
empirical task error plus a penalty KL(Q‖P ). Since the bound holds uniformly
for all Q, it also holds for data-dependent Q. By choosing Q that minimizes
the bound, we obtain a data-dependent task distribution with generalization
guarantees.

1.2 Connection to cp-sampling (gcp-sampling)

According to Theorem 1, to improve the generalization performance, the pos-
terior sampling distribution Q should put its attention on the important task
which is valuable for reducing empirical error. On the other hand, the posterior
sampling distribution Q should be close to the prior P to control the divergence
penalty. Moreover, the posterior is required to dynamically adapt to episodic
training, which is a dynamic conditional distribution on the previous iteration
Qt(i) , Qt(it = i|i1, . . . , it−1). Therefore, we choose the task sampling distribu-
tion at t+ 1 by maximizing the expected utility over tasks while minimizing the
KL penalty w.r.t. a reference distribution. It can be formulated as the following
optimization problem:

max
Qt+1∈4n0

n0∑
i=1

Qt+1(i)f(θt,Si,Qi)−
1

α
KL(Qt+1‖(Qt)τ ), (3)

where Q0 is a uniform distribution, α and τ are hyperparameters that con-
trol the impact of current update and previous updates, f(θt,Si,Qi) denotes
the utility function of the chosen task and current model parameter. How-
ever, the two-level sampling for generating task makes n0 quite large (n0 =
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(|Ctr|
K

) ((
L

M+N

)(
M+N
M

))K
). It is infeasible to maintain a distributionQ on {1, . . . , n0}.

Therefore, we propose to sample K classes LK for each task and adopt uniform
sampling to generate the support set and query set for each class, respectively.
Then, we consider the following optimization problem w.r.t category set Lt+1

K :

max
p(Lt+1

K )∈4n1

∑
p(Lt+1

K ) E
S,Q
f(θt,S,Q)− 1

α
KL(p(Lt+1

K )‖(p(LtK))τ ), (4)

where n1 =
(|Ctr|
K

)
and (S,Q) are the support set and the query set constructed

by randomly sampling from category set Lt+1
K . We can solve this problem by

using the Lagrange multipliers, which yields:

p?(Lt+1
K ) ∝ (p(LtK))τe

α E
S,Q
f(θt,S,Q)

. (5)

It is impractical to compute the expectation of utility function over S and Q
and all the possibilities of LK , so we approximate the above solution by only
computing the utility function on last sampled support set St and query set
Qt and updating the probability for the last sampled category set LtK . Since
p(Lt+1

K ) is proportional to the product of class-pair potentials
∏

(i,j)⊂Lt+1
K

Ct(i, j).

Substituting p̄((i, j)|St,Qt) into the utility function, we obtain the updating rule
for class-pair potentials:

Ct+1(i, j)← (Ct(i, j))τeα
1
n2 p̄((i,j)|S,Q), (6)

where n2 =
(
K
2

)
. This derives the updating rule for the proposed adaptive task

sampling methods(cp-sampling and gcp-sampling).

2 More Experimental Results

2.1 Evaluation on tieredImageNet Dataset

To further validate the effectiveness of gcp-sampling. We evaluate it on tiered-
ImageNet. This dataset [8] is a larger subset of ILSVRC-12, which contains
608 classes and 779,165 images totally. As in [8], we split it into 351, 97, and 160
classes for training, validation, and test, respectively. The comparative results
are shown in Table 1.

2.2 Evolution of Class-Pair Potentials

We demonstrate the evolution of class-pair potentials about 16 classes of CIFAR-
FS dataset. We plot the evolving correlation matrix w.r.t. class-pair potentials
in the first 600 iterations at the interval of every 40 iterations. By observing
Figure 1, we can find that gcp-sampling is initialized with uniform sampling and
gradually put its attention to the valuable class-pairs.
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Table 1: Average 5-way, 1-shot and 5-shot classification accuracies (%) on the
tieredImageNet dataset.

Backbone 5way-1shot 5way-5shot

Relation Network [10] CONV-4 54.48± 0.93 71.32± 0.78
PN [9] CONV-4 53.31± 0.89 72.69± 0.74
MAML [2] CONV-4 51.57± 1.81 70.30± 1.75
TPN [5] CONV-4 59.91± 0.94 73.30± 0.75
TapNet [11] ResNet-12 63.08± 0.15 80.26± 0.12
PN [4] ResNet-12 61.74± 0.77 80.00± 0.55
PN with gcp-sampling ResNet-12 62.80± 0.73 80.52± 0.56
MetaOptNet-RR [4] ResNet-12 65.36± 0.71 81.34± 0.52
MetaOptNet-RR with gcp-sampling ResNet-12 66.21± 0.73 81.93± 0.48
MetaOptNet-SVM [4] ResNet-12 65.99± 0.72 81.56± 0.53
MetaOptNet-SVM with gcp-sampling ResNet-12 66.92± 0.72 82.10± 0.52

Fig. 1: Correlation matrix w.r.t. class-pair potentials for 16 classes of CIFAR-FS
dataset. Each element indicates the class-pair potential. We plot the evolving
correlation matrix of the first 600 iterations at the interval of every 40 iterations.
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