Supplementary Materials for "Adaptive Task Sampling for Meta-Learning"

Chenghao Liu¹ Zhihao Wang² Doyen Sahoo³ Yuan Fang¹ Kun Zhang⁴ Steven C.H. Hoi^{1,3}

Singapore Management University¹ South China University of Technology²
Salesforce Research Asia³ Carnegie Mellon University⁴
{chliu, yfang}@smu.edu.sg, ptkin@outlook.com,
{dsahoo,shoi}@salesforce.com, kunz1@cmu.edu

1 Theoretical Analysis

The core of gcp-sampling is to adaptively sample tasks during meta-training. Hence, in this section, we theoretically analyze the advance of such a sampling method in terms of generalization bound. We first provide a generic generalization bound for task sampling. Then, we connect the generalization bound to the proposed task adaptive sampling (cp-sampling and gcp-sampling).

1.1 The Generalization Bound for Task Sampling Distribution

Given a meta-training dataset \mathbb{D}_{tr} with a category set \mathbb{C}_{tr} and each class including L images, we assume a sequence of different meta-training tasks $\mathbb{T} = \{(\mathbb{S}_1, \mathbb{Q}_1), \dots, (\mathbb{S}_{n_0}, \mathbb{Q}_{n_0})\}$. Each task is generated by first sampling K classes $\mathbb{L}^K \sim \mathbb{C}_{tr}$ and then sampling M and N images per class. Therefore, we have $n_0 = \binom{|\mathbb{C}_{tr}|}{K} \binom{L}{M+N} \binom{M+N}{M}^K$ different tasks, where $\binom{i}{j}$ denotes the number of combinations of j objects chosen from i objects.

Let $\ell(\theta, \mathbb{S}, \mathbb{Q})$ denote the task loss w.r.t model parameter θ and task (\mathbb{S}, \mathbb{Q}) . The ultimate goal of meta-learning algorithm is to have low expected task error, i.e. $er(\theta) = \mathbb{E}_{\mathbb{S},\mathbb{Q}} \ell(\theta, \mathbb{S}, \mathbb{Q})$. Since the underlying task distribution is unknown, we approximate it by the empirical task error over the meta-training tasks \mathbb{T} , i.e. $\hat{er}(\theta) = \frac{1}{n_0} \sum_{i=1}^{n_0} \ell(\theta, \mathbb{S}_i, \mathbb{Q}_i)$. By bounding the difference of the two, we obtain an upper bound on $er(\theta)$.

In the meta-learning framework, we formulate the episodic training algorithm as $A(\mathbb{T},\sigma)\to\theta$, which produces the model parameter θ based on \mathbb{T} and some hyperparameters σ . Similar to [6], we could view the randomized episodic training algorithm as a deterministic learning algorithm whose hyperparameters are randomized. In particular, the episodic training performs a sequence of updates, for $t=1,\ldots,T$, in the following way,

$$\theta_t \leftarrow U_t(\theta_{t-1}, \mathbb{S}_{i_t}, \mathbb{Q}_{i_t}),$$
 (1)

where $U_t(\cdot)$ is an optimizer. It deals with a sequence of random task indices $\sigma = (i_1, \ldots, i_T)$, sampled according to a distribution P on hyperparameter space

 $\Sigma = \{1, \ldots, n_0\}^T$. This can be viewed as drawing $\sigma \sim P$ based on \mathbb{T} first, and then executing a sequence of updates by running a deterministic algorithm $A(\mathbb{T}, \sigma)$. Based on this, the expected task error and empirical task error are given by averaging over task distribution P, namely $er(P) = \underset{\theta \sim P \mathbb{S}, \mathbb{Q}}{\mathbb{E}} \ell(\theta, \mathbb{S}, \mathbb{Q})$ and $\hat{er}(P) = \underset{\theta \sim P}{\mathbb{E}} \underset{n_0}{\mathbb{E}} \sum_{i=1}^{n_0} \ell(\theta, \mathbb{S}_i, \mathbb{Q}_i)$.

The distribution on the hyperparameter space Σ induces a distribution on hypothesis space. Then, we can find a direct connection between $\underset{\theta \sim P}{\mathbb{E}} \ell(\theta, \mathbb{S}_i, \mathbb{Q}_i)$ and the Gibbs loss, which has been studied extensively using PAC-Bayes analysis [3, 1, 7]. According to the Catoni's PAC-Bayes bound [1], we could derive a generalization bound w.r.t. adaptive task sampling distribution Q on hyperparameter space Σ .

Theorem 1 Let P be some prior distribution over hyperparameter space Σ . Then for any $\delta \in (0,1]$, and any real number c > 0, the following inequality holds uniformly for all posteriors distribution Q with probability at least $1 - \delta$,

$$er(Q) \le \frac{c}{1 - e^{-c}} \left[\widehat{er}(Q) + \frac{KL(Q||P) + \log\frac{1}{\delta}}{n_0 c} \right].$$
 (2)

Theorem 1 indicates that the expected task error er(Q) is upper bounded by the empirical task error plus a penalty KL(Q||P). Since the bound holds uniformly for all Q, it also holds for data-dependent Q. By choosing Q that minimizes the bound, we obtain a data-dependent task distribution with generalization guarantees.

1.2 Connection to cp-sampling (gcp-sampling)

According to Theorem 1, to improve the generalization performance, the posterior sampling distribution Q should put its attention on the important task which is valuable for reducing empirical error. On the other hand, the posterior sampling distribution Q should be close to the prior P to control the divergence penalty. Moreover, the posterior is required to dynamically adapt to episodic training, which is a dynamic conditional distribution on the previous iteration $Q^t(i) \triangleq Q^t(i_t = i|i_1, \ldots, i_{t-1})$. Therefore, we choose the task sampling distribution at t+1 by maximizing the expected utility over tasks while minimizing the KL penalty w.r.t. a reference distribution. It can be formulated as the following optimization problem:

$$\max_{Q^{t+1} \in \Delta^{n_0}} \sum_{i=1}^{n_0} Q^{t+1}(i) f(\theta_t, \mathbb{S}_i, \mathbb{Q}_i) - \frac{1}{\alpha} KL(Q^{t+1} || (Q^t)^{\tau}), \tag{3}$$

where Q^0 is a uniform distribution, α and τ are hyperparameters that control the impact of current update and previous updates, $f(\theta_t, \mathbb{S}_i, \mathbb{Q}_i)$ denotes the utility function of the chosen task and current model parameter. However, the two-level sampling for generating task makes n_0 quite large (n_0 =

 $\binom{|\mathbb{C}_{tr}|}{K}\binom{L}{M+N}\binom{M+N}{M}^K$. It is infeasible to maintain a distribution Q on $\{1,\ldots,n_0\}$. Therefore, we propose to sample K classes \mathbb{L}_K for each task and adopt uniform sampling to generate the support set and query set for each class, respectively. Then, we consider the following optimization problem w.r.t category set \mathbb{L}_K^{t+1} :

$$\max_{p(\mathbb{L}_K^{t+1}) \in \triangle^{n_1}} \sum p(\mathbb{L}_K^{t+1}) \underset{\mathbb{S}, \mathbb{Q}}{\mathbb{E}} f(\theta_t, \mathbb{S}, \mathbb{Q}) - \frac{1}{\alpha} KL(p(\mathbb{L}_K^{t+1}) \| (p(\mathbb{L}_K^t))^{\tau}), \tag{4}$$

where $n_1 = \binom{|\mathbb{C}_{tr}|}{K}$ and (\mathbb{S}, \mathbb{Q}) are the support set and the query set constructed by randomly sampling from category set \mathbb{L}_K^{t+1} . We can solve this problem by using the Lagrange multipliers, which yields:

$$p^{\star}(\mathbb{L}_{K}^{t+1}) \propto (p(\mathbb{L}_{K}^{t}))^{\tau} e^{\alpha \underset{\mathbb{S},\mathbb{Q}}{\mathbb{E}} f(\theta_{t},\mathbb{S},\mathbb{Q})}.$$
 (5)

It is impractical to compute the expectation of utility function over \mathbb{S} and \mathbb{Q} and all the possibilities of \mathbb{L}_K , so we approximate the above solution by only computing the utility function on last sampled support set \mathbb{S}^t and query set \mathbb{Q}^t and updating the probability for the last sampled category set \mathbb{L}_K^t . Since $p(\mathbb{L}_K^{t+1})$ is proportional to the product of class-pair potentials $\prod_{(i,j)\subset\mathbb{L}_K^{t+1}}C^t(i,j)$. Substituting $\bar{p}((i,j)|\mathbb{S}^t,\mathbb{Q}^t)$ into the utility function, we obtain the updating rule for class-pair potentials:

$$C^{t+1}(i,j) \leftarrow (C^t(i,j))^{\tau} e^{\alpha^{\frac{1}{n_2}} \bar{p}((i,j)|\mathbb{S},\mathbb{Q})}, \tag{6}$$

where $n_2 = {K \choose 2}$. This derives the updating rule for the proposed adaptive task sampling methods(cp-sampling and gcp-sampling).

2 More Experimental Results

2.1 Evaluation on tieredImageNet Dataset

To further validate the effectiveness of gcp-sampling. We evaluate it on **tiered-ImageNet**. This dataset [8] is a larger subset of ILSVRC-12, which contains 608 classes and 779,165 images totally. As in [8], we split it into 351, 97, and 160 classes for training, validation, and test, respectively. The comparative results are shown in Table 1.

2.2 Evolution of Class-Pair Potentials

We demonstrate the evolution of class-pair potentials about 16 classes of CIFAR-FS dataset. We plot the evolving correlation matrix w.r.t. class-pair potentials in the first 600 iterations at the interval of every 40 iterations. By observing Figure 1, we can find that gcp-sampling is initialized with uniform sampling and gradually put its attention to the valuable class-pairs.

Table 1: Average 5-way, 1-shot and 5-shot classification accuracies (%) on the tieredImageNet dataset.

	Backbone	5way-1shot	5way-5shot
Relation Network [10]	CONV-4	54.48 ± 0.93	71.32 ± 0.78
PN [9]	CONV-4	53.31 ± 0.89	72.69 ± 0.74
MAML [2]	CONV-4	51.57 ± 1.81	70.30 ± 1.75
TPN [5]	CONV-4	59.91 ± 0.94	73.30 ± 0.75
TapNet [11]	ResNet-12	63.08 ± 0.15	80.26 ± 0.12
PN [4]	ResNet-12	61.74 ± 0.77	80.00 ± 0.55
PN with gcp-sampling	ResNet-12	62.80 ± 0.73	80.52 ± 0.56
MetaOptNet-RR [4]	ResNet-12	65.36 ± 0.71	81.34 ± 0.52
MetaOptNet-RR with gcp-sampling	ResNet-12	66.21 ± 0.73	81.93 ± 0.48
MetaOptNet-SVM [4]	ResNet-12	65.99 ± 0.72	81.56 ± 0.53
MetaOptNet-SVM with gcp-sampling	ResNet-12	66.92 ± 0.72	82.10 ± 0.52

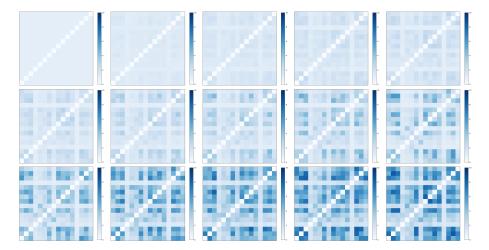


Fig. 1: Correlation matrix w.r.t. class-pair potentials for 16 classes of CIFAR-FS dataset. Each element indicates the class-pair potential. We plot the evolving correlation matrix of the first 600 iterations at the interval of every 40 iterations.

References

- 1. Catoni, O.: PAC-Bayesian supervised classification: The thermodynamics of statistical learning. institute of mathematical statistics lecture notes—monograph series 56. IMS, Beachwood, OH. MR2483528 (2007)
- 2. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70. pp. 1126–1135. JMLR. org (2017)
- 3. Guedj, B.: A primer on pac-bayesian learning. arXiv preprint arXiv:1901.05353 (2019)

- 4. Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable convex optimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 10657–10665 (2019)
- Liu, Y., Lee, J., Park, M., Kim, S., Yang, E., Hwang, S.J., Yang, Y.: Learning to propagate labels: Transductive propagation network for few-shot learning. arXiv preprint arXiv:1805.10002 (2018)
- London, B.: A pac-bayesian analysis of randomized learning with application to stochastic gradient descent. In: Advances in Neural Information Processing Systems. pp. 2931–2940 (2017)
- 7. McAllester, D.A.: Pac-bayesian model averaging. In: COLT. vol. 99, pp. 164–170. Citeseer (1999)
- 8. Ren, M., Triantafillou, E., Ravi, S., Snell, J., Swersky, K., Tenenbaum, J.B., Larochelle, H., Zemel, R.S.: Meta-learning for semi-supervised few-shot classification. arXiv preprint arXiv:1803.00676 (2018)
- 9. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems. pp. 4077–4087 (2017)
- Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: Relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1199–1208 (2018)
- 11. Yoon, S.W., Seo, J., Moon, J.: Tapnet: Neural network augmented with task-adaptive projection for few-shot learning. arXiv preprint arXiv:1905.06549 (2019)