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1 Theoretical Analysis

The core of gep-sampling is to adaptively sample tasks during meta-training.
Hence, in this section, we theoretically analyze the advance of such a sampling
method in terms of generalization bound. We first provide a generic generaliza-
tion bound for task sampling. Then, we connect the generalization bound to the
proposed task adaptive sampling (cp-sampling and gep-sampling).

1.1 The Generalization Bound for Task Sampling Distribution

Given a meta-training dataset Dy, with a category set C;. and each class in-
cluding L images, we assume a sequence of different meta-training tasks T =
{(S1,Q1),...,(Sn,, Qny)}. Each task is generated by first sampling K classes
L% ~ C4 and then sampling M and N images per class. Therefore, we have

C Loy e\ j
ng = (l ;{‘) ((M+N)( A‘Z )) different tasks, where (;) denotes the number of
combinations of j objects chosen from i objects.
Let £(0,S,Q) denote the task loss w.r.t model parameter 6 and task (S, Q).
The ultimate goal of meta-learning algorithm is to have low expected task error,

ie. er(d) = SIEQK(H,S, Q). Since the underlying task distribution is unknown, we

approximate it by the empirical task error over the meta-training tasks T, i.e.
er(d) = 7710 >0, €(6,S;,Q;). By bounding the difference of the two, we obtain
an upper bound on er(#).

In the meta-learning framework, we formulate the episodic training algorithm
as A(T,o) — 60, which produces the model parameter 6 based on T and some
hyperparameters o. Similar to [6], we could view the randomized episodic train-
ing algorithm as a deterministic learning algorithm whose hyperparameters are
randomized. In particular, the episodic training performs a sequence of updates,

fort =1,...,T, in the following way,
0 < Up(0:-1,S;,,Q;,), (1)

where Uy(+) is an optimizer. It deals with a sequence of random task indices
o = (i1,-..,ir), sampled according to a distribution P on hyperparameter space
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X = {1,...,n9}T. This can be viewed as drawing o ~ P based on T first,
and then executing a sequence of updates by running a deterministic algorithm
A(T, o). Based on this, the expected task error and empirical task error are
given by averaging over task distribution P, namely er(P) = ODNEPS]EQZ(G,& Q)
and €r(P) = Gr@P"L‘) Yo 0(8,S;, Q).

The distribution on the hyperparameter space X induces a distribution on
hypothesis space. Then, we can find a direct connection between ODNEPE(O, S, Q)

and the Gibbs loss, which has been studied extensively using PAC-Bayes analysis
[3,1,7]. According to the Catoni’s PAC-Bayes bound [1], we could derive a gener-
alization bound w.r.t. adaptive task sampling distribution @) on hyperparameter
space /.

Theorem 1 Let P be some prior distribution over hyperparameter space .
Then for any 6 € (0,1], and any real number ¢ > 0, the following inequality
holds uniformly for all posteriors distribution @ with probability at least 1 — 9,

er(Q) < er(Q) +

—1—ec¢ ngc

c KL(Q||P) +log%

| (2)
Theorem 1 indicates that the expected task error er(Q) is upper bounded by the
empirical task error plus a penalty K L(Q||P). Since the bound holds uniformly
for all @, it also holds for data-dependent (. By choosing ) that minimizes
the bound, we obtain a data-dependent task distribution with generalization
guarantees.

1.2 Connection to cp-sampling (gcp-sampling)

According to Theorem 1, to improve the generalization performance, the pos-
terior sampling distribution @ should put its attention on the important task
which is valuable for reducing empirical error. On the other hand, the posterior
sampling distribution @ should be close to the prior P to control the divergence
penalty. Moreover, the posterior is required to dynamically adapt to episodic
training, which is a dynamic conditional distribution on the previous iteration
Qt(i) £ Q'(i; =i|iy,...,i;_1). Therefore, we choose the task sampling distribu-
tion at ¢t 4+ 1 by maximizing the expected utility over tasks while minimizing the
KL penalty w.r.t. a reference distribution. It can be formulated as the following
optimization problem:

o | 1 .
o B8, QT 00181, Q) = L RLQ Q) 3)

where Q° is a uniform distribution, o and 7 are hyperparameters that con-
trol the impact of current update and previous updates, f(6:,S;,Q;) denotes
the utility function of the chosen task and current model parameter. How-
ever, the two-level sampling for generating task makes ng quite large (ng =
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|Cer L M+N K .. . . . . .
(") ((M+N) (M3 )) ). It is infeasible to maintain a distribution @ on {1, ..., ng}.
Therefore, we propose to sample K classes L for each task and adopt uniform
sampling to generate the support set and query set for each class, respectively.

. . R 1.
Then, we consider the following optimization problem w.r.t category set LS

max Y p(L"E )E 1(01,8,Q) — *KL( CEOILE)DT), @)

H‘H'l)GA'"l Q

where ny = (I‘C;(r\) and (S, Q) are the support set and the query set constructed
by randomly sampling from category set L’}jl. We can solve this problem by
using the Lagrange multipliers, which yields:

. . oE f(6,5,0)
P oc (p(L))Te o0 (5)

It is impractical to compute the expectation of utility function over S and Q
and all the possibilities of Lg, so we approximate the above solution by only
computing the utility function on last sampled support set S and query set
Q' and updating the probability for the last sampled category set L%-. Since
p(Ltgl) is proportional to the product of class-pair potentials H(i HcL Ct(i, 7).
Substituting p((7, 7)|S*, Q!) into the utility function, we obtain the updating rule
for class-pair potentials:

L
C™ (i, ) 4= (C (i, j))Te " PUEDIED), (6)
where no = (l;< ) This derives the updating rule for the proposed adaptive task
sampling methods(cp-sampling and gep-sampling).

2 More Experimental Results

2.1 Evaluation on tieredIlmageNet Dataset

To further validate the effectiveness of gcp-sampling. We evaluate it on tiered-
ImageNet. This dataset [8] is a larger subset of ILSVRC-12, which contains
608 classes and 779,165 images totally. As in [8], we split it into 351, 97, and 160
classes for training, validation, and test, respectively. The comparative results
are shown in Table 1.

2.2 Evolution of Class-Pair Potentials

We demonstrate the evolution of class-pair potentials about 16 classes of CIFAR-
FS dataset. We plot the evolving correlation matrix w.r.t. class-pair potentials
in the first 600 iterations at the interval of every 40 iterations. By observing
Figure 1, we can find that gcp-sampling is initialized with uniform sampling and
gradually put its attention to the valuable class-pairs.
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Table 1: Average 5-way, 1-shot and 5-shot classification accuracies (%) on the
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tieredImageNet dataset.

Backbone 5way-1shot 5way-5shot

Relation Network [10]

CONV-4 5448 £0.93 71.32£0.78

PN [9] CONV-4 53.31+0.89 72.69+0.74
MAML [2] CONV-4 51.57£1.81 70.30 £ 1.75
TPN [5] CONV-4 59.91£0.94 73.30£0.75
TapNet [11] ResNet-12 63.08 £0.15 80.26 +0.12
PN [4] ResNet-12 61.74 £ 0.77 80.00 £ 0.55

ResNet-12 62.80 4+ 0.73 80.52 4+ 0.56
ResNet-12 65.36 = 0.71 81.34 + 0.52
MetaOptNet-RR with gcp-sampling ResNet-12 66.21 +0.73 81.93 + 0.48
MetaOptNet-SVM [4] ResNet-12 65.99 +0.72 81.56 + 0.53
MetaOptNet-SVM with gecp-sampling ResNet-12 66.92 + 0.72 82.10 £ 0.52

PN with gcp-sampling
MetaOptNet-RR [4]
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Fig. 1: Correlation matrix w.r.t. class-pair potentials for 16 classes of CIFAR-FS
dataset. Each element indicates the class-pair potential. We plot the evolving
correlation matrix of the first 600 iterations at the interval of every 40 iterations.
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