Adaptive Task Sampling for Meta-Learning

Chenghao Liu, Zhihao Wang, Doyen Sahoo, Yuan Fang, Kun Zhang, Steven C.H. Hoi

Meta-Learning for Few-shot Learning

- Recent approaches to few-shot learning follow a meta-learning principle
- **SIMULATE** few-shot tasks on the meta-train data to acquire ability to do few-shot learning
- Each task in meta-train set has its own
 - Training Data: Support Set
 - Test Data: Query Set
- Minimize the loss of the prediction for each sample in the query set, given the support set

Meta-Learning for Few-shot Learning

- Construct a collection of K-way-M-shot classification tasks sampled from the amply labelled set
- Procedure:
 - Randomly sample K classes
 - Randomly sample *M* and *N* labelled images per class to construct support set and query set
- The goal is to learn from support set and improve performance over query set

Figure: Sachin Ravi

Random Sampling

Motivation

- A randomly sampled task of classifying dogs from laptops may have little effect on the model update due to its simpleness
- Prioritizing challenging training examples could improve the generalization performance

Idea: Can we perform adaptive task sampling and create more difficult tasks for meta-learning?

Challenge: Define the difficulty of a task

Contribution

- A class-pair based adaptive task sampling method for meta-learning
- A greedy class-pair based approach that reduces the complexity of task distribution computation and guarantees the generation of an identical task distribution
- Comprehensive experiments about the impact of the adaptive task sampling method by integrating it with various meta-learning approaches
- Extensive investigation of different sampling strategies, including class-based method, easy class-pair based method and uncertain class-pair based method

Class-based Sampling

Traditional Supervised Learning

Initial: Probability of selecting each sample is equal. $p_0(i|\mathbb{D}) = \frac{1}{|\mathbb{D}|}$

Episode t: Update the selection probability according to the current prediction probability and the selection probability at previous iteration

 $p^{t+1}(i) \propto (p^t(i))^{\tau} e^{\alpha(1-p(y_i|x_i))}$

Meta-Learning for Few-shot Learning

Idea: Direct task based sampling is infeasible, adaptively sample classes for each *K*-way classification task.

Given S^t and Q^t at episode t, update the class selection probability

Class-Pair Based Sampling

- Exploits the pairwise relationships between classes
- Formulate the task selection probability by leveraging the Markov random field over class pairs

$$p_{CP}^{t+1}(\mathbb{L}_K^{t+1}) \propto \prod_{(i,j)\in\mathbb{L}_K^{t+1}} C^t(i,j), \qquad \text{s.t. } i,j\in\mathbb{C}_{tr}$$

- $C_t(i, j)$ is a potential function over class pair (i, j) at episode t
- Adaptively update the potential function $C^{t+1}(i,j) \leftarrow (C^{t}(i,j))^{\tau} e^{\alpha \bar{p}((i,j)|\mathbb{S}^{t},\mathbb{Q}^{t})}, \quad i \neq j$ $\bar{p}((i,j)|\mathbb{S}^{t},\mathbb{Q}^{t}) = \frac{\sum_{(q_{n},y_{n}=j)\in\mathbb{Q}^{t}} p(c=i|q_{n},\mathbb{S}^{t})}{N} + \frac{\sum_{(q_{n},y_{n}=i)\in\mathbb{Q}^{t}} p(c=j|q_{n},\mathbb{S}^{t})}{N}$

Greedy Class-Pair Based Sampling

- Iteratively sample a new class based on the already sampled classes (cost O(K))
- $p_{GCP}^{t+1}(\mathbb{L}_{k+1}^{t+1}) \propto \begin{cases} C^{t}(i,j), & k=1\\ p(c|\mathbb{L}_{k}^{t+1},C^{t}), & k>1 \end{cases} \quad p(c=i|\mathbb{L}_{k}^{t+1},C^{t}) \propto \prod_{j\in\mathbb{L}_{k}^{t+1}}C^{t}(i,j) \end{cases}$
 - **Proposition** The greedy class-pair based sampling strategy is identical to the class-pair based sampling

Empirical Results

• Compatibility with different meta-learning algorithms

-		- ~		v
	miniIm	lageNet	CIFA	R-FS
Model	1-shot	5-shot	1-shot	5-shot
Matching Network [†]	48.26 ± 0.76	62.27 ± 0.71	53.14 ± 0.85	68.16 ± 0.76
Matching Network with gcp-sampling	49.61 ± 0.77	$\textbf{63.23} \pm 0.75$	54.72 ± 0.87	69.28 ± 0.74
PN [†]	44.15 ± 0.76	63.89 ± 0.71	54.87 ± 0.72	71.64 ± 0.58
PN with gcp-sampling	$\textbf{47.13} \pm 0.81$	64.75 ± 0.72	56.12 ± 0.81	$\textbf{72.77} \pm 0.64$
Reptile †	46.12 ± 0.80	63.56 ± 0.70	55.86 ± 1.00	71.08 ± 0.74
Reptile with gcp-sampling	$\textbf{47.60} \pm 0.80$	64.56 ± 0.69	$\textbf{57.25} \pm 0.99$	$\textbf{71.69} \pm 0.71$
\mathbf{MAML}^{\dagger}	48.25 ± 0.62	64.09 ± 0.70	56.93 ± 0.99	72.10 ± 0.74
MAML with gcp-sampling	$\textbf{49.65} \pm 0.85$	65.37 ± 0.70	57.62 ± 0.97	$\textbf{72.51} \pm 0.72$
MAML++ [†]	50.60 ± 0.82	68.24 ± 0.68	58.87 ± 0.97	73.86 ± 0.76
MAML++ with gcp-sampling	$\textbf{52.34} \pm 0.81$	69.21 ± 0.68	60.14 ± 0.97	$\textbf{73.98} \pm 0.74$

Empirical Results

• Efficacy of different adaptive task sampling strategies

	$\min ImageNet$	CIFAR-FS	
Sampling Strategy	5-way-1-shot 5-way-5-shot	5-way-1-shot 5-way-5-shot	
random sampling	$50.60 \pm 0.82 \ \ 68.24 \pm 0.68$	58.87 ± 0.97 73.36 ± 0.76	
c-sampling with hard class	$51.43 \pm 0.75 \ \ 68.74 \pm 0.67$	$58.61 \pm 0.92 \ \ 73.98 \pm 0.72$	
gcp-sampling with easy class	$50.88 \pm 0.88 \ \ 68.22 \pm 0.72$	$58.73 \pm 1.14 \ \ 73.41 \pm 0.76$	
gcp-sampling with uncertain class	$51.73 \pm 0.87 \ \ 69.01 \pm 0.72$	$59.43 \pm 1.02 \ \ 73.84 \pm 0.82$	
gcp-sampling with hard class	52.34 ± 0.81 69.21 ± 0.68	60.14 ± 0.97 74.58 ± 0.74	

Conclusion

- An adaptive task sampling method for meta-learning
- It is essential for the sampling process to be dependent on tasks
- The proposed method could be applied to any meta-learning algorithms that follow episodic training

Thanks for watching !