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Abstract

Graphs are powerful vehicles to represent data objects that are interconnecting or inter-

acting with each other. We explore random walks on various kinds of graph to address

different searching and mining scenarios. This dissertation focuses on two symmetric forms

of random walk called the forward walk and backward walk, which can be applied to enrich

three key tasks in searching and mining, namely, extraction, ranking and classification, in

novel ways. More specifically, we enhance extraction with the metrics of probabilistic pre-

cision and recall, ranking with the senses of importance and specificity, and classification

with heterogeneous contexts in terms of relationship type and confidence level. We further

study the underpinning principle of random walks on a graph, which is often known as the

smoothness assumption. We argue that smoothness is a pointwise property and requires

probabilistic modeling. Thus, we propose a new framework to define pointwise smoothness

probabilistically on a graph, which unifies two different “modes” of smoothness corresponding

to the forward and backward random walks, respectively. Finally, our graph-based random

walk solutions have consistently demonstrated promising empirical results for a wide range

of searching and mining applications.
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Chapter 1

Introduction

We live in a world with the unprecedented availability of data. Graphs are powerful rep-

resentations to capture not only individual data objects, but also their interconnections or

interactions between one another. Random walk is an effective means to exploit the inherent

structures in a graph, which is crucial to solving common searching and mining problems,

such as extraction, ranking and classification, over data organized as a graph. In this disser-

tation, we study graph-based approaches for these problems, enriching them in various novel

ways, which correspond to different forms of random walk. We also study the underlying

principle governing these solutions, unified into a graph-based smoothness framework.

In this chapter, we first present an overview of our work in Sections 1.1–1.3, including a

brief review of graph and random walk, novel graph-based approaches to various searching

and mining problems, as well as an in-depth examination of their fundamental principle.

Next, we outline the organization of the dissertation in Section 1.4.

1.1 Background on Graph and Random Walk

Different data objects in many domains often interconnect or interact with each other. Such

inter-object interactions form a myriad of gigantic and complex networks, including for

instance protein-protein interaction networks [86], highway transportation systems [62], the

World Wide Web [19], bibliographic networks [49], and social networks [1, 40], with profound

significance in scientific, engineering and social applications. Not surprisingly, graphs are

natural vehicles to model data objects living on a network, for they are capable of concisely
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representing not only the objects themselves but also the relationships between them, which

traditional “flat” representations of data often fall short of. One example among the most

influential graph-based applications is the famous PageRank algorithm [81], treating the

webpages as an interconnected link graph instead of a simple flat collection. We formally

define a graph in the following.

Definition 1.1 (Graph). A weighted and directed graph G = (V,E) comprises a set

of nodes (or vertices) V = {1, . . . , |V |}, and a set of directed edges E. Each directed

edge (i, j) ∈ E is an ordered pair of nodes such that i, j ∈ V , and is associated with a

weight Wij ∈ [0,∞), where W is an |V | × |V | weight matrix.

Although our definition specifies a weighted and directed graph, it subsumes an un-

weighted or undirected graph as well. For an unweighted graph, we simply have uniform

edge weights, i.e., Wij = 1,∀ij. For an undirected graph, we have symmetric directed edges,

i.e., (i, j) ∈ E ⇔ (j, i) ∈ E and Wij = Wji,∀ij. Moreover, by convention, Wij = 0 if and

only if (i, j) /∈ E.

Note that each vertex in a graph represents an object, whereas each edge embeds some

relationship between the two connecting objects. To address searching and mining problems,

a key challenge lies in relating objects through their relationships or interactions. While ear-

lier studies have employed simpler graph theoretic measures such as degree and betweenness

centrality [46], more recent efforts have shifted to spectral techniques [17], and the related

random walk or propagation-based methods [81, 67], for their ability to ultimately capture

not only local interactions, but also global structures of the graph.

In this dissertation, we study random walk-based approaches and their principles. A

random walk can be intuitively described by the behavior of a random surfer. Consider

a surfer moving on a graph, which is initially residing at some node v. As her first step,

she randomly moves to a neighboring node of v. In the subsequent steps, she repeats this

process, randomly moving to a neighboring node of her current node. The sequence of nodes
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visited by the random surfer forms an instance of the random walk. In fact, a random walk

on a graph is a finite Markov chain, which is governed by V as its state space and P as its

transition matrix [76], as formally defined below.

Definition 1.2 (Random Walk on Graph). Given a graph G = (V,E) and some

starting node v ∈ V , a random walk is a sequence of random nodes (Vt : t = 0, 1, . . .)

where V0 = v, and the value of Vt+1 depends on that of Vt according to the stochastic

matrix P such that p (Vt+1 = j|Vt = i) = Pij. P is defined as follows:

Pij =


Wij∑
k∈V Wik

(i, j) ∈ E

0 else.
(1.1)

1.2 Graph-based Searching and Mining Problems

Data as a graph motivate a suite of exciting scenarios, calling for effective and efficient

searching and mining techniques. Most of these scenarios could be cast into one of the typical

problems in searching and mining. In this dissertation, we focus on three key problems,

namely, extraction, ranking, and classification, which are illustrated in Figure 1.1 by the

application scenarios involving a bibliographic knowledge base such as DBLP [31]. First,

extraction and classification can help build and scale up a knowledge base by automatically

extracting structured records from unstructured data, and augmenting the records with

additional attributes. Second, ranking is a useful tool to answer end users’ information

needs by producing a ranked list of results with respect to some query. We further elaborate

the three tasks in the following.

Relation extraction: to extract tuples of a given relation from a corpus such as a text

database or the Web. To build a bibliographic knowledge base, we would be interested in

finding the tuples of the form (〈person〉, 〈paper〉) for the relation author-of. Extraction of
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unstructured text

(a) Building knowledge base

(b) Using knowledge base

“cache”

KDD

“data”

Classification
“data” “cache”

KDD VLDB SIGIR

…
…
…
…

Extraction

DM

DB

IR

AI

structured records augmented records

Experts most suited for reviewing some paper?

Venues most related to some keywords?
Ranking

…
KDD VLDB …

Figure 1.1: Searching and mining problems for a bibliographic knowledge base.

such tuples help build the bibliographic knowledge base automatically. As another example,

imagine we are building a geographical information system, and intend to extract the tuples

of the form (〈city〉, 〈country〉) for the relation capital-city-of, such as (Tokyo, Japan) and

(Ottawa, Canada). In contrast, for the relation largest-city-of, a different set of tuples

are expected, such as (Tokyo, Japan) and (Toronto, Canada).

While supervised natural language processing techniques [70, 42] have achieved consid-

erable success in information extraction, pattern-based techniques [18, 4, 103] have also

become popular as they generally require less supervision. Pattern-based approaches also

naturally enable us to construct a graph, given that different patterns and their matching

tuples can be interlinked to form a network, such as the one depicted in Figure 1.2. Starting

from some sample patterns or tuples (known as the “seeds”), we could ultimately discover

new ones though the links in such a network. For instance, given a seed tuple (Ottawa,

Canada) belonging to the relation capital-city-of, we can also extract (Tokyo, Japan)

for the same relation based on their common patterns “〈city〉 is the capital city of 〈country〉”

and “〈country〉’s capital, 〈city〉.”

Object classification: to classify data objects into one of the predefined categories. The

classifications can conveniently augment the bibliographic knowledge base, such as assigning
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(Toronto, Canada)

〈city〉 is the capital 
city of 〈country〉〈country〉’s 

capital, 〈city〉
the largest city of  〈country〉 is 〈city〉
〈city〉, 〈country〉

(Tokyo, Japan)

(Ottawa, Canada)

matches / matched by

Interactions (bi-directional)

Data objects

pattern tuple

Figure 1.2: Toy graph for relation extraction.

each researcher to a primary field, which may not be directly available through extraction

only. Alternatively, suppose we are building an e-commerce website such as Amazon [6],

where users compose queries to search for products online. These queries are in fact data

objects created by users, which can be classified into a product category (for instance map-

ping query “canon sd1000” to category camera). This enables redirecting the user to the

appropriate product vertical for an improved shopping experience.

Inspired by the recent developments in graph-based regularization, classification accuracy

can be substantially improved under the key assumption of smoothness: similar objects

are likely to belong to similar categories [113, 107]. In other words, on a graph where

similar objects are connected as neighbors, the classification of an object can be “helped”

or regularized by its neighbors on the graph. To construct this graph, while the objects

naturally constitute the set of nodes, the edges shall connect similar objects. Taken query

classification as an example, we can link queries sharing one or more words (similar by

lexicon), or queries with with user clicks landing on the same page (similar by click), or

queries issued in the same user session (similar by session), as illustrated in Figure 1.3.

Object ranking: to return a ranked list of data objects by their semantic relatedness to

some given query object. Given various academic objects like authors, papers, keyword

terms and publication venues in a bibliographic knowledge base, some interesting ranking

questions could be raised: (a) Given a paper as the query, who are the experts (authors)

most suited for peer reviewing it? (b) Given some keyword terms as the query, what are the
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similar by lexicon
similar by click
similar by session

hp 3 in 1

canon 
sd1000sd1000

inkjet 
printer

canon 
printer

Interactions (bi-directional)

Data objects

commerce query
canon

Figure 1.3: Toy graph for object classification.

KDD

VLDB
Interactions (uni- or bi-directional)

cites
writes / written by
contains / contained in
publishes / published in

“structured”

“mining”

“cache”

“data”

Data objects

paper

author

venue

term

(uni)
(bi)
(bi)
(bi)

Figure 1.4: Toy graph for object ranking.

most matching venues? (c) Given an author as the query, which are the papers most related

to his or her research? These questions could be answered by a ranking over the objects in

terms of their semantic relatedness to the query.

In particular, the academic objects in the bibliographic example can be naturally or-

ganized into a graph, as depicted in Figure 1.4. Given that each edge encodes certain

inter-object interactions, through these edges it is possible to quantify the semantic relat-

edness between different objects [10, 80, 23]. Subsequently, we can rank objects by their

semantic relatedness to the query object.

Proposed agenda. Although many graph-based techniques have been developed for ex-

traction, ranking and classification, in this dissertation we enrich them with various novel

aspects overlooked by existing methods. Interestingly, all of our enriching solutions can be

expressed by two symmetric and “opposite” forms of random walk, called the forward and

backward random walks [2].
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First, most applications of relation extraction fundamentally seek to optimize the metrics

of precision or recall with respect to a ground truth set. However, these two objective metrics

are not explicitly modeled by previous pattern-based extraction methods [18, 4]. Thus, we

propose to support relation extraction with the objective metrics of probabilistic precision

and recall, which improves not only the accuracy but also the interpretability of the extracted

patterns and tuples. As the inference process turns out, probabilistic precision and recall

can be captured by the backward and forward random walks, respectively.

Second, a ranking in terms of a single sense of semantic relatedness is often insufficient,

given that different users often have disparate information needs. Unfortunately, most exist-

ing approaches only focus on the sense of importance (i.e., authoritativeness) [81, 10, 80, 23]

or a vague sense of “proximity” without a finer interpretation [1, 58, 68, 102]. Only until

recently the complementary sense of specificity [56] emerged in a few heuristic forms. Thus,

we propose to generalize the notion of importance to also capture specificity, and further

integrate the two senses in one coherent process to achieve a customizable balance between

them. That is, we diversify ranking with the complementary senses of importance and speci-

ficity, as well as their customizable trade-off. Interestingly, importance and specificity also

correspond to the forward and backward random walks on the graph, respectively.

Third, while the classification of an object can be influenced or regularized by its contexts

(i.e., its similar objects), the contexts may be heterogeneous and should not be treated

uniformly. Although some existing methods have considered some form of heterogeneous

relationship types between neighboring objects on the graph [61, 100, 60], little research has

been devoted to a second dimension of heterogeneity—the varying confidence levels of the

contexts. Thus, we propose to guide the classification of an object by discriminating its

heterogeneous contexts, in terms of both the relationship type and the confidence level. In

particular, our framework, which incorporates both dimensions of heterogeneity, is a special

form of the backward random walk.

Apart from these three tasks, other major tasks include object resolution [7] and clus-
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tering [45] on the graph. Such tasks are the so called object-centric problems [47]. There

also exist edge-centric problems, in particular link prediction [75]. Potentially, our random

walk-based techniques can be applied to these tasks as well. However, we also note that there

are other graph-based problem formulations focused on the subgraph level [57], or even on

the graph level (within a collection of graphs) [66]. These formulations are different from

the node or edge-level interactions explored in this dissertation, and they beyond the scope

of this dissertation.

1.3 Principle behind Graph-based Approaches

While random walks are capable of solving various graph-based searching and mining prob-

lems, as the second part of this dissertation, we will investigate the fundamental principle

governing and unifying the forward and backward random walks on graphs. In particular,

we attempt to answer the following questions.

First, what is the underpinning mechanism that random walks boil down to? At the core

of random walks on graphs lies the notion of smoothness [111, 24], which is the principle

governing the interactions between neighboring nodes on the graph. Simply put, smoothness

means that two close nodes on the graph are likely to behave in the same way. Random walks

in fact implicitly exploit this assumption to solve various graph-based problems. Thus, it is

important to examine smoothness on a graph, i.e., the explicit form of interaction between

nodes. In particular, we study the principle of smoothness in the classic setting of graph-

based semi-supervised learning, which can be extended to other searching and mining settings

in this dissertation.

Second, what are the requirements of realizing smoothness on a graph? We identify that

smoothness is pointwise and probabilistic. It is inherently a property that occurs “every-

where” on the graph and thus applies to every node, which we call the pointwise nature of

smoothness. Furthermore, it is only meaningful to model the pointwise nature of smoothness
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probabilistically. While pointwise smoothness has been studied in non-graph based settings

[84, 71, 96], previous graph-based methods [113, 107, 14, 98], whether probabilistic or not,

only support aggregate, but not pointwise, smoothness.

Third, is there a unifying framework to capture different “modes” of smoothness? As we

will see, different forms of random walk are employed to address searching and mining of

varying needs. However, they are still underpinned by the same principle of smoothness,

although there might be different modes of smoothness. Interestingly, these different modes

can be unified under a smoothness framework consisting of the same foundational submodels

of data closeness and label coupling. It turns out that different modes of smoothness are

simply the results of different probabilistic formulations under the same framework.

1.4 Organization

The rest of this dissertation is organized into the following chapters, where Chapters 2–4

cover graph-based solutions to the three key problems in searching and mining, and Chapter 5

explores the principle of smoothness to unify graph-based approaches.

In Chapter 2, we propose to support pattern-based relation extraction with the objective

metrics of probabilistic precision and recall [37]. In particular, our pattern-based approach

entails a graph structure based on a network of interconnected patterns. Building upon this

graph, we realize the metrics of precision and recall in a probabilistic manner, which can be

interpreted as two symmetric forms of random walks on the graph. Another challenge lies in

the incompleteness of the graph—given an enormous corpus such as the Web, we can only

partially materialize the graph, which inevitably calls for a sampling guideline.

In Chapter 3, we propose to diversify the ranking of interconnected data objects with

semantic senses, particularly in terms of importance and specificity, as well as their cus-

tomizable trade-off [38]. It turns out that importance and specificity can be respectively

captured by two symmetric forms of random walk in “opposite” directions, which can be
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further unified into a coherent “round trip” random walk. In fact, the two forms of random

walks are common techniques employed in a wide range of scenarios, including those studied

in other chapters. Lastly, to enable online processing in real time, we also discuss the efficient

and scalable implementation of both forms of random walk as well as their integration as a

round trip.

In Chapter 4, we propose to guide object classification with heterogeneous contexts, in

terms of the relationship types and confidence levels [41]. While most previous studies focus

on heterogeneous graphs focus on the first dimension of relationship types, we address both

dimensions of heterogeneity through modeling every node (or object) on the graph using a

Dirichlet prior. Moreover, we also propose to learn parameters for the relationship types

with very limited labeled data, whereas in many previous approaches, such parameters are

often manually selected. Interestingly, our classification model can be perceived as a special

form of random walk on the object graph.

In Chapter 5, we investigate the principle underpinning graph-based random walk ap-

proaches, which boil down to the concept of smoothness between neighboring nodes on the

graph [39]. In particular, using a graph-based semi-supervised setting, we study two comple-

mentary dimensions of smoothness: its pointwise nature and probabilistic modeling. While

no existing graph-based work exploits them in conjunction, we encompass both in a novel

and unifying framework for realizing different modes of pointwise smoothness on a graph in

a probabilistic manner.

Lastly, Chapter 6 concludes this dissertation and discusses some future research directions

to improve graph-based searching and mining.
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Chapter 2

Extraction with Precision and Recall

In this chapter, we propose to enrich the task of extraction with the metrics of probabilistic

precision and recall. We exemplify this enrichment by the problem of relation extraction,

where the aim is to extract entity tuples of a given relation from different webpages on

the Web. In particular, recent pattern-based approaches for relation extraction enable us

to capture the network of interconnected patterns and tuples as a graph. Building upon

this graph, we formally define precision and recall in a probabilistic manner, which can be

captured by backward and forward random walks on the graph, respectively. Furthermore,

as it is only feasible to obtain an incomplete graph due to the scale of the Web, we also

propose some guiding principles to handle the partial materialization of the graph.

2.1 Introduction

The Web has evolved into our ultimate information repository. To unleash data inside

the unstructured texts online, we are facing the immense challenge of information extrac-

tion (IE), to convert unstructured contents to structured information. While the barrier is

daunting, there also come novel opportunities. The massive contents on the Internet offer

both redundancy and diversity, both of which inspire new techniques. In particular, to scale

up to the Web, IE has recently moved toward search-based, which is consistent with the

emergence of Web-based Query Answering (QA), by sending keyword queries (e.g., “capital

city”) to a general search engine, retrieving top pages, and processing them to extract desired

information (e.g., the relation capital-city-of).
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This search-and-extract approach has been recently studied in several Web-based IE

[35, 5] and QA [69, 28, 34] systems, which reveal consistent interesting observations:

• Size is good: Redundancy has fundamentally changed the problem from document-

centered to corpus-centered. The size of the Web ensures that, when the corpus is

considered as a whole, the “voting” effect beyond each individual document will con-

tribute significantly to surface good results.

• Diversity is good: Simple patterns can outperform sophisticated NLP-based techniques.

The diversity of the Web ensures that simple patterns, while inexpensive to execute,

will match some documents to extract good results.

The insights amount to the approach of pattern-based relation extraction, to extract a

relation R of tuples t by matching some textual patterns p. For instance, to extract tuples

of the form (〈city〉, 〈country〉) for the relation capital-city-of, we can use pattern p1 =

“〈city〉 is the capital ... of 〈country〉” or p2 = “〈city〉 is ... city of 〈country〉”, both of which

match the text “Paris is the capital city of France” and extract the tuple (Paris, France).

Note that we use 〈E〉 to denote an entity type, which will be further explained in Section 2.3.

Unfortunately, while pattern is at the heart of pattern-based IE, it remains an open

issue as how to find good patterns in a principled and systematic manner. How do we find

patterns like p1 and p2? Which one is better and Why? (Presumably, p1 is more accurate

to indicate the desired capital relationship; however, p2 can likely return more complete

answers.) For finding patterns to use, the existing works fall into two categories: On the one

hand, patterns may be manually specified (by inspecting the corpus), which is the approach

from early pioneering work [55] to recent ones [35, 109]. On the other hand, patterns can be

learned implicitly in an iterative process, as in DIPRE [18] and Snowball [4]. As Section 2.2

will contrast, in these iterative learning approaches, patterns are lacking principled quality

metrics, and they are often hidden as a by-product in the iterative process.

In this chapter, as our first goal, we propose and address the problem of pattern search—
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Search Engine Extractor
2. extraction patterns

1. search patterns { (Paris, France),
(Berlin, Germany),
(Tokyo, Japan),
(Canberra, Australia) }

{ (Ottawa, Canada), 
(Beijing, China) }

Input: Patterns Output: Tuples

Search Engine Extractor

Pattern Searcher

Input: Seed Tuples Output: Patterns

2. extraction patterns

1. search patterns

(a) Problem 1: Searching patterns by seed tuples

(b) Problem 2: Extracting tuples by found patterns

Corpus 

Figure 2.1: The dual problems of pattern search and tuple extraction.

to find and rank reusable patterns in a principled way. As Figure 2.1(a) illustrates, given a

small number of seed examples, such as (Ottawa, Canada) and (Beijing, China), we wish to

search systematically in the space of candidates to return good patterns in an order ranked by

their quality. Such explicit and principled discovery of patterns not only enhances extraction

effectiveness because patterns are now of high quality, but also enables new scenarios. First,

with reusable patterns, we can execute and re-execute these patterns on demand to extract

new tuples over an evolving corpus like the Web, without relearning the patterns as a part

of the extraction process. Second, with such patterns, we can also execute focused retrieval

by combining them with ad hoc keywords (e.g., use “ancient history” + “〈city〉 is the capital

... of 〈country〉” to find capital cities that are also historical), as recently explored in ad hoc

content querying [109].

As our second goal, upon the patterns found we study the subsequent problem of scalable

tuple extraction, to form a complete framework for relation extraction shown in Figure 2.1(b).

Our proposed solution relies on the ranked patterns of various granularities to match different

scopes of the corpus, enabling the extraction of new tuples in a scalable manner. It is also

important to return tuples of high quality in a principled way, parallel to the problem of
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pattern search. Thus, the ultimate purpose of the patterns can be fulfilled—to efficiently

and effectively find more tuples for a given relation.

As it turns out, both problems boil down to developing effective ranking of patterns

and tuples. Our goal is thus to study the principles for such ranking. While no formal

principles exist, the informal insight of Pattern-Relation Duality (or PR Duality) has long

been observed since DIPRE [18]. It is essentially stated as follows:

PR Duality (Original): Given a good set of patterns, we can build a good set of tuples.

Given a good set of tuples, we can build a good set of patterns.

While the insight has been widely used in existing studies, it falls short of providing

a formal principle. Subsequent works [4, 3] continue to leverage the insight, but mostly

resort to heuristics for modeling the iterative reinforcement. First, what does “good” mean?

We need to formalize a set of metrics—precision and recall—for capturing the quality of

patterns as well as tuples. Second, how exactly do patterns and tuples interrelate? We need

to develop a probabilistic inference framework that captures the propagation of metrics

between them. As the foundation of our approach, we address these questions and propose

the conceptual model PRDualRank, and thus “rediscover” PR Duality as the underlying

principle for ranking both patterns and tuples.

PR Duality (Rediscovered): Patterns and tuples reinforce each other under the quality

metrics of precision and recall. That is, the quality of a pattern, both precision and recall,

can be determined by the tuples it extracts. Likewise, the quality of a tuple can be determined

by the patterns it matches.

We further develop a concrete framework to realize PRDualRank. Conceptually, PRDual-

Rank assumes the complete knowledge of all possible patterns and tuples, which is infeasible

on a large corpus. Hence, in this concrete framework, we introduce a sampling process to

partially materialize PRDualRank.
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In summary, this chapter makes the following contributions:

• Problems: We propose the dual problems of pattern search and tuple extraction,

which boils down to the metrics of precision and recall.

• Conceptual model: We present the formal inference mechanism for probabilistic

precision and recall, which correspond to two different forms of random walk.

• Concrete framework: We develop a framework to partially materialize PRDualRank

under our sampling guideline.

• Empirical results: We conduct extensive experiments over the real Web. In partic-

ular, we improved optimal F-score by a factor of up to 1.64.

2.2 Related Work

In terms of problem. Extracting tuples of a given relation from a text corpus has long

been studied [18, 4, 35]. However, its dual problem of searching textual patterns only exists

implicitly as an intermediate step of tuple extraction.

In contrast, this chapter treats patterns as first class citizens. We first stress their reusabil-

ity. We explicitly search and rank patterns in a principled way, such that they can be reused

for future extraction (e.g., over the evolving Web at a later point), or to be used by other

systems like DoCQS [109]. Second, we stress their scalability, which hinges on a principled

framework for finding out “searchable” patterns to narrow the scope of extraction. Most

previous works but QXtract [5] have not discussed the automatic discovery of searchable

patterns. QXtract generates queries (i.e., searchable patterns) to retrieve relevant docu-

ments that may contain tuples in a preprocessing step, after which existing methods like

Snowball [4] is used on the retrieved documents separately. We instead identify the prin-

ciples behind the ranking of patterns, and thus integrate the ranking of such searchable

patterns into the same framework PRDualRank as other kinds of patterns.
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For the quality metrics, none of the previous approaches explores a principled framework

to derive the quality of the tuples and patterns. In particular, none develops a complete

set of metrics covering both precision and recall. Instead, most emphasize “confidence” or

“probability assessment,” which captures precision only in an informal and heuristic way. For

instance, in Snowball [4], confidence estimation is based on the assumption of independent

patterns, resulting in excessively high confidence for all tuples. In QA [83], the relation

must have a key attribute. For example, 〈country〉 is a key attribute of capital-city-of,

as it cannot associate with more than one 〈city〉 as its capital. In KnowItAll [35, 36], it is

assumed that tuples of one relation do not satisfy other relations. These assumptions are

not always valid. Some other studies [91, 95, 11] estimate the confidence based on some

simple statistics.

For the problem setting, we rely on bootstrapping using seed tuples, similar to some

previous work [18, 4].

In terms of techniques. We propose a semi-supervised approach based on iterative in-

ference on tripartite graphs constructed from tuples, patterns and their contexts. Such

graph-based inference propagation is widely reported in the literature [3, 2, 106]. Specifi-

cally, our inference involves rewriting of a node’s precision and recall in terms of its neighbors

on the graph, which maps to different forms of random walk as inspired by an earlier study

[2]. In particular, they study the problem of query template mining, where a tripartite graph

can be constructed from queries, templates, and sites. The precision and recall of queries can

be inferred from its neighboring sites through clickthroughs and its neighboring templates

through instantiation. We share their insight that the quality of tuples and patterns can

be inferred from their neighboring nodes. However, we are addressing a distinct problem of

relation extraction, where patterns and tuples serve different purposes from queries, tem-

plates and sites in the problem of query template mining. In addition, in their setting, all

queries and clickthroughs are available from a query log. All possible templates can also
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(a) Example snippets from corpus

(b) Tuples
ଵݐ ൌ (Paris, France) , ݐଶ ൌ (Ottawa, Canada), ݐଷ ൌ (Toronto, Canada)

(c) Patterns
Search Pattern  ௦ܲ (not necessarily from the above snippets) 
௔݌ ൌ “tourist | government”
௕݌ ൌ “capital city | congress”

Extraction Patterns ௘ܲ (from the above snippets) 
ଵ݌ ൌ “〈city〉 is the national capital … of 〈country〉”
ଶ݌ ൌ “〈city〉	is the … capital city of 〈country〉”
ଷ݌ ൌ “〈city〉	is the largest city of 〈country〉”
ସ݌ ൌ “〈city〉	is the … city of 〈country〉”

Id Doc Snippet Freq.
ଵݏ ݀ଵ, ݀ଷ, ݀ସ, ݀ହ Paris is the capital city of France… 4
ଶݏ ݀ଵ Paris is the largest city of France… 1
ଷݏ ݀ଶ, ݀ଷ Ottawa is the national capital city of Canada…  2
ସݏ ݀ସ, ݀଺ Toronto is the largest city of Canada…  2

Figure 2.2: Running example for relation extraction.

be enumerated from this log. But in our problem, we are only given a few seeds as input,

without the complete spaces of tuples and patterns. Thus, we must resort to the partial

materialization of the graph, based on our sampling guideline.

2.3 Problems: Pattern Search and Tuple Extraction

Towards scalable and reusable pattern-based relation extraction, we must address two dual

problems, in which the concept of pattern is central. As Figure 2.1 shows, with respect to

a corpus D of documents (say, the Web), we are interested in developing a mechanism that

can extract a target relation R from D, by way of searchable and reusable patterns.

2.3.1 Data Model

We start with defining our data model. Consider a running example in Figure 2.2 over a toy

corpus D (say, some web pages), for a target relation R = capital-city-of.

A corpus D is a collection of documents, where some “snippets” may contain the relation
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of interest. Figure 2.2 shows some example snippets. Each snippet may appear multiple

times, as its frequency. For example, s1 occurs 4 times. Since our extraction is to recognize

a span of text (such as “Paris” in s1) as a certain semantic role (such as a capital city),

we denote the vocabulary, i.e., all the tokens (which can be words, phrases and symbols

depending on the application) in D, by Ω.

As our ultimate target, a relation contains a set of tuples of the form (e1, . . . , en), where

ei is an attribute or entity. Each entity e of a type 〈E〉 is an instance of its type, which draws

value from its domain Ω〈E〉. In other words, if e is of type 〈E〉, then e ∈ Ω〈E〉. For example,

e = “France” is of type 〈country〉, where Ω〈country〉 = {“France”, “USA”, “China”, . . . }. Note

that the recognition of entities from text (e.g., “France” in snippet s1 is a 〈country〉) is itself

an active research area. As this chapter focuses on relation extraction, we assume that the

extractor is equipped with an entity tagger; many off-the-shelf tools are available today.

In Figure 2.2, we thus recognize three tuples t1, t2 and t3 of the form (〈city〉, 〈country〉).

While our discussion in this chapter assumes a binary relation R of the form (〈E1〉, 〈E2〉),

the framework is general with respect to the arity.

At the core of pattern-based extraction lies the notion of pattern. Generally, a pattern is

a syntactic structure with tokens and entity types that describe a “presentation” of a desired

tuple—how a tuple may appear in D. Over a large corpus, to speed up extraction, we will

need patterns of different granularities to match various scopes like documents, passages,

and sentences.

For our discussion, we assume two classes of patterns, each with a rather simple form.

However, we stress that the framework is general to handle any number of various classes of

patterns, which can be defined in arbitrarily complex forms. Our first class of patterns aims

at retrieving relevant documents from the corpus by a search engine: a search pattern is a

set of searchable keyword phrases matching a relevant document d. Figure 2.2 shows some

example search patterns. For example, pb = “capital city | congress” will match documents

with two phrases “capital city” and “congress” in no particular order. Since a search pattern
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is to be executed by a search engine, its expressiveness is limited by the chosen engine. Our

second class of patterns will locate actual slots where desired entities occur to form a tuple:

an extraction pattern further matches a text snippet s within a relevant document d. In

Figure 2.2, p1 = “〈city〉 is the national capital ... of 〈country〉” specifies that the entities and

the keywords appear in that order, with some optional text “...” in between. It will match

s3—by aligning the words and recognizing “Ottawa” as a 〈city〉 and “Canada” a 〈country〉—

and extract (Ottawa, Canada) as a matching tuple. Formally, we adopt the following two

simple forms of patterns.

Definition 2.1 (Search Pattern). A search pattern is a set of phrases, written as

“g1 | . . . | gm”. Each phrase gi is an n-gram of words (w1 . . . wn), where wi ∈ Ω, and

|gi| = n ≤ Lmax, for some choice of phrase length Lmax.

Definition 2.2 (Extraction Pattern). An extraction pattern for (〈E1〉, 〈E2〉) is a

list of two phrases, “g1 . . . g2” or “g2 . . . g1”, where “ . . .” is an optional wildcard. Each

gi is a phrase containing a reference to 〈Ei〉, i.e., gi = l1, . . . , ln1 , 〈Ei〉, r1, . . . , rn2 where

li, rj ∈ Ω and |gi| ≤ Lmax, for some choice of phrase length Lmax.

2.3.2 Problems

Our approach consists of two dual stages, as Figure 2.1 illustrates. As input, like many

existing pattern-based extraction efforts [18, 4], we assume a small number of seed tuples such

as (Ottawa, Canada) and (Beijing, China). As output, our ultimate goal is to find additional

tuples for the matching relation, which is capital-city-of in this example. However,

unlike existing studies, we emphasize the role of patterns, and stress the needs for scalability

and reusability. For scalability, as we just explained, we support two (or more) classes of

patterns, where search patterns can quickly retrieve relevant documents, and extraction

patterns can accurately identify tuples from text. For reusability, we systematically search
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for good patterns as a first-class citizen instead of a by-product hidden in the extraction

process, and rank them with quality metrics in a principled framework. Overall, we must

develop effective techniques for two problems.

Problem 1: Pattern search. Given a small number of seed tuples from relation R, search

the corpus to find and rank patterns for R.

Problem 2: Tuple extraction. Given discovered patterns for R, execute them over the

corpus to find and rank tuples for R.

2.4 Pattern-Relation Duality

The key challenge lies in finding good patterns (for pattern search) and good tuples (for

tuple extraction). The principle of ranking, as it turns out, is a formalization of the long-

existing insight of PR Duality. Our study attempts to formalize PR Duality, leading to the

PRDualRank framework for the dual ranking of patterns and tuples. While our discussion

mentions only extraction patterns, the same framework can be applied to search patterns

(and, in principle, any definition of patterns matching certain scope for extraction).

Pattern and tuple spaces. To begin with, we examine our search space. That is, what is

the set of candidate patterns or tuples we should consider?

Let us look at extraction patterns first. By Definition 2.2, a pattern is a combination

of two phrases g1 and g2, each of which can be at most Lmax in length. Each occurrence

ei of an entity type 〈Ei〉 (say, “Paris” as a 〈city〉 in snippet s1) can form such a phrase

with its surrounding tokens (say “〈city〉 is”, “〈city〉 is the”, and so on). Given the cor-

pus D, we thus consider the space of extraction patterns as P = {p | p = “g1 . . . g2”,

gi is a phrase containing a reference to 〈Ei〉, gi occurs in D, |gi| ≤ Lmax}. For our example

in Figure 2.2, the space would include p1, p2, p3, p4, and many that are not listed, such as

“〈city〉 is ... of 〈country〉”.
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Similarly, for ranking tuples, there is also a potentially large space of candidates. For

a relation R of the form (〈E1〉, 〈E2〉), such as (〈city〉, 〈country〉), the complete space is the

Cartesian product of the two entity domains Ω〈E1〉 × Ω〈E2〉, such as any combination of city

and country. As our goal is to extract such tuples from corpus D, we should only consider

those pairs that actually appear in D. In fact, since entities that are far apart are unlikely to

be semantically associated, we need only consider those 〈E1〉 and 〈E2〉 that are close within

some given window. Thus, the space of tuple to consider is T = {t | t = (e1, e2), ei ∈ Ω〈Ei〉,

e1, e2 occur in D within x words}. For our example in Figure 2.2 (assuming x = 10), if the

entities only occur in the listed snippets, then the space is T = {t1, t2, t3}.

Tuple-pattern association. To formally develop PR Duality, we further capture the

associations between patterns and tuples, which enable us to systematically relate them and

induce the duality between them.

Intuitively, each co-occurrence of a tuple t and pattern p in some snippet forms an

association that is “intended” by the author of the document. We denote such an association

as (t, p). Since each association (t, p) can occur multiple times in different snippets and

documents, it has a frequency equaling to its total count of occurrences. For example,

Figure 2.3(a) lists the associations in the snippets of Figure 2.2(a). t1 co-occurs with p2 and

thus forms an association (t1, p2) with a frequency of 4, since snippet s1 occurs 4 times. As

another example, t1 and p4 co-occur at both s1 and s2, forming an association (t1, p4) with

a total frequency of 4 + 1 = 5.

While an association binds a specific pair of tuple and pattern, a pattern can associate

with multiple tuples, and vice versa. Let us denote the multiset of tuples associated with p

as τ(p), and similarly the multiset of patterns associated with t as π(t). (They are multisets

since an association can have multiple occurrences.) For instance, τ(p2) = {t1 : 4, t2 : 2}

and π(t1) = {p2 : 4, p3 : 1, p4 : 5}, according to Figure 2.3(a). Furthermore, let Wij be the

frequency of the association (ti, pj).
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Figure 2.3: Tuple-pattern associations and graph.

Given the tuple space T and pattern space P , we can construct a tuple-pattern graph G

as a convenient way to visualize associations. G = (T, P ) is a bipartite graph where T and

P form two disjoint sets of nodes, as illustrated in Figure 2.3(b). The set of edges models

the associations, such that an association (ti, pj) implies that ti and pj are connected by an

edge weighted by the frequency Wij. For example, (t1, p2) connects t1 and p2 with an edge

of weight 4.

2.4.1 Metrics: Precision and Recall

Given the space of possible patterns P , we need formal metrics to measure their quality. As

our search and ranking spaces encompass interrelated T and P , we aim to develop metrics

that will uniformly apply to both patterns and tuples, in order to unify and integrate their

mutual reinforcement, which is the intuition of PR Duality.

To determine the right metrics, we investigate the purpose of patterns, which is to extract,

or “retrieve”, tuples relevant to the target relation R. With an oracle who examines every

snippet, we would be able to judge the relevance of each tuple with respect to R, and thus

determine R. In order to capture the frequency of the member tuples, R is modeled as a

multiset. The frequency of a tuple t is defined as the total number of times t can be extracted

in the corpus (by any possible pattern), i.e., |π(t)|. In our example, R = {t1 : 10, t2 : 6}.

Intuitively, a good pattern should match more relevant tuples, and fewer irrelevant ones.
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In other words, the purpose of a pattern is to retrieve those relevant tuples in R. We

can thus measure the quality of a pattern p by its “retrieval effectiveness” for finding R

from the entire space T . The objectives of set retrieval naturally translate to the need of

both precision P and recall R, as in standard information retrieval evaluation. Consider

pattern p1 in our example, which retrieves τ(p1) = {t2 : 2}. With respect to R, we thus

have precision P(p1) = |R∩τ(p1)|
|τ(p1)| = 2

2
= 1.0, and recall R(p1) = |R∩τ(p1)|

|R| = 2
10+6

= 0.125.

As another example, pattern p4 that retrieves τ(p4) = {t1 : 5, t2 : 2, t3 : 2} will have

P(p4) = |R∩τ(p4)|
|τ(p4)| = 5+2

5+2+2
= 0.78 and R(p4) = |R∩τ(p4)|

|R| = 5+2
10+6

= 0.44. Apparently, while

some patterns like p1 have a higher precision but a lower recall, other patterns like p4 have

a higher recall but a lower precision. Formally, letting | · | denote the sum of frequencies of

all members in a set, we have

P(p) , |R ∩ τ(p)|/|τ(p)|, (2.1)

R(p) , |R ∩ τ(p)|/|R|. (2.2)

The two metrics can also be applied to tuples, as we can view each tuple t as retrieving

a multiset φ(t) that only contains t itself (with its frequency). Subsequently,

P(t) , |R ∩ φ(t)|/|φ(t)|, (2.3)

R(t) , |R ∩ φ(t)|/|R|. (2.4)

The uniform definitions of precision and recall on both patterns and tuples enable us to

unify their mutual reinforcement, as we will see next.

2.4.2 Inference: Mutual Reinforcement

In our problem setting, we are only give a few seed tuples for the target relation. In other

words, R is unknown (or rather, not completely known), and thus the deterministic defini-

tions of precision and recall in Eq. 2.1–2.4 cannot be directly implemented. It is only feasible

to redefine and infer precision and recall in a probabilistic manner.
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2.4.2.1 Probabilistic Definitions

As the foundation, we need to generalize the deterministic definitions of precision and recall

to probabilistic ones. Let us start with patterns and consider Eq. 2.1. As its numerator is

the count of R ∩ τ(p) and its denominator is the count of τ(p), it represents the conditional

probability that a tuple x belongs to R given that x is drawn from τ(p), which we call the

probabilistic precision of p. We can similarly generalize Eq. 2.2 to define the probabilistic

recall of p. Thus, we have

P(p) , p (x ∈ R|x ∈ τ(p)) , (2.5)

R(p) , p (x ∈ τ(p)|x ∈ R) . (2.6)

For a tuple t ∈ T , we can generalize in a similar fashion. In particular, for precision,

we can rewrite Eq. 2.3 as p (x ∈ R|x ∈ φ(t)). Since φ(t) only contains t, the expression

can be simplified to just p (t ∈ R), which intuitively measures the probability of t being

relevant. Likewise, for recall, we can rewrite Eq. 2.4 as p (x ∈ φ(t)|x ∈ R), which simplifies

to p (x = t|x ∈ R) as φ(t) only contains t. Thus, we define that

P(t) , p (t ∈ R) , (2.7)

R(t) , p (x = t|x ∈ R) . (2.8)

2.4.2.2 Probabilistic Inference

The inference of probabilistic precision and recall enables the dual ranking of tuples and

patterns. We summarize the main results in Figure 2.4. The results describe the inference

rules P1 and P2 for probabilistic precision, as well as R1 and R2 for probabilistic recall,

which are mutually reinforcing between tuples and patterns.

We derive these rules in the following. Note that our derivations are inspired by the

QueST framework [2] for the problem of query template mining, but we are addressing a

distinct problem of relation extraction, as Section 2.2 explained.

24



(a) Inference of probabilistic precision (b) Inference of probabilistic recall

P1 P(pj) =
∑

ti∈τ(pj)

P(ti) ·
Wij

|τ(pj)|
R1 R(pj) =

∑
ti∈τ(pj)

Wij

|π(ti)|
R(ti)

P2 P(ti) =


1 if ti ∈ T0;∑
pj∈π(ti)

P(pj) ·
Wij

|π(ti)|
else. R2 R(ti) =

∑
pj∈π(ti)

Wij

|τ(pj)|
R(pj)

Figure 2.4: Inference rules for probabilistic precision and recall.

Inference of precision. For a pattern pj, We rewrite P(pj) into a function of P(ti), for

those ti ∈ τ(pj). The derivation leads to rule P1 in Figure 2.4.

P(pj) , p (x ∈ R|x ∈ τ(pj))

1
=

∑
ti∈τ(pj)

p (x ∈ R, x = ti|x ∈ τ(pj))

2
=

∑
ti∈τ(pj)

p (x ∈ R|x = ti, x ∈ τ(pj)) p (x = ti|x ∈ τ(pj))

3
=

∑
ti∈τ(pj)

p (x ∈ R|x = ti) p (x = ti|x ∈ τ(pj))

4
=

∑
ti∈τ(pj)

p (ti ∈ R) p (x = ti|x ∈ τ(pj))

5
=

∑
ti∈τ(pj)

P(ti)
Wij

|τ(pj)|
(2.9)

Step 1 expands with joint distributions with every ti ∈ τ(pj). Step 2 uses Bayes’ rule. Step

3 removes the condition x ∈ τ(pj), of which x ∈ R is conditionally independent, given the

stricter condition x = ti. Step 4 simply rewrites p (x ∈ R|x = ti) as p (ti ∈ R). Then, in step

5, we recognize the first term as simply P(ti), while the second term can be calculated as
Wij

|τ(pj)| , which is the proportion of ti among the tuples associated with pj.

To enable the mutual reinforcement between patterns and tuples, we also rewrite P(ti)

in terms of P(pj), for those pj ∈ π(ti), resulting in rule P2 in Figure 2.4. Together, rules P1
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and P2 form the inference mechanism for probabilistic precision.

P(ti) , p (ti ∈ R)

1
=

∑
pj∈π(ti)

p (ti ∈ R, ti ∈ τ(pj))

2
=

∑
pj∈π(ti)

p (ti ∈ R|ti ∈ τ(pj)) p (ti ∈ τ(pj))

3
=

∑
pj∈π(ti)

P(pj)
Wij

|π(ti)|
(2.10)

Consider an arbitrary extraction of ti by some pattern. In step 1, we expand to different

pj ∈ π(ti) such that the extraction of ti is done by pj, i.e., ti ∈ τ(pj). Note that an extraction

of ti is obtained through only one pj, meaning that ti ∈ τ(pj) are disjoint events for different

pj’s. Step 2 applies the Bayes’ rule. In step 3, we recognize that the first term is P(pj); the

second term is the probability that ti is extracted by pj (given that ti has been extracted by

some pattern), which can be computed as Wij

|π(ti)| .

Note that the rewriting does not apply to seed tuples ti ∈ T0, which are positive examples

and should maintain their values at 1. More general forms of seed tuples can also be adopted,

such as negative examples which should maintain their values at 0.

Inference of recall. The probabilistic recall of a pattern pj (Eq. 2.6) can also be inferred

from those of tuples ti (Eq. 2.8), and vice versa, leading to rules R1 and R2 in Figure 2.4.

R(pj) , p (x ∈ τ(pj)|x ∈ R)

1
=

∑
ti∈τ(pj)

p (x ∈ τ(pj), x = ti|x ∈ R)

2
=

∑
ti∈τ(pj)

p (x ∈ τ(pj)|x = ti, x ∈ R) p (x = ti|x ∈ R)

3
=

∑
ti∈τ(pj)

p (x ∈ τ(pj)|x = ti) p (x = ti|x ∈ R)

4
=

∑
ti∈τ(pj)

Wij

π(ti)
R(ti) (2.11)
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Step 1 expands to joint probabilities with ti ∈ τ(pj). In step 2, we apply Bayes’ rule. In

step 3, as x = ti is a stricter condition, x ∈ R is removed. In step 4, the first term can be

computed as Wij

π(ti)
, and the second term is simply R(ti).

R(ti) , p (x = ti|x ∈ R)

1
=

∑
pj∈π(ti)

p (x = ti, x ∈ τ(pj)|x ∈ R)

2
=

∑
pj∈π(ti)

p (x = ti|x ∈ τ(pj), x ∈ R) p (x ∈ τ(pj)|x ∈ R)

3
=

∑
pj∈π(ti)

p (x = ti|x ∈ τ(pj)) p (x ∈ τ(pj)|x ∈ R)

4
=

∑
pj∈π(ti)

Wij

|τ(pj)|
R(pj) (2.12)

Consider an arbitrary extraction of ti by some pattern. Step 1 expands to pj ∈ π(ti) such

that ti is extracted by pj. Step 2 applies Bayes’ rule. In step 3, given some extraction by

the pattern pj, the extraction is only determined by pj and ti’s relevance does not matter.

In step 4, the first term can be computed as Wij

|τ(pj)| , and the second term is R(pj).

Overall algorithm: PRDualRank. We now introduce the overall algorithm called PRD-

ualRank in Figure 2.5, to rank both tuples and patterns by precision as well as recall. Given

the seed tuples and the tupe-pattern graph, we first initialize precision and recall for tuples

(line 1–3). Next, we update the precision and recall of patterns and tuples iteratively until

some stopping condition (line 4–7). Finally, ranked patterns and tuples are outputted (line

8). Note that the stopping condition can be specified in different ways, e.g., by a fixed num-

ber of iterations, or until convergence (which may require certain adjustment of the updating

rules to ensure that non-trivial convergence occurs).

As a concluding remark, PRDualRank not only exemplifies the original PR Duality in

[18], but also formally quantifies and thus “rediscovers” it, as first stated in Section 2.1. In

particular, both precision and recall of a pattern can be expressed in terms of its associated
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Input: Tuple-pattern graph G = (T, P ); seed tuples T0 ⊂ T
Output: P and T ranked by probabilistic precision/recall

1 foreach t ∈ T0 do
2 P(t)← 1; R(t)← 1

|T0| ;
3 end
4 repeat
5 update P by rules P1 and P2;
6 update R by rules R1 and R2;
7 until termination condition;
8 return P and T ranked by P or R.

Figure 2.5: PRDualRank algorithm: Ranking by PR Duality.

tuples, by rule P1 and R1 in Figure 2.4. In duality, the quality of a tuple can be expressed

in terms of its associated patterns, by rule P2 and R2. In other words, our inference process

boils down to the mutual reinforcement between patterns and tuples.

2.4.3 Interpretation: Forward and Backward Random Walks

The resulting inference framework for precision and recall, exhibits a rather interesting

form of duality—they are symmetric and “opposite” to each other. Similar to what has

been observed in the QueST framework [2], our inference for precision and recall can be

interpreted as two different forms of random walks on the tuple-pattern graph.

On the one hand, probabilistic precision is a random walk backward as depicted in Fig-

ure 2.6(a). That is, starting from a pattern pj on the tuple-pattern graph, what is the

probability that we will reach a seed tuple in T0 (a subset of the target relation R)? Infor-

mally, it measures the proportion of tuples associated with pj that will reach the seed tuples,

which captures the intuition of precision.

On the other hand, recall is a random walk forward as depicted in Figure 2.6(b): Starting

from a seed tuple in T0 ⊂ R on the tuple-pattern graph, what is the probability that we will

reach pj? Intuitively, it is consistent with probabilistic recall of pj, i.e., the proportion of

tuples in R that will reach pj.
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(a) Precision by backward random walk (b) Recall by forward random walk

Figure 2.6: Interpreting probabilistic precision and recall as random walks.
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Figure 2.7: Partially materialized tuple-pattern graph.

2.5 Concrete Framework

The major challenge in realizing our inference framework PRDualRank lies in the materi-

alization of the tuple-pattern graph. Unlike the QueST framework [2], we do not know the

entire spaces of tuples and patterns as well as their associations, due to the immense scale

of the corpus (such as the Web).

Thus, we resort to partial materialization, starting only with a few seed tuples. To

illustrate, a partial graph is constructed in Figure 2.7, which is extended from the example

graph in Figure 2.3 (tuples t1, . . . , t3 and patterns p1, . . . , p4 are from the earlier example). In

this graph, only solid nodes and edges are materialized, and dashed ones are in the “unseen”

part of the corpus.

Thus, the problem lies in devising a good sampling process to partially materialize the
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graph. We first describe the guideline for the sampling process. Subsequently we present a

concrete framework to the dual problems of pattern search and tuple extraction.

2.5.1 Sampling Guideline

In the sampling process, it is important to capture tuples of different relations. As illustrated

in Figure 2.7, t2, . . . , t6 satisfy three different relations on Ω〈city〉 and Ω〈country〉. Intuitively,

if we sample tuples from different relations, it helps to better distinguish the “relevant”

patterns from the irrelevant ones, similar to the building of a classifier which requires both

positive and negative (or at least unlabeled) examples. The sampled tuples become the

unlabeled examples. In our example, ideally at least one tuple from {t3, t4} (for relation

largest-city-of, as well as one from {t5, t6} (for relation sister-city-of) should be

sampled, given the seed t2.

Equivalence class. We say that two tuples t, t′ are equivalent if and only if they satisfy

exactly the same set of relations, denoted t ∼ t′. Note that a tuple may have multiple

senses. For instance, (Paris, France) satisfies both capital-city-of and largest-city-of

relations. In our example, t3 is equivalent to t4, and so is t5 to t6. Subsequently, the tuple

space T can be partitioned into equivalence classes consisting of equivalent tuples. We denote

the equivalence classes as sets T1, . . . , Tm, i.e., T = ∪mk=1Tk.

Equivalence assumptions. We first assume that tuples in the same equivalence class can

be extracted by the same set of patterns, and for the same number of times. In other words,

the corpus is comprehensive and balanced, containing snippets that express each tuple in

every possible way. The Web is a fair approximation of such a corpus. Using our notation,

given two equivalent tuples ti ∼ tj, we have

∀pk ∈ P, ti ∈ τ(pk)⇔ tj ∈ τ(pk) and Wik = Wjk. (2.13)

We further assume that tuples in the same equivalent class have the same precision and
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recall. That is, for t ∼ t′,

P(t) ≡ P(t′) and R(t) ≡ R(t′). (2.14)

Equivalence sampling. In the following, we establish an “equivalence sampling” process,

which, in principle, ranks patterns by probability precision and recall in the same order as

full materialization does.

Proposition 2.1 (Equivalence Sampling). Suppose the same proportion ρ ∈ (0, 1)

of tuples are sampled from each equivalence class, and all of the patterns and associations

of a sampled tuple are also sampled. Let T̂ = ∪mk=1T̂k ⊆ T denote the sampled subspace

of tuples, where T̂k ⊆ Tk and |T̂k| = ρ|Tk|. Furthermore, let τ̂(p) , {t|t ∈ τ(p), t ∈ T̂}.
Assuming Eq. 2.13 and 2.14, we have the following results.

P(pj) =
∑

ti∈τ(pj)

P(ti) ·
Wij

|τ(pj)|
(Eq. 2.9) ≡

∑
ti∈τ(pj)∩T̂

P(ti) ·
Wij

|τ̂(pj)|
, (2.15)

R(pj) =
∑

ti∈τ(pj)

R(ti) ·
Wij

|π(ti)|
(Eq. 2.11) ∝

∑
ti∈τ(pj)∩T̂

R(ti) ·
Wij

|π(ti)|
. (2.16)

The above result implies that it is important to sample tuples of different relations at a

similar rate, whereas the specific attributes of the sampled tuples does not matter. In other

words, for two tuples t ∼ t′, it makes no difference to sample either of them.

2.5.2 Pattern Search

As discussed, we need to partially construct the tuple-pattern graph, starting with only a

few seed tuples. In addition to the seed tuples, our approach also requires a search engine

S that interfaces with the corpus D. For the Web, general purpose keyword-based search

engines are sufficient.

PR Duality implies that a tuple can be used to discover more patterns and vice versa.

We illustrate key steps of this approach using snapshots in Figure 2.8. Starting with the seed
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(a) Sampling patterns (b) Sampling tuples (c) Graph construction

seed

Figure 2.8: Snapshots of partial materialization.

t2 = (Ottawa, Canada), we first query S with both attributes of t2 (i.e., Ottawa+Canada)

to retrieve Ndoc documents containing t2 in D. From the retrieved documents, patterns

associated with t2 are found, namely p1, p2, p4, as bolded in Figure 2.8(a).

Next, we query S with each attribute of the seeds. That is, for seed t = (e1, e2), query

with e1 and e2 separately. Then, we apply the newly found extraction patterns to sample

unlabeled tuples, namely t3 and t5, as bolded in Figure 2.8(b). Querying with attributes of

the seeds allows efficient discovery of unlabeled tuples. Note that search patterns are not

used for this purpose, as they are not yet ranked at this stage, and thus it is inefficient to

use all of them than to use only the attributes of the seeds. Although t3 and t5 both share

an attribute with the seed t2, we stress that the sampling is fair in the sense that different

relations are still captured. In particular, t3 satisfies the relation largest-city-of, so does

t4. Thus it makes no difference in sampling either of them. Similarly, t5, t6 satisfy the same

relation sister-city-of. This is consistent with Proposition 2.1, which suggests that it

only matters to sample different relations, whereas the specific attributes of the sampled

tuples are unimportant.

Finally, after sampling the patterns and tuples, a partial tuple-pattern graph can be con-

structed by connecting tuples and patterns via their associations, as shown in Figure 2.8(c).

The constructed partial graphs, one for the search patterns and one for the extraction pat-

terns, subsequently enable PRDualRank to infer the probabilistic precision and recall for

both classes of patterns.
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Input: seed tuples T0 ⊂ T ; search engine S for corpus D; extractor E
Output: ranked list of search patterns Ps, and of extraction patterns Pe

1 Ps ← ∅; Pe ← ∅; U ← ∅;
2 foreach t = (e1, e2) ∈ T0 do
3 D′ ← S.Query(e1 + e2, Ndoc);
4 Ps ← Ps ∪ { search patterns found in D′ };
5 Pe ← Pe ∪ { extraction patterns found in D′ };
6 end
7 foreach t = (e1, e2) ∈ T0 do
8 foreach ei do
9 D′ ← S.Query(ei, Ndoc);

10 U ← U ∪ { tuples with attribute ei ∈ E.Extract(D′, Pe) };
11 end
12 end
13 T ← { top frequent Ntuple tuples ∈ U } ∪ T0;
14 D′ ← ∅;
15 foreach t = (e1, e2) ∈ T do
16 D′ ← D′ ∪ S.Query(e1+e2, Ndoc);
17 end
18 build graphs Gs = (T, Ps) and Ge = (T, Pe) based on D′;
19 Ps ← PRDualRank(Gs, T0); Pe ← PRDualRank(Ge, T0);
20 return ranked Ps and Pe.

Figure 2.9: PatternSearch algorithm: Finding good patterns.

The above algorithm is outlined in Figure 2.9, where line 2–6 correspond to snapshot (a)

in Figure 2.8, line 7–13 correspond to (b), and line 14–18 correspond to (c).

The outputs are a list of search patterns and a second list of extraction patterns. For

now, each list is ranked by F-scores, the harmonic mean of precision and recall to obtain

“balanced” patterns. Note that we normalize precision and recall to [0, 1] to give them equal

weights in computing the F-score. We will study the effect of using precision or recall-based

patterns by experiments in Section 2.6.3.

2.5.3 Tuple Extraction

The ultimate goal of the patterns is to find more tuples of R from D. For instance, t1 =

(Paris, France) in Figure 2.7 is not materialized, and we aim to find it by utilizing the learnt

patterns (p1, p2, p4).
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Input: ranked search and extraction patterns Ps, Pe;
search engine S for corpus D; extractor E

Output: ranked list of tuples

1 Ps ← {top Kwidth patterns from Ps};
2 Ds ← ∅;
3 foreach p ∈ Ps do
4 Ds ← Ds ∪ S.Query(p,Kdepth);
5 end
6 Pe ← {top Kext patterns from Pe};
7 Tcand ← E.Extract(Ds, Pe);
8 foreach t = (e1, e2) ∈ Tcand do
9 D′ ← S.Query(e1+e2,Kcanddoc);

10 compute P(t) by rule P2 using patterns in D′;
11 compute R(t) by rule R2 using patterns in D′;
12 end
13 return ranked Tcand;

Figure 2.10: TupleExtration algorithm: Extracting relevant tuples.

The learnt patterns consist of two classes, the search patterns and the extraction patterns,

for different purposes. Each of the top Kwidth search patterns (search width) is used to

retrieve Kdepth documents (search depth) that may contain the target tuples. Based on

our experiments, any single word is unlikely to be focused enough on the Web, thus we

additionally require the selected search patterns to contain at least two words. Next, top

Kext extraction patterns are applied on the retrieved documents to extract candidate tuples.

We also ignore extraction patterns of precision lower than 0.5, which tend to be too noisy.

Finally, we rank the candidate tuples using patterns from top Kcanddoc documents con-

taining each candidate tuple. We consider the F-score in ranking candidates, which can be

computed from search patterns, extraction patterns, or both in conjunction. We will discuss

the different ranking schemes in the experiments.

The above procedure is sketched in Figure 2.10. It has three major components: doc-

ument retrieval by search patterns (line 1–5), tuple extraction by extraction patterns (line

6–7), and candidate ranking (line 8–12).

In fact, after we obtain a ranked list of candidate tuples, we can treat the highly ranked
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Relation Description Type Example
birth Birth year of physics Nobel prize laureates one-many (1867, Marie Curie)

capital Capital city of countries one-one (Paris, France)
area-code Area code(s) of largest 100 U.S. cities many-many (617, Boston)

Figure 2.11: Target relations.

candidates as the seed tuples, and use them to relearn the patterns as Section 2.5.2 proposed.

The new patterns learnt can be used to extract tuples again, resulting in an iterative process

alternating between pattern search and tuple extraction. However, in practice, we observe

that after one round of pattern search and tuple extraction, we can often obtain stable

results as long as the parameters such as Kwidth, Kdepth and Kext are sufficiently large. We

will investigate the effects of these parameters in our experiments.

2.6 Experiments

We showcase our experimental evaluation of PRDualRank on the Web across different re-

lations. Overall, the experiments demonstrate that PRDualRank significantly outperforms

the baseline in both effectiveness and efficiency.

2.6.1 Experimental Settings

Corpus. We use the World Wide Web as the corpus D, which is accessed through Yahoo

API [105] as the search engine S.

Target Relations. Figure 2.11 shows the target relations we used, which are chosen for

their different relationship types (i.e., one-one, one-many and many-many). We use three

seeds as user input for each relation (i.e., |T0| = 3). We report the overall performance

for all the relations, whereas we report the results of finer grained experiments only for the

capital relation, since we observe similar trends on the others.

Entity Tagging. We used a dictionary-based approach to recognize entities involved in
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the target relations. Using the relation capital as an example, we manually prepared a

dictionary of all countries in the world, as well as a dictionary of cities using sources like

Wikipedia. The same tagging approach is used in PRDualRank and the baseline.

Baseline (QXtract&Snowball, or Q&S). This is the state-of-the-art scalable tuple ex-

traction system for our problem scenario, which lack a principled framework of quality

metrics. It is a two-phased system. In the first phase, QXtract [5] finds search queries based

on seeds and an extraction system like Snowball [4]. The search queries are then used to

retrieve documents as a preprocessing step to allow scalable tuple extraction. In the second

phase, Snowball extracts tuples from the documents retrieved. For fairness, we used the

same number of documents in learning the queries by QXtract and in ranking the patterns

by PRDualRank as well as the same number of queries in QXtract as search patterns in

PRDualRank to retrieve the same number of documents from the Web. For other parameters

in Q&S, we follow the settings outlined in [5, 4].

Schemes. We include the performance of three different schemes of PRDualRank. These

schemes only differ in ranking candidate tuples. They are: (a) Dual-Sch, ranking candidates

by using search patterns only; (b) Dual-Ext, ranking by extraction patterns only; (c) Dual-

Avg, which simply takes the average score from both classes of patterns.

Evaluation methodology. Since directly judging the quality of patterns is subjective,

we only evaluate the extracted tuples, which indirectly reflect the quality of the patterns.

Each method produces a ranked list of n tuples. We compare top N tuples from the output

with the ground truth tuples of the target relation, which are manually prepared. For each

N = 1, . . . , n, we evaluate the precision and recall of the top N tuples with respect to the

ground truth, and present the results in a precision-recall plot.

Additionally, there are web pages with a list of ground truth tuples on the Web. Taking

capital as an example, there is a list of capitals for every country on about.com [85]. In

general, we cannot assume such a list exists for any arbitrary relation, thus we should not
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take advantage of them. For fairness, we treat a web page as a list if it contains more than

10% of all the ground-truth tuples, which is simply disregarded during the tuple extraction

phase of every method.

Parameter settings. We discuss the parameters used in the partial materialization.

For pattern search, it is better to have larger Ndoc (number of documents retrieved for a

tuple) and Ntuple (number of unlabeled tuples), as the resulting graph would cover more of

the corpus. In practice, as long as they are sufficiently large, the results will be fairly stable.

Thus, we set Ndoc = 500, Ntuple = 10× |T0|.

Next, for tuple extraction, we vary Kwidth (search width), Kdepth (search depth) and Kext

(number of extraction patterns) to study their effects. Otherwise, they are set to default

values Kwidth = Kext = 120, and Kdepth = 700. We also set Kcanddoc = 50 (number of

documents retrieved for each candidate tuple), which is large enough to achieve a stable

ranking for the tuples.

2.6.2 Overall Performance

Effectiveness. Following the evaluation methodology outlined in Section 2.6.1, the results

of PRDualRank and the baseline on the three target relations are presented as precision-

recall plots in Figure 2.12.

Observe that all schemes of PRDualRank substantially outperform Q&S (brown color

or “4”) on all relations. In particular, Dual-Sch (blue color or “3”) which only uses search

patterns to rank the tuple, is clearly better than Q&S. This implies that our search patterns

are good as it not only retrieves the relevant documents, but also ranks tuples, outperforming

the combined effort of Q&S. On the other hand, Dual-Ext (green color or “2”) is even better,

simply because extraction patterns are more tightly coupled with tuples than search patterns.

This indicates that the extraction patterns have also performed well in extracting the tuples.

Lastly, Dual-Avg (red color or “1”) makes use of scores from both classes of patterns. Not
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Figure 2.12: Comparison of precision and recall.

Dual-Avg Dual-Sch Dual-Ext Q&S
birth 0.799 0.748 0.796 0.485

capital 0.552 0.537 0.571 0.398
area-code 0.859 0.824 0.853 0.651

Figure 2.13: Comparison of optimal F-scores.

surprisingly, this combined approach achieves comparable or better results as Dual-Ext.

This implies that we can potentially exploit different classes of patterns together to further

improve ranking.

We also report the optimal F-scores achieved by each method in Figure 2.13. In partic-

ular, we improve the optimal F-score by a factor up to 1.6.

It is worth noting that the performance of all methods on capital is worse than the

other two relations. The reason is that there can be many different relations on Ω〈city〉 and

Ω〈country〉. Even the seeds themselves are inherently ambiguous, which satisfy the city-of

relation as well.

Efficiency. To study the scalability of our approach, we present the execution time required

for PRDualRank and Q&S. For different ranking schemes of PRDualRank, Dual-Avg is the

slowest, whereas the other two schemes are slightly faster. Thus, for comparing with the

baseline, we only show the time cost of Dual-Avg. Both methods consist of two phases. For

Dual-Avg, Phase I is pattern search, and Phase II is tuple extraction. For Q&S, Phase I
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Dual-Avg Q&S
Phase I Phase II Total Phase-I Phase-II Total

birth 247 2474 2721 6124 25208 31332
capital 2580 2639 5219 13664 10020 23684

area-code 384 3243 3627 11093 8708 19801

Figure 2.14: Comparison of execution time in seconds.

is the preprocessing step of retrieving relevant documents, and Phase II is tuple extraction.

The time costs for each method are presented in Figure 2.14. They do not include the

time needed to download the remote web pages from the Web, but include the I/O time in

accessing the downloaded local copies.

The results show that PRDualRank is generally one order of magnitude faster than Q&S

in both phases, without compromising its effectiveness as we have seen earlier. In particular,

Phase I of PRDualRank (i.e., pattern search) is fast enough to make offline suggestions to

a content query system such as DoCQS [109].

2.6.3 Precision and Recall

In this experiment, we demonstrate the validity of our metrics—probabilistic precision and

recall. Previously, we used a number of top patterns (of both classes) by F-score to achieve

a balance between the two metrics. We now compare the extractions for capital relation,

either using top K patterns by probabilistic precision, or top K patterns by probabilistic

recall. With respect to the ground truth tuples, we compute the precision and recall of the

extractions. The results are presented in Figure 2.15 for different values of K.

It is not surprising that using top patterns by probabilistic precision results in better

precision of the extracted tuples, as shown in Figure 2.15(a). Similarly, using top patterns

by probabilistic recall captures more ground truth tuples and thus achieves better recall,

as illustrated in Figure 2.15(b). This experiment validates that our proposed metrics of

probabilistic precision and recall “work as intended.”
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Figure 2.16: Effect of parameters on PRDualRank.

2.6.4 Effects of Parameters

Lastly, we experiment with the parameters Kwidth, Kdepth and Kext to study their effects

on tuple extraction. We vary each parameter while assigning the other two their respective

default values (as in Section 2.6.1). When tuning each parameter in a run, the number

of correct and incorrect tuples are counted. The results for capital relation are shown in

Figure 2.16, which clearly demonstrate that the number of correct tuples extracted would

converge as the parameters increase. Hence, our approach is not sensitive to these parameters

as long as they are reasonably large.
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2.7 Conclusion

In this chapter, we supported extraction with the objective metrics of precision and recall.

In particular, we formulate the dual problems of pattern search and tuple extraction, which

can be co-optimized for both precision and recall. To solve the problems in a principled way,

we formally “rediscovered” PR Duality through the conceptual model PRDualRank, which

infers probabilistic precision and recall for both tuples and patterns probabilistically on a

graph. Interestingly, probabilistic precision and recall can be mapped to two symmetric and

“opposite” forms of random walk, namely the backward and forward walks, respectively. We

further developed a concrete framework to partially materializes the tuple-pattern graph.

Experiments show that our graph-based approach greatly outperforms the previous state-

of-the-art system.
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Chapter 3

Ranking with Importance and Specificity

In this chapter, we propose to enrich the task of ranking with the senses of importance

and specificity. We focus on the ranking of objects on a graph with respect to a given

query node. We perceive each directed edge on the graph as a “citation” or “endorsement,”

unifying the senses of importance and specificity as two symmetric forms of random walk—

the forward and backward walks. As most ranking scenarios require a balance between both

senses, we propose RoundTripRank to integrate forward and backward random walks into

a coherent round trip. We further employ a scheme of hybrid random surfers and propose

RoundTripRank+, enabling a flexible trade-off between importance and specificity. Finally,

towards real-time ranking, we develop an efficient and scalable top-K algorithm to evaluate

RoundTripRank and RoundTripRank+.

3.1 Introduction

We study the problem of ranking nodes on a graph by their “proximity” to some given query.

Consider a graph G = (V,E) with nodes V and edges E. Edges are directed and possibly

weighted, where an undirected edge is treated as bidirectional. As each edge embeds certain

semantic relationship, through these edges the proximity of two nodes on the graph can be

quantified. Thus, given a query node q ∈ V , how to measure the proximity of every node v

∈ V to q? More generally, a query can comprise multiple nodes Q ⊂ V .

Let us motivate graph-based proximity with some example tasks on two graphs, including

a bibliographic network (which connects authors, papers, terms and venues) and a search
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(a) Importance-based (b) Specificity-based (c) Balanced
SIGMOD Spatio-Temporal Databases VLDB
VLDB Spatio-Temporal Data Mining Spatio-Temporal Databases
ICDE Temporal Aspects in Info. Sys. ACM GIS

Figure 3.1: Top venues for “spatio temporal data.”

log graph (which links search phrases and their clicked URLs). These examples illustrate

quite varying ranking scenarios—of different implicit preferences, as we will see—even on

the same graph.

• Task A (Expert reviewer): on a bibliographic network, given a paper, who are the

experts best suited to review it?

• Task B (Matching venue): on a bibliographic network, given some terms as a topic,

what are the matching venues?

• Task C (Relevant URL): on a search log graph, given a search phrase, what are the

relevant URLs?

• Task D (Equivalent search): on a search log graph, given a search phrase, what are

the equivalent phrases for the same concept (e.g., “google mail” and “gmail”)?

Taking Task B as an example, given a query, say q = “spatio temporal data” (comprising

three term nodes), what are the matching venues? One effective family of techniques build

upon random walks on the graph, such as Personalized PageRank (PPR) [81, 59] and its

variants [10, 80], which find venues that can be easily reached from q through the edges.

Figure 3.1(a) shows venues found by PPR in our actual experiments—they are well-known

venues like VLDB where the topic in q appears. As pioneered by PPR, ranking nodes by

their reachability from the query intuitively captures the sense of importance.

However, such importance-based ranking is not ideal in many cases, as a node can be

easily reached from q simply due to its popularity for being linked from a broad range of

nodes, without being particularly tailored to q. As we re-examine Figure 3.1(a), the venues
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are only categorically related to our query as general data-centric topics. In fact, the same

venues could be ranked as important for almost any data-centric topic, such as “streaming

data” or “information integration.” How about those venues especially tailored to the query,

as Figure 3.1(b) shows?

Thus, we argue that the sense of specificity is missing, as the results in Figure 3.1(a)

are important, but not specific, to the query. As a key insight, proximity shall naturally

encompass the dual senses of importance and specificity. A balanced ranking in the two

senses is often more useful, such as Figure 3.1(c). Among the venues, VLDB is important,

Spatio-Temporal Databases is specific, and the previously undiscovered ACM GIS is balanced

between the two senses.

Although intuitive and appealing, dual-sensed graph proximity with both importance

and specificity is not explored until recently by Hristidis et al. [56]. Their work hypothesizes

various forms of specificity, including the inverse of node degree, the inverse of global Objec-

tRank [10], and Inverse ObjectRank [56] (which is ObjectRank on the graph with reversed

edges). Each form of specificity is then combined with the reachability-based importance

in different ways. Despite the novel insight, their particular approach is hindered by two

fundamental drawbacks.

First, they treat the two senses independently and combine them heuristically, lacking a

unifying model to coherently capture both. As they model specificity upon quite disparate

concepts, there is no definitive view on the best form. Moreover, it is unclear which way

of combination with importance is superior. In particular, some forms of specificity (e.g.,

inverse of node degree [56]) may inherently differ from the reachability-based importance,

and thus their combination appears ad hoc.

Second, they pursue a fixed trade-off between importance and specificity, but many

applications require flexible or customizable trade-offs, since different users or ranking tasks

often implicitly assume different preferences towards one of the senses. Let us revisit the

example tasks given earlier.
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• Task A (Expert reviewer): Reviewers balanced between importance and specificity are

preferred. A very important expert may only commit limited time, whereas a very

specific researcher like a graduate student may lack authoritativeness.

• Task B (Matching venue): Different scenarios require varying senses. For instance,

to build some background on a topic, a specific book chapter may be preferred. In

contrast, to submit one’s best work, important venues are often sought after.

• Task C (Relevant URL): Users often prefer important URLs for monetary transactions,

such as booking a hotel online.

• Task D (Equivalent search): Equivalent phrases are inherently specific to each other,

as they ideally represent the same concept.

We stress that it is often rare to involve only a single sense in a task. The above

tasks actually require some trade-off between the two senses. For instance, Task C values

importance, but it still needs some specificity—for booking a hotel, an important “travel”

site is expected. However, what sense weighs more varies across tasks as we have analyzed.

We note that the benefit of a flexible trade-off has not been recognized in previous studies,

and thus they miss the potential to improve ranking by catering to different ranking needs.

Thus, as our main hypothesis, we believe that an effective dual-sensed graph proximity

measure must entail two aspects in the following.

• Unified modeling. Instead of combining the independent forms of importance and

specificity, the dual senses must be seamlessly integrated under a single unifying

process—coherently based on the same random walk principle as the well-studied

importance-based ranking.

• Customizable trade-off. Instead of a “one-size-fits-all” solution, the trade-off be-

tween importance and specificity must be flexible—the unified modeling shall also

allow for customizable trade-offs between the dual senses.
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Figure 3.2: Toy graph for a bibliographic network.

To begin with, towards a unified modeling, we propose RoundTripRank to integrate the

dual senses of importance and specificity in a round trip. Given a node q as the query,

a round trip, with respect to a target node v, starts from q, goes “forward” to reach v,

and then from v goes “backward” to finally return to q. As we believe importance and

specificity naturally exist in symmetric forms, this round trip generalizes the reachability-

based importance, capturing not only the reachability from the query (to the target) as

importance, but also the reachability to the query (from the target) as specificity.

As an example, let us rank venues v1, v2, v3 on Figure 3.2 for query q = t1. v1 is intuitively

more important than v3, as v1 has two papers p1, p2 on t1, but v3 has only one p5. Observe

that from t1 it is easier to reach v1 than v3. However, v1 is less specific than v3, as v1

accepts two off-topic papers p6, p7, but v3 does not. Observe that it is easier to return to t1

from v3 than from v1. Thus, a round trip—from t1, through a target venue vi, and back to

t1—integrates both senses, favoring v2 for being not only important (with two papers p3, p4

about t1), but also specific (without off-topic papers).

Next, towards a customizable trade-off, we make a further generalization and develop

RoundTripRank+ based on a novel scheme of hybrid random surfers. We consider random

surfers of different minds who may shortcut different parts of the round trip to reflect their

preference—some prefer importance, some prefer specificity, and others prefer a balance.

In particular, we use different compositions of hybrid random surfers to mimic the varying

objectives in importance and specificity.

A potential drawback of RoundTripRank is its computational overhead. Each “forward
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trip” from a query node to every target node can be conceptually paired with many different

“backward trips” to complete a round trip, causing an exponential blow-up to the possible

round trips. Fortunately, we are able to decompose RoundTripRank into smaller units,

where each unit can be computed without actually considering the large number of round

trips. Moreover, since users are often interested in getting a small number of top results

quickly, we introduce a top-K algorithm called 2SBound, building upon our decomposition

of RoundTripRank as well as a novel two-stage bounds updating framework. To handle very

large graphs, we further adapt 2SBound to a distributed environment.

Finally, we conduct extensive experiments on two real-world graphs. For effectiveness, we

consistently and significantly outperform existing baselines over varying ranking tasks that

require different trade-offs between importance and specificity. On average, RoundTripRank

improves over existing mono-sensed measures by 10%, and RoundTripRank+ improves over

existing dual-sensed measures by 7%. For efficiency, 2SBound is 2–10 times faster than

various baseline solutions.

In summary, this chapter makes the following contributions.

• Unification: We unify both importance and specificity with reachability-based for-

mulations, and propose RoundTripRank to integrate both senses into a single coherent

round trip process.

• Flexibility: We develop RoundTripRank+ based on a scheme of hybrid random

surfers, enabling a customizable trade-off between importance and specificity.

• Computation: We design an efficient and scalable top-K algorithm 2SBound to

evaluate RoundTripRank and RoundTripRank+ in real time.

• Empirical results: We conduct extensive experiments to demonstrate the accuracy

and efficiency of our approaches.
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3.2 Related Work

Importance and specificity. While the sense of importance to a query has been studied

since PPR [81, 59], the sense of specificity is only recently explored [56] with a few heuristic

forms such as the inverse of node degree, the inverse of global ObjectRank [10], and Inverse

ObjectRank, which are generally formulated independently of importance. We pursue a

different approach by generalizing the importance-based random walk to a round trip, which

coherently captures both importance and specificity in a single measure.

Mono-sensed proximity. Most existing graph-based proximity measures are mono-sensed,

matching the query in only one sense—importance, specificity, or simply a vague sense of

“proximity” without a finer interpretation. Examples include (a) importance: PPR [81, 59]

and its variants [10, 80, 2, 29] (also called forward random walk); (b) specificity: backward

random walk [2, 29] and Inverse ObjectRank [56]; (c) no finer interpretation: AdamicAdar [1],

SimRank [58] and escape probability [68, 102]. As Sect. 3.1 motivated, they are inadequate

since most tasks require some trade-off between importance and specificity.

Dual-sensed proximity. Some recent efforts, such as truncated commute time [88], the

harmonic mean of precision and recall [2] (also investigated in Chapter 2), and ObjSqrtInv

[56], can be deemed dual-sensed measures. We first note that none of them, except [56],

connects explicitly to importance and specificity. While [88] does not argue any finer in-

terpretation, [2] and [37] measure probabilistic precision and recall. Unlike importance and

specificity which are directly defined on a query, precision and recall are indirectly measured

against an underlying “relevant set” of nodes for a query. Despite the contrast, precision

and recall seem to intuitively parallel specificity and importance, which may warrant further

investigation. Second, most studies [2, 37, 56] heuristically combine the two senses as two

independent measures, lacking an underpinning model to unify them coherently. We instead

develop a round trip to directly entail both senses in a single measure. Third, all of them
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ignore different trade-offs between importance and specificity across tasks. In contrast, our

round trip model can be generalized to mimic the varying trade-offs using a scheme of hybrid

random surfers, allowing for a customizable trade-off.

Efficient query processing. We also study online top-K processing for RoundTripRank.

While we adopt a branch-and-bound graph expansion algorithm [90] as the backbone, signifi-

cant innovations are still required to realize it, which include our original bounds decomposi-

tion, two-stage framework for bounds updating, and a cluster-based distributed architecture

for scaling up. Our realization not only enables online search, but also requires no precom-

putation mandated by many other graph proximity algorithms [59, 10, 23, 51, 110].

3.3 RoundTripRank: Walking in Round Trips

In this section, we develop RoundTripRank to integrate importance and specificity in a

coherent round trip, followed by a basic computational model.

3.3.1 Balancing Importance and Specificity

Towards a dual-sensed measure, we generalize PPR [81, 59] for its effectiveness in measuring

importance. The generalization would capture both importance and specificity in a coherent

random walk, instead of treating them independently and combining them heuristically.

Background: Personalized PageRank (PPR). We first review PPR [81, 59] as an

effective measure of importance. On a graph G = (V,E), a random surfer is initially at a

given query node q ∈ V . (We ignore multi-node queries for now.) At each step, she has a

probability 1−α to move to a neighbor randomly, and a probability α to teleport to q. Her

stationary probability at node v is v’s PPR for q, indicating v’s importance to q.

To generalize PPR for capturing specificity as well, we need an alternative view with

the notions of a “trip” and a “target.” Let L be a random variable (of some distribution).
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Starting from the query node q, the random surfer takes L random steps on the graph. This

L-step walk is a trip from q, reaching v as the target. We call the probability that v is the

target of a trip from q the Forward Rank or F-Rank of v for q, denoted f(q, v). (Imagine

that the random surfer is walking “forward” from q to reach v, in contrast to the “backward”

walk as we will see soon.) Representing a trip as a sequence of visited nodes W0, . . . ,WL on

the graph, we formalize F-Rank below:

f(q, v) , p (WL = v|W0 = q) . (3.1)

The walk length L captures the range of influence from the starting node—how far the

surfer can walk until the influence becomes too weak and a restart is necessary. In particular,

if L is geometric with parameter α ∈ (0, 1), i.e., p(L = `) = (1− α)`α, F-Rank is equivalent

to PPR as shown below, which has been established elsewhere [43].

Proposition 3.1 (F-Rank and PPR Equality [43]). Given the same query node

q, any node v’s PPR with teleporting probability α equals its F-Rank with a geometri-

cally distributed walk length L ∼ Geo(α).

In general, a geometric L is effective as it gives longer walk lengths smaller probabilities,

agreeing with the intuition that the influence from a node weakens along a path. Unless

otherwise stated, we will assume a geometric L ∼ Geo(α) for F-Rank, which captures

importance just as PPR does.

Generalization: from importance to specificity. F-Rank treats importance as reacha-

bility from q in the L steps before teleportation. We can interpret this notion of importance

by viewing a directed edge a → b as “a cites b.” Note that, more generally, depending on

the context “a cites b” may carry different semantics, such as a (paper) mentions b (term),

or a (venue) accepts b (paper), or a (paper) contributes to b (venue). Naturally, if a node v

is more important to q than another node v′ is, q is more likely to cite v than v′, directly or

indirectly. In other words, the more likely v can be reached from q via a directed path, the
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more important v is to q. As an example, in Figure 3.2 where q = t1, observe that v1 or v2

(each with two papers about t1) is intuitively more important to t1 than v3 (with only one

such paper). Indeed, from q it is easier to reach v1 or v2 than v3.

Interestingly, the citation analogy enables us to treat specificity in a symmetric form to

importance. Imagine two nodes v and v′, where v is more specific to q than v′ is. Naturally,

v tends to cite a focused set of nodes which are particularly tailored to q, whereas v′ tends

to cite a diverse set of nodes which may not match q at all. Hence, q is more likely to be

cited by v than by v′, directly or indirectly. In other words, the more likely q can be reached

from v via a directed path, the more specific v is to q. In Figure 3.2 where q = t1, v2 or

v3 (accepting no off-topic papers) is intuitively more specific than v1 (accepting two such

papers). Observe that it is more likely to reach t1 from v2 or v3 than from v1.

Integration: RoundTripRank. To integrate the sense of specificity, upon reaching the

target node v from q in L steps, the random surfer takes an additional L′ steps, trying to

return to q. The more likely to return to q from v, the more specific v is to q. Hence,

the sense of specificity is embedded into these additional L′ steps, symmetric to importance

embedded in the first L steps.

Thus, we consider a round trip starting and ending at q, through v, as depicted in

Figure 3.3. Intuitively, if v is important to q, the surfer will easily reach v from q in L steps

(we say the forward trip); once at v, if v is specific to q, the surfer will easily return to q in L′

steps (we say the backward trip). By finding out how likely a round trip goes through v, we

capture both senses in one coherent random walk. In the following, we formally introduce

the round trip concept and define RoundTripRank.

Definition 3.1 (Round Trip). A round trip is a random walk of L+L′ steps starting

and ending at the same node, i.e., W0 = WL+L′ (L,L′ are i.i.d. geometric random

variables). The node after the first L steps, WL, is the target of the round trip.
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(i) How important?
Reaching  from  (forward).

(ii) How specific?
Returning to  from  (backward).

(i)

(ii)

(ii)

(i)

Figure 3.3: Illustration of round trips. A dotted line indicates a random walk path that may
pass through other nodes not shown in the figure.

Definition 3.2 (RoundTripRank). RoundTripRank of a node v for a query node

q ∈ V , denoted r(q, v), is defined as: given that a random surfer starting at q completes

a round trip, the probability that this round trip has the target v.

r(q, v) , p (WL = v|W0 = WL+L′ ,W0 = q) . (3.2)

More generally, a query can consists of a set of nodes Q ⊂ V , and the round trip can

start from any q ∈ Q. Then, RoundTripRank for Q, denoted r(Q, v), is defined as

r(Q, v) , p (WL = v|W0 = WL+L′ ,W0 ∈ Q) . (3.3)

Similar to the Linearity Theorem [59] for PPR, RoundTripRank for a multi-node query

Q ⊂ V can be expressed as a linear function of RoundTripRank for each q ∈ Q, as established

in the following proposition. Note that
∑

q∈Q λ(q) = 1, and each λ(q) ∈ (0, 1). Interestingly,

λ(q) can be used to encode the user’s desired weighting for q. Given this linearity property,

the rest of our discussion in this chapter only considers a single-node query q ∈ V , without

loss of generality.

Proposition 3.2 (Linearity of RoundTripRank). Given a set of nodes Q ⊂ V

as the query, let λ(q) , p (W0 = q|W0 = WL+L′ ,W0 ∈ Q) ,∀q ∈ Q. Then,

r(Q, v) =
∑
q∈Q

λ(q)r(q, v). (3.4)

To illustrate RoundTripRank, we revisit the toy graph in Figure 3.2. For simplicity, we

assume a constant walk length L = L′ = 2, and equal weights for all edges. Applying Bayes’

law to Eq. 3.2, RoundTripRank of each target v for the query node t1 can be computed as
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Target v Round trip from t1 Probability RoundTripRank r(t1, v)

v1

t1 → p1 → v1 → p1 → t1 0.0125

∝ 0.0125× 4 = 0.05
t1 → p1 → v1 → p2 → t1 0.0125
t1 → p2 → v1 → p1 → t1 0.0125
t1 → p2 → v1 → p2 → t1 0.0125

v2

t1 → p3 → v2 → p3 → t1 0.025

∝ 0.025× 4 = 0.1
t1 → p3 → v2 → p4 → t1 0.025
t1 → p4 → v2 → p3 → t1 0.025
t1 → p4 → v2 → p4 → t1 0.025

v3 t1 → p5 → v3 → p5 → t1 0.05 ∝ 0.05

t1
t1 → p1 → t1 → p1 → t1 0.01 ∝ 0.01× 25 = 0.25
24 more . . . 0.01 each

others none 0 0

Figure 3.4: RoundTripRank for the bibliographic toy graph.

follows, where the denominator is independent of v and thus does not affect ranking (let ∝

represent a monotonic transformation).

r(t1, v) =
p (W0 = WL+L′ ,W0 = t1,WL = v)

p (W0 = WL+L′ ,W0 = t1)

∝ p (W0 = WL+L′ ,W0 = t1,WL = v) , (3.5)

In other words, it is proportional to the sum of probabilities of round trips starting from t1

with target v. The probability of a single round trip can be found using node degrees, e.g.,

p (t1 → p1 → v1 → p1 → t1) = 1
5
· 1

2
· 1

4
· 1

2
= 0.0125. The detailed computation for each target

node is shown in Figure 3.4, where all round trips starting from t1 are listed and grouped

by their target nodes.

In particular, let us compare v1, v2, v3. As discussed earlier, v2 is as important as but

more specific than v1, and v2 is as specific as but more important than v3. Hence, v2 has

larger RoundTripRank than v1 and v3 for being both important and specific. Also note t1

itself has the largest RoundTripRank, which is intuitive that self-proximity is high.
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3.3.2 Basic Computational Model

In Figure 3.4, we compute RoundTripRank by summing up the round trips for each target.

However, the number of such round trips increases exponentially on larger graphs, calling

for a more practical computational model.

To begin with, we examine how PPR/F-Rank can be computed. One simple method

applies iterative computation [81], which is linear in the number of nodes and edges:

f (i+1)(q, v) = αI(q, v) + (1− α)
∑

v′∈In(v)

Mv′vf
(i)(q, v′), (3.6)

where I(q, v) = 1 if q = v, or 0 if q 6= v; In(v) is the set of v’s in-neighbors; Mv′v is the

one-step transition probability from v′ to v; α is the teleporting probability. Convergence is

guaranteed on an irreducible and aperiodic graph [52].

Thus, we wonder if RoundTripRank can also be computed iteratively. Simply put, it-

erative computation is possible for F-Rank as it is recursive in nature—to reach a node v

from q, the surfer must first reach one of v’s in-neighbors v′. In other words, as the target

v is at an “end” of a walk, we can reduce the walk by one step to utilize the F-Rank of v′.

However, in RoundTripRank, a round trip merely passes through v which is not at an “end”

of the walk, and thus no apparent iterative computation exists.

Consequently, we resort to divide and conquer. We decouple a round trip into smaller

units with the target at the “end” of each unit, such that we can iteratively compute each.

It turns out that we can rewrite RoundTripRank defined in Eq. 3.2 into an equivalent form

with two decoupled units.

Proposition 3.3 (Decomposition of RoundTripRank). The RoundTripRank of

v for a query node q can be expressed as follows:

r(q, v) ∝ p (WL = v|W0 = q) p (WL′ = q|W0 = v) (3.7)

On the one hand, p (WL = v|W0 = q) is the F-Rank (Eq. 3.1), i.e., the reachability from
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q to v during the forward trip. On the other hand, p (WL′ = q|W0 = v) is the reachability

from v to q during the backward trip, which we call the Backward Rank or B-Rank of v for

q, denoted b(q, v). Hence,

r(q, v) ∝ f(q, v)b(q, v) (3.8)

While F-Rank can be computed iteratively (see Eq. 3.6), B-Rank can be computed in a

symmetric way, where Out(v) is the set of v’s out-neighbors:

b(i+1)(q, v) = αI(q, v) + (1− α)
∑

v′∈Out(v)

Mvv′b
(i)(q, v′). (3.9)

As a minor caveat, if there is at least one directed path from q to v but not from v to q,

we obtain f(q, v) > 0 and b(q, v) = 0. Hence, it may be counter-intuitive that r(q, v) = 0 no

matter how large f(q, v) is. Fortunately, this does not happen on an irreducible (i.e., strongly

connected) graph, which is a prerequisite for convergence. In practice, we can always make

a graph irreducible by adding some dummy edges [52].

3.4 RoundTripRank+: Customizing the Trade-off

Although RoundTripRank balances importance and specificity, different tasks often require

varying trade-offs, as Section 3.1 motivated. To this end, we propose RoundTripRank+.

3.4.1 Hybrid Random Surfers

To reflect different user objectives over importance and specificity, consider some hybrid

random surfers Ω consisting of different-minded surfers in three disjoint groups: (a) Ω11,

seeking targets balanced between importance and specificity, e.g., ACM GIS for q = “spatio

temporal data”; (b) Ω10, seeking important targets, e.g., VLDB for q; (c) Ω01, seeking specific

targets, e.g., Spatio-Temporal Databases for q.

These surfers potentially take variants of round trips by “shortcutting”, as follows. Given
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a query node q and a target v, the surfers in Ω11 take regular round trips. However, the

surfers in Ω10, after reaching v in L steps, shortcut the next L′ steps by teleporting to q, i.e.,

∀ω ∈ Ω10, p
(
W ω
L+L′ = q|W ω

L = v
)

= 1 where {W ω
` : ` ≥ 0} represents the sequence of nodes

visited by ω. Likewise, the surfers in Ω01 shortcut the first L steps by teleporting to v, i.e.,

∀ω ∈ Ω01, p (W ω
L = v|W ω

0 = q) = 1.

Using different compositions of Ω, i.e., different distributions of the three groups, we can

customize the trade-off between importance and specificity with RoundTripRank+.

Definition 3.3 (RoundTripRank+). With respect to some hybrid random surfers

Ω, RoundTripRank+ of v for a query node q, denoted rΩ(q, v), is defined as follows.

Given that each random surfer in Ω independently completes a round trip from q with a

common target, rΩ(q, v) is the probability that the common target is v:

rΩ(q, v) , p
(
x = v|∀ω∈Ω : W ω

0 = W ω
L+L′ = q,W ω

L = x
)

(3.10)

We illustrate the customizability of RoundTripRank+ with some special cases. (a) Ω =

Ω11, i.e., Ω10 = Ω01 = ∅. It reduces to (the non-customizable) RoundTripRank for a balance

between the two senses, since all the surfers only walk in regular round trips. (b) Ω = Ω10

reduces to F-Rank and captures only importance, since all the surfers teleport back to q

from v. (c) Likewise, Ω = Ω01 reduces to B-Rank and captures only specificity.

However, to customize the trade-off we need to adjust the compositions of Ω, which

involves three parameters |Ω11|, |Ω10|, |Ω01|. To simplify it, we will introduce a computational

model with only one parameter.

3.4.2 Basic Computational Model

We can decompose RoundTripRank+ into an equivalent form, similar to Proposition 3.3.
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Proposition 3.4 (Decomposition of RoundTripRank+). With respect to some

hybrid random surfers Ω consisting of three groups (Ω11,Ω10,Ω01), let β , |Ω11|+|Ω01|
|Ω|+|Ω11| .

Then, the RoundTripRank+ of v for a query node q can be expressed as follows without

altering ranking:

rΩ(q, v) ∝ rβ(q, v) , f(q, v)1−β · b(q, v)β. (3.11)

Intuitively, β ∈ [0, 1] is the fraction of objectives by all surfers that are specificity (note

that each surfer in Ω11 has two objectives). We call β the specificity bias—a large β favors

specificity over importance. A unique ranking can be determined by a given β, which

is itself uniquely determinable from any given hybrid surfers Ω. Hence, we can adjust β

directly to customize the trade-off between importance and specificity. That is, we compute

RoundTripRank+ as rβ(q, v) in Proposition 3.4, for a chosen β. Choosing β for each ranking

task enables a customized trade-off, which corresponds to, as its physical meaning, adjusting

the composition of hybrid surfers. As special cases, β = 0 (or 1) reduces to F-Rank (or B-

Rank) for only importance (or specificity); β = 0.5 reduces to RoundTripRank.

To obtain the optimal β for a ranking task, we may use some development queries, or

consult domain experts. Users may also specify β directly. As a last resort, we can always

fall back to the default β = 0.5, which generally outperforms the extreme cases of β = 0 or

1 as demonstrated in our experiments, since most real-world ranking scenarios require both

importance and specificity.

3.5 Online Top-K Processing

The basic computational models discussed earlier require computing F-Rank and B-Rank.

However, their iterative computation in Eq. 3.6 and 3.9 is not scalable, as it involves multiple

passes of the entire graph for each query. Fortunately, in many applications, users only

need to quickly get a small number of top results, which could be a close approximation.
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Input: graph G; query node q; number of desired results K
Output: top-K ranking TK of nodes v on G by r(q, v)

1 Neighborhood S ← ∅;
2 repeat
3 Two-stage bounds updating framework:
4 Stage I. Expand S and initialize bounds ∆;
5 Stage II. Iteratively refine ∆ over S;
6 TK ← current top-K by lower bounds;
7 until TK satisfies top-K conditions;
8 return TK .

Figure 3.5: 2SBound algorithm: Two-Stage Bounding for RoundTripRank.

Hence, we propose an online approximate top-K method 2SBound, followed by a distributed

solution to handle larger graphs. Our discussion only covers RoundTripRank, but extending

to RoundTripRank+ is straightforward.

3.5.1 Approximate Top-K Processing: 2SBound

We propose Two-Stage Bounding, or 2SBound, for online top-K processing. As its backbone,

we adopt the standard branch-and-bound expansion on graphs [90]. However, its realiza-

tion for RoundTripRank still requires significant innovations, hinging on our original basic

computational model and two-stage bounds updating framework.

We outline 2SBound in Figure 3.5. Given a query node q, we maintain a neighborhood

S, which is a subset of the nodes: S ⊆ V . We refer to those nodes currently in S as

seen nodes, and those outside S as unseen nodes. We also maintain a set of bounds ∆

for RoundTripRank: (a) each seen node is sandwiched by an upper bound r̂(q, v) and a

lower bound ř(q, v), i.e., ř(q, v) ≤ r(q, v) ≤ r̂(q, v), ∀v ∈ S; (b) all unseen nodes have

a common unseen upper bound r̂(q), i.e., r(q, v) ≤ r̂(q), ∀v /∈ S. Starting with an empty

neighborhood S (line 1), we repeatedly expand S and update the bounds ∆ (line 2–5). After

each expansion and updating, we obtain a candidate top K ranking TK according to their

lower bounds (line 6). The process stops if TK satisfy the top-K conditions (line 7).
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To materialize the above algorithm, we first need to discuss the top-K conditions (Sec-

tion 3.5.1.1). Furthermore, we must solve the core problem of bounds updating, which relies

on our bounds decomposition technique (Section 3.5.1.2) and two-stage bounds updating

framework (Section 3.5.1.3).

3.5.1.1 Top-K Conditions

After each neighborhood expansion and updating, we try to decide the top-K nodes if

|S| ≥ K. The nodes in S are sorted as v1, . . . , v|S| such that ř(q, v1) ≥ . . . ≥ ř(q, v|S|). TK =

〈v1, . . . , vK〉 is a candidate top-K ranking, which will be further judged by two conditions

below, assuming ε = 0 for the moment. First, Eq. 3.12 ensures that TK contains correct top

K nodes (in no particular order), since their lower bounds are no less than the largest upper

bound of all other nodes. Second, Eq. 3.13 ensures that TK is ordered correctly.

ř(q, vK) > max
{
r̂(q, vK+1), . . . , r̂(q, v|S|), r̂(q)

}
− ε (3.12)

ř(q, vi) > r̂(q, vi+1)− ε, ∀i ∈ {1, . . . , K − 1} (3.13)

In many applications, it is desirable to speed up the computation by slightly sacrificing

ranking quality. Hence, we relax the conditions in Eq. 3.12–3.13 with a positive slack pa-

rameter ε. Accordingly, we obtain an ε-approximate top-K ranking, which (a) does not miss

any node whose score exceeds vK ’s by at least ε; (b) does not swap the order of two nodes

if their scores differ by at least ε.

3.5.1.2 Bounds Decomposition

Our computational model (Eq. 3.8) implies that the bounds for RoundTripRank can be

computed based on the bounds for F-Rank and B-Rank. Thus, we maintain two neigh-

borhoods: the f -neighborhood Sf for F-Rank, and the b-neighborhood Sb for B-Rank. In

general Sf 6= Sb, because their expansions differ as we shall see. We ultimately define the

r-neighborhood S for RoundTripRank using Sf and Sb.
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Specifically, ∀v ∈ Sf , let f̂(q, v) and f̌(q, v) denote the upper and lower bounds for F-

Rank. Similarly, ∀v ∈ Sb, let b̂(q, v) and b̌(q, v) denote the upper and lower bounds for

B-Rank. By defining the r-neighborhood as the set of nodes common in both the f - and

b-neighborhoods, i.e., S = Sf ∩Sb, we can compute the bounds for RoundTripRank, ∀v ∈ S:

ř(q, v) = f̌(q, v)b̌(q, v), (3.14)

r̂(q, v) = f̂(q, v)b̂(q, v). (3.15)

Additionally, to compute the unseen upper bound r̂(q), we also maintain its counterparts

f̂(q) and b̂(q) for F-Rank and B-Rank, respectively. However, r̂(q) does not simply decom-

pose as f̂(q)b̂(q). Since S = Sf ∩ Sb, some unseen nodes by S may be “seen” by either Sf or

Sb, but not both. These nodes v ∈ Sf\S or v ∈ Sb\S have individual upper bound f̂(q, v)

or b̂(q, v). Hence, we can compute r̂(q) as follows:

r̂(q) = max

{
f̂(q)b̂(q), max

v∈Sf\S
f̂(q, v)b̂(q), max

v∈Sb\S
f̂(q)b̂(q, v)

}
(3.16)

3.5.1.3 Two-Stage Bounds Updating Framework

As just explained, to obtain the bounds for RoundTripRank, we only need those for F-Rank

and B-Rank. Given the graph and the current neighborhood (Sf or Sb) as input, we propose

a novel two-stage framework common to both Sf and Sb, although their realizations are

different. In particular, we update bounds for each seen node by considering not only the

node itself for initialization (Stage I), but also its relationship with its neighbors for iterative

refinement (Stage II).

To simplify notations in the common framework, let Sx denote either the f - or b-

neighborhood, i.e., x refers to either f or b. Likewise, x̌(·) and x̂(·) denote the lower and

upper bounds for either F-Rank or B-Rank.

Stage I: Expansion and initialization. Expand the given neighborhood Sx. Assign

lower and upper bounds x̌(0)(q, v) and x̂(0)(q, v) for each v ∈ Sx, and the unseen upper
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bound x̂(0)(q) for all other nodes v /∈ Sx. We are essentially initializing the bounds—as the

superscript (0) indicates—for each node individually, before further refining them iteratively

using their neighbors in Stage II. To compute these initial values, we can leverage some of

the previous studies [15, 51, 89].

Stage II: Iterative refinement. We further improve the initial bounds from Stage I by

exploiting the relationships between nodes. As implied by the naïve computation in Eq. 3.6

(or Eq. 3.9), the F-Rank (or B-Rank) of a node v can be expressed in terms of its in- (or

out-) neighbors’ values. Since Eq. 3.6 and 3.9 are monotonic additions, by using the lower

or upper bound of each summand that involves a neighbor v′ of v, we will get a lower or

upper bound on the overall sum for v. Hence, we can iteratively update the bounds of each

seen node using its neighbors. To tighten the bounds, we only decrease an upper bound or

increase a lower bound in any update. Subsequently, the initial bounds from Stage I can

be iteratively refined over the neighborhood Sx, such that in iteration i + 1 (where i = 0

corresponds to the initialization in Stage I), ∀v ∈ Sx,

x̌(i+1)(q, v) = max

x̌(i)(q, v), αI(q, v) + (1− α)
∑

v′∈Nx(v)

Xvv′x̌
(i)(q, v′)

 , (3.17)

x̂(i+1)(q, v) = min

x̂(i)(q, v), αI(q, v) + (1− α)
∑

v′∈Nx(v)

Xvv′x̂
(i)(q, v′)

 , (3.18)

where Nx(v) = In(v), Xvv′ = Mv′v for F-Rank, and Nx(v) = Out(v), Xvv′ = Mvv′ for B-

Rank. If a neighbor v′ of v is unseen, we simply use a lower bound zero and the unseen

upper bound for it. We terminate the iterative refinement when the bounds converge, which

is guaranteed because {x̌(i)(q, v)}∞i=0 and {x̂(i)(q, v)}∞i=0 are bounded monotone sequences due

to the max{·} and min{·} functions, respectively.

In general, improving the bounds even for a single node may further improve the bounds

for its neighbors, and this effect propagates across the neighborhood. As the neighborhood

is often far smaller than the entire graph, such iterative refinement is feasible.
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Next, we discuss the realizations of F-Rank and B-Rank under the two-stage framework.

Realization of F-Rank. As F-Rank is equivalent to PPR (see Proposition 3.1), we can

leverage an existing work on PPR for Stage I, namely the Bookmark-Coloring Algorithm

(BCA) [15]. BCA iteratively spreads the “residual” starting from the query node over the

graph to form the PPR at each node. It maintains two values for each node v ∈ V with

respect to a query node q: the current estimated PPR score ρ(q, v) and the residual µ(q, v).

Initially, ∀v, ρ(q, v) = 0. Moreover, there is initially a total of one unit residual, all of which

is concentrated at q, i.e., µ(q, q) = 1 and ∀v 6= q, µ(q, v) = 0. Subsequently, BCA picks the

node vmax with the largest residual currently, and performs BCA processing on vmax:

• α portion of its residual adds to its current estimated PPR, i.e.,

ρ(q, vmax)← ρ(q, vmax) + α · µ(q, vmax); (3.19)

• the remaining 1− α portion spreads to its out-neighbors, i.e.,

∀v′ ∈ Out(vmax), µ(q, v′)← µ(q, v′) + (1− α)µ(q, vmax)Mvmaxv′ ; (3.20)

• finally, reset its residual to zero, i.e.,

µ(q, vmax)← 0. (3.21)

This procedure—picking vmax and apply BCA processing—is repeated until the total

amount of remaining residual becomes zero asymptotically. We refer readers to the original

work [15] for full details.

Stage I. We concretize the f -neighborhood as the set of nodes currently with non-zero

estimated PPR in BCA: Sf , {v ∈ V : ρ(q, v) > 0}. The precondition of BCA dictates

ρ(q, v) = 0,∀v ∈ V , which results in an initially empty Sf .

As the first step in Stage I, to expand Sf , instead of picking one node vmax with maximal

residual as in the original BCA, we generally pick m nodes by some strategy (which we will
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discuss next), and apply BCA processing to each of them. After the processing, their ρ(q, ∗)

become non-zero, and thus they are included into Sf .

The question now is how to select the m nodes. First, to tighten the bounds quickly,

we need to reduce the total residual (as we will see soon in Proposition 3.5). Thus, it is

preferred to select a node v with a large residual. Second, it is better to select nodes with

few out-neighbors, since the BCA processing time of a node is linear in its number of out-

neighbors. Factoring in both criteria, we define the benefit of a node v as µ(q, v)/|Out(v)|.

Thus, in each expansion we pick at most m nodes with the largest non-zero benefits. Note

that the first expansion will only bring in the query node q, since it is the only node with

non-zero residual initially.

In the above expansion model, m controls the granularity of the expansion. That is,

a small m may result in too frequent bounds updating, while a large m may miss the

opportunity to stop early. We use m = 100 based on some trial queries. The performance is

not sensitive to small changes in m.

As the second step in Stage I, we initialize the bounds f̌ (0)(q, v) and f̂ (0)(q, v) for each

seen node v ∈ Sf , as well as the unseen upper bound f̂ (0)(q). The initializations are based

on the current ρ(q, ∗) and µ(q, ∗) in BCA, as below.

Proposition 3.5 (Bounds of F-Rank). Given the current µ(q, ∗) and ρ(q, ∗) values
as maintained by BCA, the following bounds hold:

f̂ (0)(q) =
α

2− α
max
u∈V

µ(q, u) +
1− α
2− α

∑
u∈V

µ(q, u) (3.22)

f̌ (0)(q, v) = ρ(q, v),∀v ∈ Sf (3.23)

f̂ (0)(q, v) = ρ(q, v) + f̂ (0)(q),∀v ∈ Sf (3.24)

Note that we consider the residual that may repeatedly spread to and from a node, and

thus obtain better upper bounds than the work by Gupta et al. [51]. The latter only accounts

for residual that may spread to a node for the first time.
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Stage II. For each seen node, the iterative refinement of its bounds (Eq. 3.17 and 3.18) is

applied as is.

Realization of B-Rank. Our realization of Stage I and II hinges on the concept of border

nodes [90, 89]. A border node of the b-neighborhood Sb has at least one of its in-neighbors

outside Sb. Thus, to reach q from any unseen node v /∈ Sb, we must first pass through

a border node. Let u be a border node with the largest upper bound. Then, the unseen

upper bound, which is the largest probability of reaching q from v /∈ Sb, can be achieved by

reaching u with probability 1 in one step, and then continuing from u to q:

b̂(q) = (1− α) max
u∈∂(Sb)

b̂(q, u), (3.25)

where ∂(Sb) is the set of border nodes of Sb. Note that reaching u in one step dampens the

probability by a factor 1− α due to the geometrically distributed walk length.

Stage I. In the first expansion, let Sb = {q} with b̌(0)(q, q) = α due to Eq. 3.9, and

b̂(0)(q, q) = 1. The unseen upper bound is b̂(0)(q) = 1− α due to Eq. 3.25.

In subsequent expansions, we aim to reduce the unseen upper bound, which will further

improve the bounds of the seen nodes owing to the propagating effect of the iterative refine-

ment in Stage II. We pick up to m border nodes with the largest upper bounds, and bring

all of their in-neighbors into Sb. This makes these m nodes no longer border nodes, and thus

reduces the unseen upper bound (which is based on the border node with the largest upper

bound, see Eq. 3.25). As we discussed for F-Rank, m controls the granularity of expansion,

and it can be set empirically (m = 5 in our experiments).

To initialize the bounds for nodes already in Sb before this expansion, we use their bounds

from the last expansion. For each newly included node, we use a lower bound of zero, and

the unseen upper bound from the last expansion. Finally, we initialize the current unseen

upper bound using Eq. 3.25.

Stage II. We iteratively refine the bounds for each seen node as in Eq. 3.17–3.18. In
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addition, based on Eq. 3.25 we can also refine the unseen upper bound in each iteration:

b̂(i)(q) = (1− α) max
u∈∂(Sb)

b̂(i)(q, u). (3.26)

3.5.2 Distributed Solution for 2SBound

We have so far assumed that the entire graph resides in the main memory of a single machine.

To scale 2SBound to very large graphs, we design a solution based on the observation of the

active set and the technique of data striping.

3.5.2.1 Active Set

For any query, 2SBound only needs to maintain a subset of the nodes and edges in G rather

than the entire G. As our realization is decoupled into F-Rank and B-Rank, we maintain

the nodes in their respective neighborhood, and the set of edges for these nodes. We call

the nodes and edges to be maintained the active nodes and active edges respectively, which

collectively form the active set.

Memory requirement. The active set is the minimum working set that must reside in

the main memory. Otherwise, frequent page swappings occur during iterative refinement.

Fortunately, in terms of the absolute space cost, the active set is usually a minute subset of

the entire graph. In terms of the scalability, as the graph grows, the active set scales at a

slower rate, as our analysis below and the experiments show. Thus, it is practical to fit the

active set in the main memory.

Orders of growth. Assume a graph G with |V | nodes and average degree D̄. As observed

by Leskovec et al. [72], the average degree can be modeled by power laws: D̄ ≈ c|V |a−1,

where c and a are graph-dependent constants and 1 < a < 2 on most real-world graphs.

Hence, G incurs O(|V |+ |V |D̄) = O(c|V |a) space, where |V |D̄ is the number of edges.

Next, we examine the active set. In each neighborhood expansion, we pick m nodes and
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bring their neighbors into the active set. After n expansions we have O(nmD̄) active nodes.

Since m is a constant and we assume n is also a constant for a given slack ε and graph G, the

number of active nodes is O(D̄). Hence, the active set incurs O(D̄ + D̄2) = O(c2|V |2(a−1))

space. To compare the orders of growth of the active set and the graph, we obtain the

following result, which implies that the active set grows slower than the graph.

∀a ∈ (1, 2), lim
|V |→∞

c2|V |2(a−1)

c|V |a
= lim
|V |→∞

c|V |a−2 = 0. (3.27)

3.5.2.2 Distributed Architecture

Our architecture includes one active processor, which is connected to multiple graph proces-

sors over a network.

Active processor (AP). Starting with the query node, AP expands the neighborhoods by

picking some nodes as in Section 3.5.1, whose neighbors are subsequently brought into the

active set. But instead of pulling them directly from the graph (which is not in its main

memory), AP queries the graph processors over a network, which are responsible for iden-

tifying and sending back the new active nodes and edges. Subsequently, AP incrementally

assembles the active set from the responses, updates the bounds, and proceeds to the next

expansion until the top K nodes can be determined.

Graph processors (GP). When the graph does not fit into the main memory of a single

machine, we apply data striping [87] to segment data over multiple storage units. In our

case, the graph is segmented across multiple GPs, where each GP stores a subset of the

nodes and edges in its main memory. In particular, we assign nodes (and their edges) in the

graph to GPs in a round-robin fashion. During query processing, upon an expansion request

from AP, each GP identifies the requested active nodes and edges stored in it, and sends

them to AP. AP then incrementally assemble the active set, as described earlier.

Such striping presents several benefits. First, it aggregates the fast storage (main mem-

ory) of GPs to handle large graphs. Second, it enables parallel access to different parts of
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the graph. Third, apart from segmenting the graph which involves minimal work, there is no

offline precomputation like the original 2SBound. In general, using a cluster of commodity

computers is more flexible, cost effective, and reliable (if with redundancy) than using a

single powerful machine.

3.6 Experiments

We aim to evaluate the effectiveness of RoundTripRank and RoundTripRank+, as well as

the efficiency of the top-K algorithm 2SBound.

3.6.1 Experimental Datasets

We use two real-world graphs for our experiments, as follows. In particular, the first one is

a directed graph, whereas the second is undirected.

Bibliographic network (BibNet). There are 2 million nodes (papers, authors, terms,

venues) and 25 million edges (paper-paper, paper-term, paper-venue, paper-author), ex-

tracted from DBLP [31] and CiteSeer [49]. The paper-paper citation edges are directed,

while the others are undirected. We set the edge weights largely following a previous work

[90]. For each paper, we assign a total weight of 1, 10, 10, 1 to its edges connecting its terms,

cited papers, authors, and venue, respectively, split equally among each type of edge.

Search log graph (SLog). We use a search engine log [2]. After removing search phrases

and clicked URLs that only appear once, we construct a graph with 2 million nodes and 4

million edges, where the search phrases and clicked URLs are the nodes, and an undirected

edge is drawn between them if the search phrase has a click landing on the URL. The count

of such clicks is used as the edge weight. Finally, we add self-loops of weight 0.1 to all nodes

to make the graph non-bipartite, as some baselines like SimRank do not work for nodes on

different sides of a bipartite graph.
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3.6.2 Effectiveness of RoundTripRank and RoundTripRank+

We evaluate the ranking of the results to validate our hypotheses. First, most ranking scenar-

ios require some trade-off between importance and specificity, as RoundTripRank pursues.

Second, the optimal trade-off varies from task to task, depending on the user preference or

task objective. Hence, an effective proximity measure should cater to different tasks in a

flexible manner, as RoundTripRank+ pursues.

Hence, after describing the experimental settings, we first compare RoundTripRank with

a few mono-sensed baselines to demonstrate the need for the dual senses. Next, we show

that task-oriented customization is indeed beneficial, and compare RoundTripRank+ with

various dual-sensed baselines.

Subgraphs. As we evaluate the effectiveness rather than efficiency here, we use the it-

erative method in Eq. 3.6 and 3.9 to obtain the exact ranking, in order to eliminate the

effect of approximation. However, some baselines (e.g., SimRank and TCommute) are very

expensive to compute exactly on the full graphs. Thus, as some previous studies [100, 99],

we use smaller subgraphs for the effectiveness evaluation. The full graphs will be used in

Section 3.6.3 for the efficiency study.

For BibNet, we focus on 28 hand-picked major venues in four related areas (database,

data mining, information retrieval and artificial intelligence). Moreover, we only consider the

500 most prolific authors in these venues, and terms appearing at least twice. Subsequently,

we obtain a subgraph of 20, 545 nodes and 252, 272 edges.

For SLog, we start with 200 random nodes, and expand to their neighbors for three hops,

To prevent the subgraph from growing too large quickly, we restrict the expansion at each

node to at most 20 neighbors. We obtain a subgraph of 23, 665 nodes and 74, 504 edges.

Experiment methodology. In our experiments, we reserve some nodes with known as-

sociation to the query, and then test whether a proximity measure can rank these nodes

highly without the knowledge of the association. In other words, such reserved nodes form
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the ground truth, which we aim to re-discover. This methodology makes the ground truth

easily available for large-scale evaluation, which has been used as a benchmark test [90] for

graph proximity. If a measure performs well on this ground truth, presumably it can also

rank other matching results highly.

Thus, we use the ranking scenarios in Task 1–4 below, which are adapted from Task A–D

in Section 3.1, such that the ground truth nodes for each query are automatically known. To

test the ability to recover the ground truth, we remove all direct edges between the query and

ground truth nodes. As these tasks mimic the different trade-offs between importance and

specificity (which we will analyze in Section 3.6.2.2), the need for a customizable trade-off

can be justified.

• Task 1 (Author): On BibNet, given a paper as the query node, find all of its author(s).

• Task 2 (Venue): On BibNet, given a paper as the query node, find its venue.

• Task 3 (URL): On SLog, given a search phrase as the query node, find a randomly

chosen clicked URL.

• Task 4 (Search): On SLog, given a search phrase as the query node, find its equivalent

phrases. We deem two phrases equivalent if they contain the exact same non-stop

words (e.g., “the apple ipod” and “ipod of apple”).

Evaluation. For each task, we randomly sample 1000 nodes as the test queries. To assess

the ranking for a query, we filter out the query node itself and nodes not of the target

type. We then evaluate the filtered ranking against the ground truth using NDCG@K with

ungraded judgments. Statistical significance is verified using two-tail paired t-tests.

3.6.2.1 RoundTripRank and Mono-Sensed Baselines

As the first dimension, we validate that dual-sensed RoundTripRank outperforms mono-

sensed baselines.
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Task 1 Task 2 Task 3
K 5 10 20 5 10 20 5 10 20

RoundTripRank 0.380 0.419 0.453 0.757 0.785 0.797 0.375 0.411 0.436
F-Rank/PPR 0.328 0.365 0.399 0.750 0.784 0.794 0.369 0.408 0.435

B-Rank 0.304 0.343 0.382 0.686 0.731 0.744 0.196 0.231 0.270
SimRank 0.198 0.224 0.251 0.575 0.620 0.631 0.099 0.121 0.145

AdamicAdar 0.169 0.177 0.183 0.213 0.243 0.303 0.000 0.000 0.001

(Continue’d)
Task 4 Average

K 5 10 20 5 10 20

RoundTripRank 0.488 0.538 0.576 0.500 0.538 0.566
F-Rank/PPR 0.378 0.431 0.476 0.456 0.497 0.526

B-Rank 0.452 0.509 0.553 0.410 0.453 0.487
SimRank 0.437 0.495 0.540 0.327 0.365 0.392

AdamicAdar 0.419 0.471 0.519 0.200 0.223 0.251

Figure 3.6: NDCG@K of RoundTripRank and mono-sensed baselines. The best in each
column is bolded, and the runner-up is underlined.

Quantitative results. We set α = 0.25 for RoundTripRank, i.e., L,L′∼Geo(0.25). Its

ranking is stable for a wide range of α between 0.1 and 0.5. As baselines, we use importance-

based F-Rank/PPR and specificity-based B-Rank with the same α. We also use SimRank

[58] (with C = 0.85) and AdamicAdar [1], both of which capture some form of “closeness”

as Section 3.2 explained.

As reported in Figure 3.6, RoundTripRank consistently outperforms all the baselines

across all four tasks. On average, it improves NDCG@5 over the runner-up (F-Rank/PPR)

by 10%, with statistical significance (p < 0.01). Hence, some balance between importance

and specificity is indeed necessary.

Illustrative results. We list the top 5 results of two example queries on the full BibNet

graph. Given some term nodes as the query, we rank the matching venues. It is relatively

objective to judge the importance and specificity of venues as compared to other nodes.

We show the results of the first query, “spatio temporal data” (three term nodes), in

Figure 3.7. F-Rank finds important venues in the database area. However, most of them

are too general, and will be ranked highly for most data-centric topics. In contrast, B-
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(a) F-Rank/PPR (b) B-Rank (c) RoundTripRank
Comp. Res. Repository Spatio-Temporal DBs Spatio-Temporal DBs

SIGMOD Temporal DBs, Dagstuhl Temp. Repr. & Reasoning
VLDB Spatio-Temporal Data Mining GeoInformatica
ICDE Temporal Aspects in Info. Sys. ACM GIS

Temp. Repr. & Reasoning Ana. & Retr. in Video Streams VLDB

Figure 3.7: Ranking venues for “spatio temporal data.”

(a) F-Rank/PPR (b) B-Rank (c) RoundTripRank
World Conf. on WWW Wkshp. on Semantic Web Intl. Semantic Web Conf.
IEEE Intelligent Sys. Trends in Web Sci. Intl. Conf. on Web Services

Intl. Conf. on Web Services Semantic Grid IEEE Intelligent Sys.
Commun. ACM J. Web Engineering J. Web Semantics

Comp. Res. Repository Semantic Tech. Euro. Semantic Web Conf.

Figure 3.8: Ranking venues for “semantic web.”

Rank favors venues specifically tailored to the topic, but they are less well known. Lastly,

RoundTripRank’s ranking is comprehensive and balanced, with not only important (e.g.,

VLDB) or specific venues (e.g., Spatio-Temporal DBs), but also venues that are themselves a

balance of the two senses (e.g., ACM GIS). Similar observations can be made in Figure 3.8

for the second query “semantic web.”

3.6.2.2 RoundTripRank+ and Dual-Sensed Baselines

As the second dimension, we investigate the benefit of a customizable trade-off between im-

portance and specificity. In particular, we study the effect of varying β on RoundTripRank+,

and compare it to various dual-sensed baselines.

Effect of specificity bias β. Recall that β ∈ [0, 1] is used to customize the trade-off

between importance and specificity in RoundTripRank+. Figure 3.9 shows the performance

when varying β between 0 and 1.

We first observe that extreme β values (close to 0 or 1) result in poor performance. When

β = 0 (or 1), RoundTripRank+ only captures importance (or specificity). This reconfirms

our findings in Section 3.6.2.1 that we need both senses.

71



0.25

0.30

0.35

0.40

0.0 0.5 1.0

N
D

C
G

 @
 5

(a) Task 1

0.25

0.30

0.35

0.40

0.0 0.5 1.0

 

(c) Task 3

0.35

0.40

0.45

0.50

0.0 0.5 1.0

 

(d) Task 4

0.65

0.70

0.75

0.80

0.0 0.5 1.0
 

(b) Task 2(a) Task 1 (b) Task 2 (c) Task 3 (d) Task 4

Specificity bias β

Figure 3.9: Effect of the specificity bias.

Second, different tasks have varying optimal values β∗, naturally reflecting the different

trade-offs required in the tasks. In Task 1 (Author), β∗ ≈ 0.5, as paper authors can be either

important (e.g., the faculty) or specific (e.g., the student). In Task 2 (Venue), β∗ < 0.5, as

paper submissions tend to favor important venues. In Task 3 (URL), β∗ < 0.5, as users are

often biased to click on important and well-known sites. In Task 4 (Search), β∗ > 0.5, as

equivalent search phrases ideally refer to the exact same concept, and thus are inherently

specific to each other. The varying β∗ values imply no “one-size-fits-all” solution, and thus

a customizable trade-off is beneficial.

For a given task at hand, the optimal β can be tuned using some development queries,

or predetermined by identifying the underlying objective as we analyzed above, or directly

specified by users to reflect their needs. If such options are not available, we can use the

default β = 0.5, which still fares better than β → 0 or 1 as just observed.

Comparing to existing dual-sensed baselines. We set α = 0.25 for RoundTripRank+

as before. For each task, to choose the optimal β, we use 1000 randomly sampled development

queries that do not overlap with the test queries.

We use existing dual-sensed baselines, namely truncated commute time or TCommute

[88, 90] (with T = 10), and ObjSqrtInv [56] (with d = 0.25). Additionally, as our com-

putational model is actually a geometric mean of F-Rank and B-Rank, we also compare
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Task 1 Task 2 Task 3
K 5 10 20 5 10 20 5 10 20

RoundTripRank+ 0.380 0.419 0.453 0.763 0.795 0.805 0.386 0.419 0.445
TCommute 0.338 0.380 0.415 0.751 0.786 0.797 0.372 0.410 0.435
ObjSqrtInv 0.331 0.369 0.407 0.756 0.785 0.796 0.359 0.398 0.424
Harmonic 0.316 0.354 0.393 0.700 0.743 0.755 0.301 0.338 0.368
Arithmetic 0.336 0.376 0.411 0.750 0.784 0.795 0.369 0.410 0.432

(Continue’d)
Task 4 Average

K 5 10 20 5 10 20

RoundTripRank+ 0.504 0.556 0.594 0.508 0.547 0.574
TCommute 0.432 0.487 0.530 0.473 0.516 0.544
ObjSqrtInv 0.405 0.459 0.502 0.462 0.503 0.532
Harmonic 0.493 0.544 0.583 0.452 0.495 0.525
Arithmetic 0.421 0.480 0.522 0.469 0.513 0.540

Figure 3.10: NDCG@K of RoundTripRank+ and existing dual-sensed baselines. The best
in each column is bolded, and the runner-up is underlined.

with their harmonic [2, 37] and arithmetic means. These approaches [56, 88, 2, 37] neither

recognize the benefit of, nor implement, customizable trade-offs for different tasks.

As reported in Figure 3.10, RoundTripRank+ consistently outperforms all the baselines

in all four tasks. On average, it improves NDCG@5 by 7% over the runner-up (TCommute)

with statistical significance (p < 0.01). The results clearly highlight the advantage of flexible

trade-offs across tasks.

Comparison to customized dual-sensed baselines. Recall that existing dual-sensed

baselines [56, 88, 2, 37] apply a fixed trade-off across tasks. To give them the benefit of a

flexible trade-off, we customize each of them with a tunable β ∈ [0, 1], putting weights 1−β

and β on their two sub-measures, respectively. To choose the optimal β for each task, we

use the same development queries of RoundTripRank+. We stress that the customizations

are implemented by us, and existing works are unaware of such a need.

Nonetheless, RoundTripRank+ still performs the best consistently, as summarized in

Figure 3.11 where each customized baseline is marked with “+”. For brevity only NDCG@5

is shown, but the conclusion is similar @10 or @20. On average, RoundTripRank+ improves
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Task 1 Task 2 Task 3 Task 4 Average
RoundTripRank+ 0.380 0.763 0.386 0.504 0.508

TCommute+ 0.361 0.751 0.377 0.460 0.488
ObjSqrtInv+ 0.323 0.756 0.369 0.448 0.474
Harmonic+ 0.326 0.745 0.360 0.496 0.482
Arithmetic+ 0.356 0.751 0.373 0.458 0.484

Figure 3.11: NDCG@5 of RoundTripRank+ and customized dual-sensed baselines. The best
in each column is bolded, and the runner-up is underlined.

over the runner-up (TCommute) by more than 4%, with statistical significance (p < 0.01).

In addition, the baselines perform unevenly across tasks—the runner-up varies from task to

task, providing no evidence to argue one or another even empirically.

We attribute the better performance of RoundTripRank+ to the coherent integration of

importance and specificity in a round trip. In contrast, most baselines combine their sub-

measures for the two senses in a somehow ad hoc manner. For example, the arithmetic mean

is simply the expectation of two independent trials, one for each sense, lacking coherence in

their integration. Others such as TCommute, as Section 3.2 discussed, lack an interpretation

in terms of the two senses (which has not been thoroughly investigated).

3.6.3 Efficiency of 2SBound

We evaluate the top-K algorithm 2SBound for RoundTripRank on the two full graphs. In

particular, we examine its query time and approximation quality on a single machine, and

its scalability on our distributed architecture.

We use K = 10 throughout. Occasionally some queries are very slow for their bounds

to become tight enough. Hence, we stop prematurely after 50 neighborhood expansions for

2SBound. This only affects a few queries, and the performance of the prematurely terminated

queries are still accounted for in our evaluation.
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3.6.3.1 Query Time and Approximation Quality

We load the entire graph into the main memory of a single computer, which has 8GB capacity.

From each graph, we randomly sample 1000 nodes as queries. We only report the results on

BibNet, as similar observations can be made on both graphs.

Query time. We compare the query time of 2SBound with that of a naïve baseline and

three weaker schemes of 2SBound:

• Naive: The naïve iterative method (Eq. 3.6 and 3.9).

• G+S: A weaker scheme of 2SBound. We apply the work by Gupta et al. [51] to update

the bounds for F-Rank, and the work by Sarkar et al. [89] for B-Rank, which are their

respective state-of-the-art algorithms.

• Gupta: Same as G+S, but using our two-stage framework for B-Rank, while still using

Gupta’s method for F-Rank.

• Sarkar: Same as G+S, but using our two-stage framework for F-Rank, while still using

Sarkar’s method for B-Rank.

We show their average query time in Figure 3.12(a). As expected, a large slack ε greatly

reduces the query time (except Naive which does not use ε). Notably, 2SBound is two orders

of magnitude faster than Naive, and 2–10 times faster than the others. It is also stable across

queries. For instance, its 99% confidence interval is 1255± 154ms at ε = 0.01.

Approximation quality. To evaluate the approximation quality, we compare 2SBound’s

ranking with the exact ranking using NDCG, precision and Kendall’s tau [23].

We present the approximation quality of 2SBound in Figure 3.12(b), along with its

query time for reference. While query processing speeds up five-fold as the slack increases,

the quality drops slightly. Nevertheless, all metrics are still above 0.9 when the time is only

300ms. Most drops are observed in precision and Kendall’s tau, which penalize mistakes
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Figure 3.12: Time and quality of 2SBound on BibNet under varying slacks.

equally regardless of their ranked positions. In contrast, NDCG has a smaller drop, meaning

that mistakes are rare at highly ranked positions.

3.6.3.2 Scalability

We study the scale-up of the distributed solution for 2SBound. The goal is scaling to larger

graphs with minimal increase in the active set and query time.

As both BibNet and SLog grow over time, we model their growth by taking five snapshots

at different timestamps—every four years on BibNet from 1994 to 2010, and about every

six days on SLog during May 2006. To simulate our AP/GP architecture, for each graph,

we assume its i-th snapshot requires i GPs, ∀i ∈ {1, . . . , 5}. Note that all snapshots are

cumulative, and thus they are larger at later timestamps. On each snapshot, we randomly

sample 1000 nodes as queries, and set a slack ε = 0.01.

Efficiency. We report the 99% confidence intervals of the active set size and the query time

in Figure 3.13. Recall that the active set is the minimum working set on AP.

We observe that the active set remains small even on the largest snapshot. For instance,

on BibNet it is merely 2.4MB or 0.3% of the 2010 snapshot. Further, SLog has larger

snapshots but smaller active sets than BibNet. As Section 3.5.2.1 showed, the active set

size, O(D̄ + D̄2), is correlated with the average degree D̄, which is smaller on SLog.
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(a) BibNet snapshots

Time- Snapshot Active set Query
stamp size/MB size/MB time/ms
1994 93 1.2± .1 728± 48
1998 165 1.5± .1 842± 53
2002 284 1.8± .1 1031± 66
2006 510 2.3± .2 1311±101
2010 692 2.4± .2 1415±102

(b) SLog snapshots

Time- Snapshot Active set Query
stamp size/MB size/MB time/ms
5/6 264 .041± .001 51±1
5/12 495 .045± .002 55±2
5/18 713 .049± .002 57±2
5/24 905 .053± .002 61±3
5/31 1114 .054± .002 66±3

Figure 3.13: Active set size and query time on growing graphs.
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Figure 3.14: Rate of growth in snapshot, active set and query time.

Rate of growth. We compare the rate of growth of three quantities, namely, snapshot size,

active set size and query time. For each graph, we normalize each of the three quantities

on all snapshots by their respective values on the first snapshot. Thus, for each quantity,

we obtain a rate of growth across different snapshots with respect to the first snapshot, as

shown in Figure 3.14.

As Section 3.5.2.1 discussed, the active set grows much slower than the snapshot. In

particular, while the snapshot grows by a factor of 7.4 on BibNet and 4.2 on SLog over the

entire period, the active set only grows by a factor of 1.9 and 1.3, respectively. Furthermore,

query time depends only on the active set size, and thus has a similar rate of growth. Based

on these trends, we can scale query processing to even larger graphs with both space and

computational efficiency.
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3.7 Conclusion

In this chapter, we diversified ranking with the senses of importance and specificity, as well

as their customizable trade-offs. In particular, we developed RoundTripRank for networked

entities, which coherently integrates importance and specificity in a round trip random walk.

We further generalized it to RoundTripRank+ using a scheme of hybrid random surfers for

a flexible trade-off between the two senses. Empirically, we showed them to be effective on

two real-world graphs across various ranking tasks. Finally, we proposed a top-K algorithm

2SBound, enabling online query processing with a close approximation.
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Chapter 4

Classification with Heterogeneous
Contexts

In this chapter, we propose to enrich the task of classification with heterogeneous contexts,

in terms of two dimensions: different relationship types and varying confidence levels. In

particular, we focus on graph-based regularization, where the classification of an object is

influenced or regularized by its neighbors on the graph. However, the contexts of an object

on a graph are often heterogeneous. First, an object can be related to others in many dif-

ferent ways, and our confidence of the classifications varies across different objects. These

heterogeneous contexts should be exploited to guide the regularization on the graph. Thus,

we propose a Dirichlet-based graph regularization framework, which can effectively incorpo-

rate both dimensions of heterogeneity. Interestingly, our framework can be interpreted as a

special form of backward random walk.

4.1 Introduction

Many applications in information retrieval (IR) call for effective classification techniques.

For instance, the problem of text categorization is fundamental to a myriad of real-world

tasks, such as automated email organization, spam detection, and information filtering. As

another example, fine-grained query intent classification enables a search engine to direct

users to the intended search verticals, greatly enhancing user experience.

While a conventional machine learning algorithm can be used for classification in IR ap-

plications, straightforward adaptation is often unfruitful, since there exist challenges beyond

traditional classification tasks. One prominent issue is the sparsity of feature vectors. For
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instance, in our query intent classification dataset, about 95% of the queries contain no more

than five words.

Recent developments in graph-based regularization [113, 107, 13, 14] somewhat tackles

the problem of feature sparsity. Instead of object-level features that are independently

extracted from each object, we now consider relationships that are extracted from each pair

of objects. Hence, each object can potentially pair with any other object to form some

type of relationship. In this chapter, we focus on relationships that capture different forms

of similarity between two objects, such that a graph can be constructed by linking similar

objects with edges. The edges can be used to propagate classification evidence from one

object to another based on the key assumption of consistency : similar objects are likely

to have similar class labels [113]. In other words, the classification of an object can be

influenced or regularized by its neighbors on the graph.

Given the above benefits, graph-based regularization has also been adopted in IR applica-

tions, most notably through the use of a click graph [73, 29, 61] in query intent classification.

A click graph usually consists of queries and websites as its nodes. A query q and a website

w are connected by an edge if q results in a click landing on w. Intuitively, two queries

connected to the same website are related, and thus should share a similar prediction.

While making the same assumption of consistency, we are motivated by two core obser-

vations in the following, which entail key intuitions towards a more effective graph-based

regularization framework.

First, most earlier regularization models only deal with a single relationship type. How-

ever, heterogeneous types often exist. For instance, in query intent classification, queries

can be related through not only clicks, but also other relationships, including lexical simi-

larity (“acer laptop” and “laptop” are related due to word overlap), co-session (the second

query could be a refinement of the first in the same session), and the similarity of search

result pages (two queries that retrieve similar pages may be similar themselves). These

different relationship types potentially complement each other, as some may only cover a
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small fraction of all queries (e.g., not all shopping queries have associated product clicks). In

addition to sparsity, some relationship types may lack the robustness to capture similarities

between two objects. To illustrate, while both queries “hp 3 in 1” and “canon printer” refer

to printers, they contain no common words and thus their similarity cannot be represented

by lexical relationships. To support heterogeneous relationship types, the challenge lies in

how different similarity functions can be aggregated to optimize the regularization, which is

missing from previous regularization frameworks.

Second, in existing graph regularization, the extent to which the classification of an object

o influences o′ only depends on their similarity. Greater similarity between o and o′ means

that they have stronger influences on each other. While this is reasonable, a second factor,

largely overlooked by previous approaches, is the confidence of classification. If we are more

confident about the prediction on o, we expect it to influence its neighbors on the graph

more. On the other hand, if we are unsure about the prediction on o, we should minimize its

influence. In other words, we use objects that are easier to classify (with higher classification

confidence) to help predict harder ones (with lower classification confidence), but less so

the other way round. Existing regularization studies do not provide for a mechanism to

incorporate the heterogeneous confidence levels. In contrast, our modeling of objects with

Dirichlet priors allows us to interpret the observation counts as confidence.

Finally, another challenge of classification lies in insufficient labeled data, especially in

real-world IR applications with a large number of classes. Our query intent classification

dataset involves 2043 classes, and thus require much more labeled training queries than, say,

a binary classification task. Our framework deals with the shortage of labeled training data

in two ways. To begin with, like other graph-based regularization frameworks [113, 107],

classification evidence is propagated across the graph along the edges. By using more unla-

beled data, we generally obtain a denser graph that promotes such propagation, and hence

improve the performance. Our experiments show that adding more unlabeled data yields

superior results, despite using the same set of labeled training data. Next, our framework
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allows for fewer parameters, independent of the number of classes. Hence, it is effective even

with limited training data and a large number of target classes.

In this chapter, we propose a regularization framework based on our insights above. To

summarize, we make the following contributions.

• Insight: We recognize the need for different relationship types that complement each

other, and confidence-aware regularization that distinguishes objects of varying classi-

fication confidence.

• Framework: We develop a Dirichlet-based graph regularization framework DirGraph.

The framework supports arbitrary heterogeneous relationships, is confidence-aware,

and works with a limited amount of training data.

• Applications: We showcase how DirGraph can be applied to a few applications in

IR, primarily focusing on query intent classification in the shopping domain.

• Experiments: We conduct extensive experiments on a real-world dataset for query

intent classification. The results show that our approach substantially outperforms

traditional regularization methods that do not consider heterogeneous relationship

types or confidence levels, validating our observations.

4.2 Related Work

Pairwise relationships. Many IR classification tasks are plagued by feature sparsity.

Thus, a significant amount of research has studied augmenting the feature vector (e.g., [20,

94, 93, 21] for query-intent classification). Unfortunately, these techniques are generally not

universal to other classification tasks. Driven by the hypothesis that “similar objects share

similar labels” [113], we consider pairwise relationships that allow for “feature extraction”

from any pair of objects, expanding the feature space in some way.
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Although it is difficult to incorporate relationships in conventional classification algo-

rithms without blowing up the parameter space, they have been used in recent graph-based

regularization frameworks [113, 107, 13, 14] and related random walk approaches [101, 29].

Examples of their applications in IR include the use of click graphs [73, 54, 29, 61] in query

intent classification, and document affinity matrices [32, 33] in text retrieval. However, un-

like this chapter, most of these methods do not consider heterogeneous types of relationship,

which complement each other and thus play an important role in improving classification ac-

curacy. While a recent study [61] explores a content-based similarity in addition to co-clicks,

it is proposed for a different problem on the co-classification of webpages and queries. In

addition, its treatment is limited as it lacks a mechanism to effectively aggregate arbitrary

relationships. In particular, their parameters are manually selected, making it difficult to

extend to more types of relationship. In comparison, we learn the parameters via an iterative

optimization process.

Confidence levels. Existing regularization frameworks [113, 107, 13, 14] and their task

specific realizations (e.g., [73, 54, 29, 61] for query intent classification and [32, 33] for text

retrieval) do not recognize the importance and hence take advantage of the classification

confidence associated with objects. We observe the need of confidence-aware regularization,

and exploit it to improve classification accuracy. More specifically, we are more confident

about objects that are easier to classify, which should have a larger influence towards the

prediction of their neighbors on the graph.

Limited training data. To deal with the shortage of labeled training data, many task

specific techniques exist (e.g., [12, 73, 74, 93] for query-intent classification). However,

they are often highly tailored and cannot be easily extended to a generic framework. In

our framework, we benefit from using more unlabeled data by exploiting the relationships

between objects, leveraging the semi-supervised nature of graph-based regularization [113,

107, 13, 14]. In addition, our framework involves a small parameter space independent of
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Figure 4.1: Toy graph for classification of shopping queries.

the number of target classes, and thus performs well even with limited training data and

thousands of target classes.

4.3 Regularization Framework

In this section, we develop our graph regularization framework called DirGraph. Given a

set of objects O and a set of classes C, each object o ∈ O has some distribution over C.

We regularize the class distribution of o by the class distributions of objects similar to o,

i.e., adjust the prediction on o according to objects similar to it. As the first step, we

capture objects and their pairwise relationships using a graph. Next, based on the graph,

we introduce our Dirichlet-based regularization model.

4.3.1 Object-Relationship Graph

We model objects and their relationships using a graph G = (O,R). O is the set of objects

that define the nodes, and R is the set of relationships between objects that describe the edges

of the graph. We use the toy graph in Figure 4.1 for the task of query intent classification

in the shopping domain as our running example.

Nodes. Each object is a node on the graph. For example, the query “canon” in Figure 4.1
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is a node to be classified into one of the target classes, such as digital camera or inkjet

printer, among others.

Edges. An edge on the graph is represented as a triplet (o, o′, τ) ∈ R, which models the

relationship of type τ between two objects o and o′. Unlike traditional object-level features

that are independently extracted from each object (e.g., words in each document in text

classification), τ is in fact a feature defined on a pair of objects that describes their mutual

similarity. Conceptually, τ can be understood as a particular similarity function on two

objects. For instance, as Figure 4.1 illustrates, it can be the cosine similarity between the

word vectors of two queries (lexical similarity), or the number of co-clicks for two queries

(co-click similarity). Thus, there can exist as many edges between two objects as the number

of relationship types, such as between “canon” and “canon sd1000” in Figure 4.1.

The strength of a relationship is encoded as the positive weight of its corresponding edge

(o, o′, τ), and is thus a function of the two objects o, o′ and the relationship type τ , denoted

as W (o, o′, τ). W (o, o′, τ) can be understood as the similarity between o and o′ with respect

to τ . By convention, W (o, o′, τ) = 0 iff the edge (o, o′, τ) /∈ R. In this chapter, we consider

bi-directional, symmetric relationships, which have equal strengths in both directions, i.e.,

W (o, o′, τ) = W (o′, o, τ).

4.3.2 Regularization Model

Given a set of target classes C = {1, . . . , |C|}, each object o ∈ O has an underlying prob-

ability distribution over the |C| classes that captures the possible user intents. For in-

stance, in Figure 4.1 the distribution for the query “canon” could be (digital-camera:0.3,

inkjet-printer:0.2, . . . ), indicating that the user may be looking for a digital camera with

probability 0.3, and an inkjet printer with probability 0.2.

As such a distribution is inherently latent, we undertake a “distribution over distributions”

instead. Specifically, we model the class distribution of each object o using a Dirichlet
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prior Dir(αo), parameterized by a vector αo = (αo[1], . . . ,αo[|C|]). Informally, it describes

the distribution over all possible latent class distributions of o, given that each class i ∈

{1, . . . , |C|} has been observed αo[i] − 1, potentially fractional, times. The Dirichlet prior

also conveniently allows us to treat the total count of observations σo as the classification

confidence—we are more confident in the prior if σo is larger. Thus, we call σo the prior

confidence of o, as defined below.

σo ,
|C|∑
i=1

(αo[i]− 1) =

|C|∑
i=1

αo[i]− |C|. (4.1)

In particular, we only consider unimodal Dirichlet priors, i.e., ∀i ∈ {1, . . . , |C|},αo[i] > 1,

such that σo > 0. As we shall describe later, such a prior may be derived from an initial

object-level classifier or previous iterations of the regularization algorithm.

4.3.2.1 Regularization by Neighbors

Given a prior over possible class distributions for an object o, we can treat its neighbors as

additional evidence to support its classification. In particular, we consider the neighbors as

observation data, weighted by their similarity, from which we can obtain a posterior distri-

bution over possible class distributions for o. In other words, this is a form of regularization

in that the original belief on o is regularized by the belief on its neighbors.

Let N(o) denote the set of neighbors of o on the graph. Specifically, for each neighbor

o′ ∈ N(o), we can interpret its Dirichlet prior Dir(αo′) as observing αo′ [i] − 1 instances of

class i for each of the |C| classes when drawing σo′ instances from the underlying multinomial

distribution for o′. Under the assumption that similar objects share similar labels and

hence observations, we deem that each neighbor o′ contributes to the classification of o an

observation of S(o, o′)(αo′ [i]−1) counts for each of the |C| classes, weighted by the similarity

S(o, o′) between o and o′. As o can be connected to o′ via multiple relationships, we define

the similarity between the two objects as a linear combination of their similarity W (o, o′, τ)

86



across all types of relationships:

S(o, o′) ,
∑
τ

λτW (o, o′, τ), (4.2)

where each λτ is a parameter specifying the overall influence of τ towards S(o, o′). We will

learn these parameters in Section 4.3.3 to optimize the regularization.

Since the Dirichlet distribution is conjugate to the multinomial distribution, factoring in

additional multinomial observations still results in a Dirichlet posterior. Specifically, given

a Dirichlet prior Dir(α), the posterior distribution after observing β[i] counts in each class

i is simply Dir(α + β), where β = (β[1], . . . ,β[|C|]). Hence, for an object o with prior

Dir(αo), the additional weighted observation data from each neighbor o′ would give us the

Dirichlet posterior Dir(α̂o), where

α̂o = αo +
∑

o′∈N(o)

S(o, o′)(αo′ − 1). (4.3)

Similar to the prior confidence (Eq. 4.1), we can compute the posterior confidence for

the object o, as follows.

σ̂o =

|C|∑
i=1

α̂o[i]− |C| = σo +
∑

o′∈N(o)

S(o, o′)σo′ (4.4)

However, since all observations are potentially noisy in practice, having more neighbors

and hence more observation data does not necessarily imply a higher posterior confidence.

As a heuristic, we normalize the observation data by the number of contributing objects

weighted by their similarity, So = 1+
∑

o′∈N(o) S(o, o′). This results in a normalized Dirichlet

posterior Dir(α̃o) and a normalized posterior confidence σ̃o for each object o:

α̃o − 1 =
α̂o − 1

So
=

1

So

αo − 1 +
∑

o′∈N(o)

S(o, o′)(αo′ − 1)

 (4.5)

σ̃o =
σ̂o
So

=
1

So

σo +
∑

o′∈N(o)

S(o, o′)σo′

 (4.6)

Intuitively, this normalization step causes observations from neighbors of o to “adjust”
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our confidence in o (Eq. 4.6), rather than to raise it monotonically in the unnormalized

version (Eq. 4.4).

We can understand Eq. 4.5 as a form of regularization. Informally, our original belief on

object o, as prescribed by its prior Dir(αo), is regularized by its neighbors, which change our

belief and produce the regularized distribution Dir(α̃o). Note that in the special case that o

has no neighbors (N(o) = ∅), Eq. 4.5 would give us α̃o = αo, which means no regularization

would be done for o.

Confidence-aware prediction. Given the regularized Dirichlet distribution Dir(α̃o) for

an object o, we can make a prediction on o by first choosing the most likely class distribution,

i.e., the mode distribution m̃o of Dir(α̃o). Subsequently, we assign classes to o according to

m̃o, say, by taking the top k classes with the largest probabilities in m̃o, or all classes above

a given probability threshold. Since α̃o[i] > 1, ∀i, the mode has a closed form solution:

m̃o = (α̃o − 1)/σ̃o, (4.7)

where σ̃o is the normalized posterior confidence of o in Eq. 4.6.

Unlike previous regularization frameworks [113, 107, 13, 14], the prediction by m̃o is

confidence-aware, as we will now demonstrate. Dividing both sides of Eq. 4.5 by σ̃o, we

obtain that

α̃o − 1

σ̃o
=

αo − 1 +
∑

o′∈N(o) S(o, o′)(αo′ − 1)

σ̃oSo
(4.8)

In Eq. 4.8, the left hand side is simply m̃o. On the right hand side, αo−1 = σomo, ∀o ∈ O,

where mo is the mode distribution of Dir(αo). Moreover, taking Eq. 4.6 into consideration,

Eq. 4.8 can be further expressed as follows:

m̃o =
σomo +

∑
o′∈N(o) S(o, o′)σo′mo′

σo +
∑

o′∈N(o) S(o, o′)σo′
. (4.9)

Similar to the Gaussian random field method [113], Eq. 4.9 implies that the regularized

mode m̃o is a weighted average of the original (unregularized) modesmo andmo′ , ∀o′ ∈ N(o).
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However, unlike [113], the weight on each neighbor o′ is S(o, o′)σo′ , which factors in both

the similarity S(o, o′) and the confidence σo′ . Hence, our model is confidence-aware, i.e.,

objects with higher confidence σo′ will be weighed more in the regularization. As motivated

in Section 4.1, such a property is desirable, since an object with low confidence would

potentially introduce noise. Thus, we should downplay its influence. On the other hand,

[113] and other regularization models [107, 13, 14] only assign weights according to the

similarity between the objects, without utilizing the confidence.

Alternative interpretation. Our regularization (Eq. 4.5) is equivalent to the minimization

of a cost function, the essence of many graph-based regularization frameworks [113, 107, 13,

14]. Specifically, we minimize the following function over α̃o,∀o ∈ O:

E =
1

2

∑
o∈O

‖α̃o −αo‖2 +
∑

o′∈N(o)

S(o, o′)‖α̃o −αo′‖2

 , (4.10)

where ‖ · ‖ is the Euclidean distance. Intuitively, the regularization should not change

the original belief on o too much, i.e., we want Dir(α̃o) to be close to the prior Dir(αo).

Additionally, Dir(α̃o) should be close to the prior Dir(αo′) of each neighbor o′ ∈ N(o), from

which observations are contributed towards o.

To see the equivalence, we minimize E by setting its derivative with respect to α̃o to

zero. The solution is algebraically equivalent to Eq. 4.5:

∂E
∂α̃o

= α̃o −αo +
∑

o′∈N(o)

S(o, o′)(α̃o −αo′) = 0. (4.11)

4.3.2.2 Regularization by Indirectly Related Objects

In the above model (Eq. 4.5), an object o is only regularized by its neighbors on the graph. In

most scenarios, indirectly related objects (“neighbors of neighbors”) also provide additional

evidence for o. The evidence from “neighbors of neighbors” can be captured by regularizing

Dir(α̃o) again. In general, we propose an iterative regularization algorithm, which can

potentially model the evidence from any object with a path to o on the graph.
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Iterative regularization. As our regularized distribution Dir(α̃o) is also Dirichlet, we

can feed it back as input for regularization again in the exact same way as we have done

in Section 4.3.2.1, treating Dir(α̃o) as the new Dirichlet prior for o. The process can be

repeated for any number of iterations.

Let α
(0)
o , αo denote the Dirichlet parameter of the initial prior for an object o. Fur-

thermore, let α(t)
o be the regularized Dirichlet parameter after t iterations, ∀t > 0. Similar

to Eq. 4.5, it is easy to see that ∀t ≥ 1,

α(t)
o − 1 =

1

So

α(t−1)
o − 1 +

∑
o′∈N(o)

S(o, o′)
(
α

(t−1)
o′ − 1

) . (4.12)

As shown, we only need to know the Dirichlet parameters from the previous iteration

to compute α
(t)
o . To start the iterative process, we bootstrap from t = 0 by specifying

α
(0)
o , ∀o, for the initial prior of each object. How they are initialized is an orthogonal issue

to our regularization framework. Different strategies may be applied depending on the

application. For our query intent classification problem, we will describe an simple yet

effective bootstrapping strategy in Section 4.4.

Finally, we make predictions using the mode distributions after t iterations of regular-

ization, m(t)
o = (α

(t)
o − 1)/σ

(t)
o , in the same manner as discussed in Section 4.3.2.1.

Alternative interpretation. The iterative regularization process can be interpreted as

a form of backward random walk on the graph. The mode of the posterior distribution,

m
(t)
o [i], captures the probability that a random surfer, who starts from the object o, reaches

some object of class i after t random steps on the graph. In each step, the probability of

moving from o to its neighbor o′ is S(o, o′)σ
(t)
o′ /
(
σ

(t)
o +

∑
o′∈N(o) S(o, o′)σ

(t)
o′

)
. We call this a

backward random walk, since the surfer is walking from the node of interest (object o) back

to some “reference” node (some object of class i), consistent with earlier chapters. However,

unlike earlier chapters, this is a time-inhomogeneous Markov chain, since the transition

probabilities vary with time due to changing confidence across iterations.
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Number of iterations. The total number of iterations T is an important parameter to

decide, with similar effects as the length parameter in random walks [101, 29]. In particular,

when T = 1, it reduces to a simple weighted voting by neighbors. But as T → ∞, α(T )
o

becomes the same for every object o in each connected component of the graph, similar to

what have been discussed elsewhere [101, 29].

Intuitively, if T is too small, only very short-range dependencies can be captured, ignoring

potentially useful longer-range ones. On the other hand, if T is too large, all dependencies

regardless of its range will be captured, making the result less discriminative. Thus, an

optimal T would ensure a desirable trade-off between short and long-range dependencies.

While the optimal T can be selected either manually [29] or heuristically [101], we propose

to learn it in the next subsection.

4.3.3 Parameters Learning

In addition to the total number of iterations T , each relationship type τ has a parameter

λτ that specifies the overall influence of τ on the classification of neighboring objects (see

Eq. 4.2). Thus, our parameters are T and Λ, where Λ , {λτ : ∀τ}.

We propose to learn the parameters with a heuristic objective function defined on only

T and Λ. Since |Λ| is generally small as restricted by the number of possible relationships

between objects (in our experiments |Λ| = 2), only a few labeled objects are needed for

learning. In comparison, traditional supervised classification techniques train a model for

each target class. In real-world applications where the number of target classes is large

(|C| = 2043 in our experiments), an enormous amount of training data would be required,

as we would expect at least a few labels for each class. On the other hand, with our heuristic

objective function, we require far fewer than |C| to achieve good classification accuracy.

Our first attempt defines a global error function to optimize the parameters. However,

due to computational challenges, we subsequently propose a local error function for the

dynamic selection of parameters in each iteration. As the parameters are chosen to minimize
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the error functions, any existing numerical optimization technique can be used. In particular,

we apply Powell’s method [82] to solve the optimization problem.

4.3.3.1 Global Optimization

Given a labeled training set OL ⊂ O, and an initialization for the Dirichlet parameters

Ω = {α(0)
o : o ∈ O} at t = 0, we can define an error function as the minimization objective:

Gerr(OL,Ω,Λ, T ) =
1

|OL|
∑
o∈OL

∥∥m(T |Ω,Λ)
o − u∗o

∥∥2
, (4.13)

where m
(T |Ω,Λ)
o denotes the mode after T iterations of regularization (using Eq. 4.12), with

the initialization Ω and parameters Λ. u∗o is the “gold standard” distribution derived from

the labels of o. ‖ · ‖ is the Euclidean distance. (Note that alternative measures such as

log-likelihood or KL-divergence may also be used.) We select parameters that minimize this

global error, i.e., {Λ∗, T ∗} = arg minΛ,T Gerr(OL,Ω,Λ, T ).

When T = 1, m(T |Ω,Λ)
o can be computed for all o ∈ OL using only the neighbors of objects

in the labeled training set OL. When T = 2, we need to consider “neighbors of neighbors”

as well. For larger T ’s, we potentially need to compute iteratively over the entire graph of

labeled and unlabeled objects. This makes the computation of the error function very costly.

As many optimization techniques require repeated computation of Gerr(·) for different values

of Λ and T , such an error function is computationally infeasible.

4.3.3.2 Iterative Optimization

As an efficient alternative to minimizing the global error, we propose an algorithm where

we regularize the Dirichlet parameters α
(t)
o (Eq. 4.12) and update the parameters Λ in

alternating fashion. In each iteration, we regularize the classification using the Λ learned

from the previous iteration. As the Dirichlet distribution on every object changes after

regularization, we update Λ by minimizing the error function for the next iteration. This

is similar in spirit to the Expectation-Maximization (EM) algorithm. However, unlike EM
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which maximizes the likelihood function of the parameters, we are minimizing an error

function. Our approach involves the following two steps in each iteration t, ∀t ≥ 0.

(1) Regularization step. If t = 0, initialize α
(0)
o ,∀o ∈ O, according to the given Ω(0) =

{α(0)
o : ∀o ∈ O}. If t > 0, compute Ω(t) = {α(t)

o : ∀o ∈ O} from Ω(t−1) (Eq. 4.12),

using parameters Λ(t). Note that Ω(t−1) and Λ(t) have already been computed from the

previous iteration.

(2) Minimization step. To update Λ for the next iteration, we minimize a local error

function over Λ:

L(t+1)
err (OL,Λ) , Gerr(OL,Ω

(t),Λ, 1), (4.14)

which is the global error for T = 1 with initialization Ω(t). For the next iteration, we

find the parameters Λ(t+1) = arg minΛ L
(t+1)
err (OL,Λ). We continue the iteration until the

minimum error converges.

Although in the regularization step, we still need to update the entire graph, it is accept-

able as it is done only once per iteration. In contrast, to solve the optimization problem in

each minimization step, the error function has to be computed numerous times. Thus it is

important the error function involves only light-weight computation. Our local error func-

tion (Eq. 4.14) is defined using the global error function (Eq. 4.13) with T = 1, which can

be easily computed using only the neighbors of the objects in the training set OL. Typically,

|OL| � |O|. In most of our experiments, |OL| is less than 0.1% of |O|.

Another distinction in our iterative optimization is that we do not explicitly learn T , the

maximum number of iterations. Instead, we terminate the iterations when the minimum

local error minΛ L
(t)
err(·) converges. Although such convergence is guaranteed as established

in the following, similar to EM, there is no guarantee that the global minimum minΛ,T Gerr(·)

can be achieved.
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Proposition 4.1 (Convergence of Local Errors). As defined in Eq. 4.14, the

sequence of local minimum errors
(

minΛ L
(t)
err(OL,Λ)

)∞
t=1

converges to a finite limit.

4.4 Applications in Information Retrieval

We now discuss the applications of the regularization framework on real-world classification

tasks in information retrieval. We first formalize what components of the regularization

framework must be realized in any application. Next, we showcase a specific application on

query intent classification in the shopping domain, followed by brief discussions of applica-

tions on other tasks. Finally, we describe the target scenarios of our applications.

4.4.1 Realization of the Framework

Realizing our regularization framework requires a node model and one or more edge models.

Node model. As we see in Eq. 4.12, to enable iterative regularization, we need an initial

model for t = 0, characterized by the Dirichlet parameters α(0)
o ,∀o ∈ O. Since each object

o is a node in the graph, we call this initialization a node model. As α
(0)
o = σ

(0)
o m

(0)
o + 1,

which entails both the mode distribution and the confidence, we can equivalently set α
(0)
o

by initializing m
(0)
o and σ(0)

o separately, as we do in Section 4.4.2.

Edge model. In Section 4.3, the strength of a relationship between two objects o, o′ is

abstracted into a weight function W (o, o′, τ), where τ is the relationship type. Since rela-

tionships are edges on the graph, we call the realization of the weight function W (q, q′, τ)

for a particular τ an edge model.
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4.4.2 Example Applications

4.4.2.1 Query Intent Classification

We address the problem of query intent classification in the shopping domain. Given a query

q ∈ Q from a query log of an e-commerce website, and a set of predefined product categories

C, the task is to map the query to a product category, with a limited number of labeled

queries. Additional resources such as existing product metadata may also be leveraged. In

the following, we present how we can realize the node and edge models for this task. Note

that the set of queries Q in the given query log form the nodes on the graph instead of the

generic objects O in Section 4.3.

Node models. Any conventional query classification algorithm can be used to initialize the

mode m(0)
q for each query q ∈ Q, as long as the output of the algorithm can be converted to a

probability distribution over the |C| categories, which is taken as the most likely distribution,

i.e., the mode distribution m
(0)
q . We first introduce a node model based on unigram language

models, followed by possible alternatives.

Language node model. As input, we leverage existing product metadata from online

shopping sites such as Amazon [6] and Bing Shopping [78]. Each product is associated

with metadata that include attributes such as name, brand and description, as well as the

category to which the product belongs. From this data, we build a unigram language model

θi for each category i ∈ {1, . . . , |C|} based on all observed words from the attribute values

of the products in that category, weighted by product popularity. Given a query q, to

estimate m
(0)
q , we evaluate the query likelihood p(q|θi),∀i, and convert it to a probability

distribution over categories by applying Bayes’ rule: p(θi|q) ∝ p(q|θi)p(θi), using the prior

of the categories as estimated by the total popularity of all products in each category.

On the other hand, to initialize the confidence, we build a background model θb by con-

sidering all products in our metadata. The intuition is that queries with a lower background

model likelihood are easier to classify, as a low likelihood means that the words in the query
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are rare and more likely to be identified as belonging to those few categories that contain

these rare words, resulting in higher classification confidence. On the other hand, a high

likelihood implies that the query words are very common and appear in many categories,

leading to lower confidence classification. Empirical study shows that the probability of a

correct classification of a query is fairly correlated with its negative log likelihood. Thus, we

initialize the confidence as follows:

σ(0)
q = − log p(q|θb) (4.15)

The language node model only requires weak supervision from a database of product

metadata, which is available from many online shopping websites. No training labels for

individual queries are needed.

Alternative node models. To initialize the mode distribution, we can also use supervised

but substantially more accurate classifiers. The disadvantage of using a supervised classifier

is that it requires a large number of labeled training queries to achieve good classification

accuracy. However, after applying our regularization framework, using the weakly supervised

unigram models can achieve comparable results to using a well-trained fully supervised

classifier for the node model, as we shall observe in the experiments.

Eq. 4.15 is only a simple heuristic for the purpose of initializing the distribution con-

fidence. Other heuristics can be used, such as the query length (longer queries provide

additional features to guide its classification), or the consistency of the outputs from multi-

ple classifiers (queries with more consistent outputs are arguably easier to classify). However,

developing more theoretical confidence estimation methods, such as those explored by work

on query difficulty [22], is beyond the scope of this chapter.

Edge models. Among many possible relationships between queries, we focus on the lexical

(τlex) and co-click (τclick) similarities.

Lexical edge model. Given two queries q and q′ from a query log, we can view each as a
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set of words, denoted by φ(q) and φ(q′), respectively. We can then define the lexical edge

model as follows:

W (q, q′, τlex) =

 1 φ(q) ⊆ φ(q′) or φ(q′) ⊆ φ(q)

0 else.
(4.16)

In other words, we connect two queries with an edge if one of them contains all the

words in the other, resulting in a symmetric and binary similarity measure. As an example,

W (“canon”, “canon camera” , τlex) = 1, whereasW (“canon printer” , “canon camera” , τlex) = 0.

Although this edge model is simple, it is more effective in preliminary experiments than

other more sophisticated models such as cosine similarity. One possible explanation is that

our binary similarity results in less noise than cosine similarity.

Co-click edge model. We can also establish relationships between queries using co-click

similarity. Intuitively, if two queries have more clicks that land on product pages belonging

to the same category, they are more closely related. In many cases, we may only be able to

deduce that two clicks lead to the same category (e.g., they land on the same URL, or URLs

with the same prefix such as example.com/digital_camera/...), but we may not know the

actual category, or how to map the vendor category to ours. Formally, we define the co-click

edge model as follows, adapted from the co-citation/click measures in [108, 54]:

W (q, q′, τclick) = log

(
1 +

∑
c

#(q, c)#(q′, c)
N

Nc

)
. (4.17)

In this edge model, each c is a category, which could be a “virtual category” with no direct

correspondence to a target category, for reasons discussed above. ∀q ∈ Q, #(q, c) denotes

the number of clicks associated with query q that leads to category c. N is the total number

of clicks across all queries, whereas Nc is the number of total clicks that lead to category c.

Thus, N/Nc has an effect similar to inverse document frequency, i.e., more popular categories

contribute less to the similarity between two queries. We also use a logarithm function to

model a sublinear growth of the similarity with respect to the number of clicks.
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Additional edge models. The following relationships can also be considered, although

they are not used in our experiments.

• User sessions. In the same user session, the second query is often a refinement of the

first. Thus, whether two queries co-occur in the same session and the frequency of

such co-occurrence can be another edge model.

• Search results. On an existing e-commerce system, a query can retrieve a set of related

products (i.e., the search results). Thus, one edge model could be the similarity of the

search results of two queries. Alternatively, search results from a generic search engine

can also be used, where similarity between retrieved pages can be measured instead.

4.4.2.2 Other Applications

We briefly discuss how we can realize our regularization framework on other applications in

IR. As discussed in Section 4.4.2.1, the node model is often easy to realize using an existing

classifier for the initial mode distribution and various heuristics for the initial confidence.

Hence, for the following applications, we only discuss the choice of their edge models, which

are often neglected in conventional classification.

Offer classification. Given a product offer from a vendor, which is presented as a list

of attribute-value pairs (e.g., product name, brand, image, description, as well as product-

specific attributes such as focal length for cameras), the task is to map it to our predefined

categories. (Imagine we are an e-commerce website receiving feeds on offers from differ-

ent vendors, whose attribute schemas and category taxonomies vary.) The following edge

models could be used: (a) the graphical similarity between two product images; (b) the

overlap of product-specific attribute names, since products from the same category often

share similar attribute names even across vendors; (c) lexical similarity between the names

and descriptions of two products.

Text classification. This is a classic task in IR that assigns each document to a class.
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With additional resources such as access statistics, social media and embedded hyperlinks,

we suggest the following edge models: (a) co-readership, the number of readers who accessed

both of the two documents within some time window; (b) social tagging, the consistency of

user tags on social sharing sites; (c) hyperlinks in the documents, where similar documents

likely point to similar pages; (d) lexical similarity in the contents of two documents.

4.4.3 Target Application Scenarios

As our regularization framework requires multiple iterations over the entire graph G =

(O,E), it is not intended for online classification. Instead, it is designed for offline compu-

tation, where the precomputed predictions for each object in O is stored in an index. Given

a seen object o (i.e., o ∈ O), its precomputed prediction is directly fetched from the index.

If o is previously unseen (i.e., o /∈ O), we can use the node model to classify it on-the-fly.

Alternatively, we may potentially look up o’s neighbors on the graph using an inverted index,

locality sensitive hash, or other means, and subsequently regularize the classification of o

using its neighbors for one iteration online.

As an example, let us consider a real scenario involving a live search system on the task of

query intent classification. In this situation, as time passes, the live system collects a growing

amount of data, including queries and clickthroughs. Thus, it is ideal if our regularization

framework can be applied periodically offline (say, on a daily or weekly basis), in order to

leverage more data and update the precomputed index accordingly. As our experiments

show (Section 4.5.3), DirGraph runs fast enough on a single machine to be computed daily

for at least tens of millions of queries.

Alternatively, we can apply our framework and take objects with highly confident pre-

dictions as labeled training data. Using these automatically generated training data, we can

iteratively train a supervised classifier, extending the approach described in [73].
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4.5 Experiments

To analyze the performance of our regularization framework DirGraph, we conduct extensive

experiments on the example application of query intent classification, using a large scale

real-world dataset. The goal of our experiments is to validate that the proposed framework

can effectively exploit heterogeneous contexts (including different relationship types and

confidence levels) to ultimately improve classification accuracy, especially in a scenario with

limited training data.

4.5.1 Experimental Settings

Dataset. We obtain a hierarchy of product categories from Bing Shopping [78], with a total

of 2043 leaf categories (i.e., |C| = 2043). Thus, our task is to predict the leaf category for

each shopping query.

In our experiments, we use a search log containing 4 million distinct queries. Some of

these queries have been labeled by human judges, which we split into two disjoint subsets for

training and testing. Specifically, the training set consists of 10K labeled queries for param-

eter learning, and the test set consists of over 10K labeled queries for evaluation. Although

we reserve 10K labeled queries for training, we only use 1K of them in all experiments except

in Section 4.5.2.4, where we vary the number of training queries.

We also use clickthrough data for the co-click edge model between queries. There are 11

million clicks associated with about a quarter of all the queries. The fact that most queries

do not have any click inspires the adoption of heterogeneous relationship types.

Node model. Unless otherwise stated, we use the language node model (Section 4.4.2.1)

in all experiments, which is weakly supervised and requires no labeled training queries.

However, to demonstrate the robustness of our framework, we also compare it with an

alternative node model in Section 4.5.2.2.
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(a) “canon 35”
canon 35 mm lens

canon 35 f 2
35 mm wide angle 1.4 canon lens

(b) “hp laptop hard drive”
hard drive 1tb

seagate harddrive
western digital 2tb external

Figure 4.2: Examples of different types of neighbor in graph regularization. (a) Neighbors
by lexical similarity; (b) neighbors by co-click similarity.

Accuracy evaluation. For each query, we sort the categories according to their predicted

probabilities, upon which we can apply the following metrics.

• Top-K accuracy: fraction of test queries which contain a correct result within the top

K hypothesized categories.

• Precision-recall plot: a plot of precision against recall while varying the prediction

cut-off threshold.

• Optimal F-score: the best F-score achievable while varying the cut-off threshold.

• Prec @ 0.5 recall: precision at a recall level of 0.5. In practice, precision is often more

important than recall—we would rather not predict than suggest a wrong category.

4.5.2 Accuracy Study

4.5.2.1 Case Study

We first present some illustrative results to gain the intuition behind DirGraph.

Query 1: “canon 35”. This query is misclassified as camcorder by the language model,

since both words in the query are not sufficiently discriminating. However, its lexical neigh-

bors reveal some interesting information, as shown in Figure 4.2(a). Given these neighbors,

it is not surprising that DirGraph can correctly classify the query as camera-lens.

Query 2: “hp laptop hard drive”. This query is misclassified as laptop by the language

model, since the words “hp laptop” strongly suggest laptops. This time, its co-click neighbors,

as illustrated in Figure 4.2(b), allow DirGraph to correctly classify it as hard-drive.
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Figure 4.3: Precision-recall plot for different relationship types.

Top-3 accuracy Optimal F-score Prec @ 0.5 recall
Unigram 0.663 0.564 0.465
DirGraph-Lex 0.735 (+10.8%) 0.660 (+17.1%) 0.676 (+45.4%)
DirGraph-Click 0.731 (+10.1%) 0.659 (+16.9%) 0.712 (+53.3%)
DirGraph 0.763 (+15.0%) 0.728 (+29.2%) 0.821 (+76.7%)

Figure 4.4: Accuracy comparison for different relationship types.

4.5.2.2 Effects of Heterogeneous Relationship Types

We compare our approach DirGraph to the node model, as well as two weaker schemes of

DirGraph that only consider a single type of relationship.

• Unigram: the unigram language model.

• DirGraph-Lex: a weaker scheme of DirGraph, with only lexical similarity.

• DirGraph-Click: a weaker scheme of DirGraph, with only co-click similarity.

Overall results. The results are reported in Figure 4.3 and 4.4. While all graph methods

generally outperform the unigram model especially at high recall levels, we make two further

observations in the following.

First, neither DirGraph-Lex nor DirGraph-Click clearly dominates the other, each of

which only uses a single type of relationship. Normally we would expect DirGraph-Click to

102



perform better than DirGraph-Lex, since the former employs co-click similarity, a form of

user feedback that may be more robust than lexical similarity. For instance, many queries

may be lexically similar yet unrelated (e.g., “laptop” and “laptop bag”), or related but exhibit

no lexical similarity (e.g., “hp 3 in 1” and “canon printer”). Nevertheless, our results can be

explained by the sparsity of the clickthrough data, where only a quarter of the queries have

received at least one click, but almost all queries have lexically similar neighbors.

Second, by using both types of relationship, DirGraph performs substantially better than

DirGraph-Lex and DirGraph-Click. Apart from the sparsity of a single relationship type,

another reason is that the combined evidence of both types of relationship is more informative

than any single one alone, thus directly improving queries that have both relationships and

indirectly improving queries that connect to neighbors with both.

Result breakdown. We further analyze the performance on two subsets of queries—

those with clicks and those without—as shown in Figure 4.5. As expected, DirGraph-Click

performs well for queries with clicks, but has no effect on queries without clicks. On the other

hand, DirGraph-Lex improves the accuracy for both subsets of queries. It is not surprising

that DirGraph outperforms both DirGraph-Click and DirGraph-Lex for queries with clicks,

since in this subset, both edge models can improve the classification accuracy. However, we

also outperform them for queries without clicks, although using co-click similarity alone has

no effect on this subset. In this case, because classification evidence is iteratively propagated

across both edge models in DirGraph, improvements to queries with clicks will influence

their lexical neighbors, not all of which may have clicks. By combining different types of

relationship, we can extend the reach of each individual relationship to influence and improve

the performance of more queries via heterogeneous long-range dependencies.

Alternative node model. To demonstrate the robustness of our framework, we also

evaluate our approach with an alternative regression node model (Regression), based on a

supervised logistic regression model trained from a large number of labeled queries, with
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(a) Accuracy comparison for queries with clicks

Top-3 accuracy Optimal F-score Prec @ 0.5 recall
Unigram 0.721 0.609 0.593
DirGraph-Lex 0.795 (+10.2%) 0.704 (+15.6%) 0.780 (+31.6%)
DirGraph-Click 0.832 (+15.3%) 0.798 (+30.9%) 0.920 (+55.1%)
DirGraph 0.836 (+15.9%) 0.801 (+31.5%) 0.925 (+56.0%)

(b) Accuracy comparison for queries without clicks

Top-3 accuracy Optimal F-score Prec @ 0.5 recall
Unigram 0.573 0.495 0.238
DirGraph-Lex 0.641 (+11.9%) 0.583 (+17.9%) 0.445 (+ 87.2%)
DirGraph-Click 0.573 (+ 0.0%) 0.495 (+ 0.0%) 0.238 (+ 0.0%)
DirGraph 0.648 (+13.1%) 0.592 (+19.7%) 0.483 (+102.9%)

Figure 4.5: Result analysis for queries with and without clicks.

Top-3 accuracy Optimal F-score Prec @ 0.5 recall
Regression 0.719 0.680 0.739
DirGraph-Lex 0.746 (+3.9%) 0.697 (+2.5%) 0.773 (+ 4.6%)
DirGraph-Click 0.773 (+7.5%) 0.722 (+6.2%) 0.809 (+ 9.5%)
DirGraph 0.784 (+9.1%) 0.729 (+7.3%) 0.823 (+11.4%)

Figure 4.6: Accuracy comparison with regression node model.

query words as features. To initialize the confidence, we use the query length as a heuristic,

as our empirical study suggests a correlation between longer queries and better classification

accuracy, since longer queries contain more words to guide the classification.

The results of using the regression node model are shown in Figure 4.6. Similar to using

the language node model (Figure 4.4), DirGraph outperforms the rest by a clear margin, even

though the improvements are not as substantial. Note that Regression is a much stronger

node model than Unigram. We hypothesize that this phenomenon is analogous to ensemble

methods in machine learning, where it is generally easier to improve over weak learners than

strong learners. Interestingly, despite initializing from a much stronger node model, the

final results are only slightly better than those initializing from the language node model.

Thus, in the subsequent experiments, we only use the language node model, which enjoys

the additional benefit of weak supervision.
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Figure 4.7: Accuracy with different confidence initializations.

4.5.2.3 Effect of Confidence

Next, we investigate the effect of the confidence initialization on regularization. Specifically,

we compare our heuristic method in Eq. 4.15 (Heuristic) with the following two strategies.

We call the first strategy NoConf, which applies uniform confidence to each query. That

is, no confidence information is utilized.

We label the second strategy Simulated, which generates more reliable confidence values

via a simulation. On the one hand, for each labeled query, we sample a random value x

from two Gaussian distributions. If the top-1 category predicted by the unigram model is

correct, then x ∼ N(0.8, 0.1); otherwise, x ∼ N(0.2, 0.1). Subsequently, we initialize the

confidence of the labeled query with x, clipped to the range [0, 1]. On the other hand, for

each unlabeled query, we initialize its confidence to 0.512, which is the top-1 accuracy of the

unigram model on the test queries.

The results of the different strategies are presented in Figure 4.7. Although Heuristic

only uses a simple heuristic (Eq. 4.15) to initialize the confidence, it performs better than

NoConf, which is not confidence-aware. On the other hand, Simulated performs the best,

since it initializes confidence in a more reliable way. Thus, with more sophisticated confidence

estimation, we can expect even better results from our framework.
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Figure 4.8: Accuracy versus number of queries.

4.5.2.4 Varying Amount of Data

In the following experiments, we vary the amount of data in three ways: the number of

labeled training queries, total queries, and clickthroughs. These experiments are important,

since in practical scenarios data are collected from a live system continuously.

Number of training queries. Recall from Section 4.3.3 that we require some labeled

queries as training data in order to learn the parameters Λ. We examine the number of

training queries needed to reach convergence on accuracy. Varying from 10 to 10K training

queries, we record the corresponding performance in Figure 4.8(a). The results reveal that

with merely 10 training queries, we can already achieve a substantial improvement over the

unigram baseline. Furthermore, with as few as 100 training queries, the performance has

nearly converged. Note that 100 training queries are much fewer than the 2043 categories in

this classification task. This is not surprising as we are not directly modeling the categories,

which would require 2000+ training queries at the minimum, one for each category. Instead,

we use the training queries only to learn Λ, the weights of different relationships. Coupled

with the weakly supervised language node model, DirGraph reaches convergence with very

few training queries in total.
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Number of total queries. The majority of our queries are unlabeled and not directly

used for parameter learning. However, as we increase the number of unlabeled queries, we

also improve the connectivity of the graph. To evaluate the effect, we randomly sample a

subset of all queries, and apply DirGraph using this subset as the total set of queries. The

sample size varies between 1% and 100% of all queries. To eliminate any differences due to

labeled training queries, our samples include the same set of 1K training queries throughout.

The results are presented in Figure 4.8(b). Despite using the same set of training queries,

the accuracy of DirGraph increases as the number of total queries used increases. Although

most of the improvement is achieved when the number of queries is initially increased from

1% to 20%, further increases result in smaller but continual improvements. From this trend,

we expect that the accuracy can be further improved, but to a lesser extent, with an even

larger query set.

Number of clickthroughs. Finally, we investigate the effect of varying the number of click-

throughs. Specifically, we randomly sample between 0% and 100% of clickthroughs from our

query log, while using all queries and the same set of training queries. Figure 4.9(a) and

(b) illustrate the effect of clickthroughs on Reg-Click and our approach, respectively. (The

number of clickthroughs does not affect the performance of Reg-Lex, which only utilizes

the lexical edge model.) In both methods, using a larger number of clickthroughs improves

accuracy. Similar to the effect of increasing the number of total queries, the improvements di-

minish as more clickthroughs are used. Nevertheless, the improvements have not converged,

suggesting that additional clickthrough data will further increase performance.

4.5.3 Efficiency Study

Although DirGraph is designed to be applied offline periodically (Section 4.4.3), efficiency

is still important. For instance, to apply it daily, it should not take longer than a day. The

following experiments evaluate the efficiency of our approach.
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Figure 4.9: Accuracy versus the number of clickthroughs.

4.5.3.1 Rate of Convergence

As DirGraph is iterative, the number of iterations required to achieve convergence is crucial

to efficiency. Our experiments show that convergence is fast, with 2 to 4 iterations in

most settings. In particular, when using all available data, Figure 4.10(a) illustrates the

convergence of classification accuracy with a precision-recall plot. Iteration-0 corresponds to

the initial node model. Regularization in Iteration-1 results in a larger improvement, whereas

Iteration-2 shows smaller improvement. There is virtually no improvement from Iteration-3

(not shown in the figure), which indicates that the accuracy has converged. From another

perspective, Figure 4.10(b) illustrates the sequence of minimum errors in each minimization

step (Eq. 4.14), which converges after only 3 iterations.

4.5.3.2 Execution Time

We start with a simple complexity analysis. As we scan all edges and nodes of the graph

once in each iteration, the complexity is O((E+V )T ), where T is the number of iterations, E

is the number of edges and V is the number of nodes (i.e., queries). E potentially increases

faster than V—the number of edges introduced by a new query potentially grows with the

number of existing queries. Hence, the overall execution time would grow faster than a

linear rate as we introduce more queries. Note that we do not consider the time to build the
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Figure 4.10: Convergence of (a) accuracy; (b) minimum error.

graph, which can be incrementally constructed whenever a new query is collected. Thus, it

is unnecessary to build the graph from scratch every time.

In Figure 4.11, we record the execution time on a single 8-core PC with 32GB memory.

Consistent with our analysis above, the execution time grows slightly faster than a linear rate

against the number of total queries. Nevertheless, the execution time of under 20 minutes

when all 4 million queries are used is still quite reasonable, as it means our framework can

be applied frequently (such as on a daily basis) at least on the scale of tens of millions of

queries. Furthermore, as the number of new queries within a fixed time interval tends to

decrease over time, the total number of queries should grow in a sublinear rate. Lastly,

as Section 4.5.2.4 shows, including more queries brings in gradually less boost in accuracy.

Thus, we do not expect to handle an arbitrarily large number of queries, since it would not

achieve a noticeable benefit beyond a certain point.

4.6 Conclusion

In this chapter, we guided the task of classification with heterogeneous contexts—different

relationship types as well as confidence levels. To incorporate both dimensions of heterogene-

ity, we developed a Dirichlet-based graph regularization framework called DirGraph, which
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Figure 4.11: Execution time versus number of total queries.

corresponds to a special form of backward random walk. Building on the proposed frame-

work, we discussed example realizations of several real-world scenarios, particularly query

intent classification in the shopping domain. Finally, we conducted extensive experiments

on a large-scale real-world dataset to demonstrate the advantages of our approach.
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Chapter 5

Graph-based Smoothness Framework

As attempted in previous chapters, forward and backward random walks can be used to

address different graph-based searching and mining problems. In this chapter, we will inves-

tigate the fundamental principle governing and unifying these two forms of random walks,

in a generic graph-based semi-supervised learning setting. In particular, random walk tech-

niques boil down to the notion of smoothness. As the central notion in semi-supervised

learning, smoothness is often realized on a graph representation of the data. In this chapter,

we study two complementary dimensions of smoothness: its pointwise nature and proba-

bilistic modeling. While no existing graph-based work exploits them in conjunction, we

encompass both in a novel framework of Probabilistic Graph-based Pointwise Smoothness

(PGP), building upon two foundational models of data closeness and label coupling. Inter-

estingly, forward and backward random walks simply correspond to two different “modes”

of smoothness, respectively, under the same unifying framework. Theoretically, we provide

an error and robustness analysis of PGP. Empirically, we conduct extensive experiments to

show the advantages of PGP.

5.1 Introduction

As labeled data is often scarce, semi-supervised learning (SSL) that can exploit unlabeled

data in addition to labeled data is often desirable. Consider a random tuple (X, Y ), where

a data point X ∈ X = {x1, . . . , x|X |} has a label Y ∈ Y . We observe labeled data L

comprising i.i.d. samples of (X, Y ), and unlabeled data U comprising i.i.d. samples of X.
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Typically |U| � |L|. Potentially, we may only observe a partial X via L and U . Our task is

to predict the label for every xi ∈ U .

Towards effective SSL, graph-based smoothness has attracted much research interest. In

particular, the smoothness statement is central to SSL [111, 24]: if two points xi, xj are

close, their respective labels yi, yj are likely to be the same. The literature further suggests

that it is more effective to consider smoothness on the low-dimensional manifold, where the

high-dimensional data roughly live. As widely recognized, graphs are often used as a proxy

for the manifold [16, 113, 107, 14, 65, 98]. Specifically, each point xi is a node on a graph,

and two points xi, xj may be connected by an edge weighted Wij. The weight matrix W

aims to capture the pairwise geodesic distance on the manifold. In other words, the graph

reveals the structures on the manifold.

Unfortunately, although graph-based methods universally hinge on smoothness, their

realizations fall short. As the key insight of this chapter, we advocate that smoothness shall

be pointwise in nature and probabilistic in modeling.

Nature: Pointwise smoothness. Smoothness shall inherently occur “everywhere,” to

relate the behavior of each point to that of its close points. We call this the pointwise nature

of smoothness. As recently identified [84], precisely expressing the pointwise nature boils

down to the two following aspects.

• How do we decide if a data point is close to another? The smoothness statement lacks

a concrete definition of closeness. Thus, we need a data closeness model to explicitly

define this. (P1)

• How is the behavior of two close points related? The smoothness statement requires

that “their labels are likely to be the same”, which is rather vague. Thus, we need a

label coupling model to explicitly relate their label behavior. (P2)

Surprisingly, to date, no existing graph-based method realizes pointwise smoothness.

While it has been studied in non-graph based settings [84, 71, 96], previous graph-based
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methods treat smoothness in an aggregate, rather than pointwise, manner. Most of the

existing graph-based approaches optimize an energy function in a random field [113, 112, 48]

or a cost function [107, 14, 98] over the graph. An energy or cost function aggregates all

pairwise differences between neighboring points across the entire graph. By minimizing the

aggregated difference, some “average” smoothness is achieved. However, such aggregation

is not designed for and thus does not necessarily enforce smoothness at every point—it is

unclear how an aggregate function can precisely express the pointwise nature of smoothness,

in terms of the two aspects (P1 & P2). After all, there exist different cost functions varying

greatly in actual forms (e.g., squared error, soft margin loss, or probability divergence), with

limited justification to favor one over another.

Modeling: Probabilistic smoothness. Pointwise smoothness shall be modeled probabilis-

tically in both aspects (P1 & P2), to ultimately infer p (Y |X). First, how close is sufficiently

close is difficult to be reliably captured by deterministic binary decisions (P1). Second, the

smoothness statement that “their labels are likely to be the same” is meaningless [84] unless

it is exploited in probabilistic terms (P2). Within a probabilistic framework, eventually each

point can be classified based on p (Y |X), given i.i.d. samples. Furthermore, probabilistic

modeling conveys some concrete benefits, such as integrating class priors p (Y ) in a more

principled way, naturally supporting multi-class tasks, and facilitating client applications

that require probabilities as input.

We note that existing probabilistic modeling in graph-based settings [98, 30, 53, 8] only

supports aggregate, but not pointwise, smoothness.

Proposed framework. We propose the framework of Probabilistic Graph-based Point-

wise Smoothness (PGP), hinging on two foundations that address the pointwise nature of

smoothness probabilistically on a graph.

To begin with, we need a data closeness model to determine if a point is close to another

(P1). Since the graph captures the pairwise geodesic distance on the manifold, a random
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walk on the graph [76]—which moves from X to X ′ in each step—naturally “connects” X

and X ′ as close points on the manifold. Hence, for a pair of random points (X,X ′) such

that X is close to X ′, we can describe their distribution p (X,X ′) using the second-order

stationary distribution of the random walk. In contrast, the distribution of a single point

p (X) has been traditionally represented by the first-order stationary distribution.

Next, we also need a label coupling model to relate the label behavior of a point xi to

that of its close points (P2). We leverage the notion of statistical indistinguishability [50]. In

particular, whether X is xi, or X is some point close to xi, the label Y of X shall be produced

in an indistinguishable manner. In other words, we cannot tell apart the distributions of Y

in these two cases.

Together, these two foundations constitute our smoothness framework, which further

entails a solution to SSL. While the given labels naturally constrain the labeled data, our

smoothness framework axiomatizes a set of probability constraints on the unlabeled data.

Solving these constraints eventually infers p (Y |X) for class prediction. Note that the con-

straints can be either discriminative over p (Y |X) or generative over p (X|Y ), resulting in

two different “modes” of smoothness, which can be interpreted as the backward and forward

random walks, respectively.

Finally, we present a theoretical analysis of our solution. First, to see that PGP can utilize

both labeled and unlabeled data to improve its performance, we derive a generalization error

in L and U . Second, to show that PGP is not sensitive to noisy input graphs, we assess the

robustness of our solution against graph perturbations.

Our contributions. We summarize the contributions in this chapter as follows.

• Framework: We propose a unifying smoothness framework PGP, the first work to

realize pointwise smoothness on a graph probabilistically.

• Analysis: We conduct an error and robustness analysis of PGP.

• Experiments: We demonstrate the advantages of PGP empirically.
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5.2 Smoothness Framework

To express the pointwise nature of smoothness, we must address its two aspects. Under a

probabilistic graph-based framework, we propose a data closeness model to capture how a

point is close to another (Section 5.2.1), as well as a label coupling model to conceptualize

how the label behavior of a point is related to that of its close points (Section 5.2.2).

5.2.1 Data Closeness Model (P1)

We first propose a probabilistic model for capturing data closeness on the graph.

Graph. For a set of points X = {x1, . . . , x|X |}, we construct a graph G to capture the

pairwise geodesic distance on the underlying manifold. Each point xi ∈ X is a vertex of G,

and each pair of points (xi, xj) form an edge of G with a weight Wij. Wij is also known as

the affinity between xi and xj, an approximate description of the geodesic distance between

the two points. W is often defined as follows:

Wij =

 exp (−‖xi − xj‖2/2σ2) i 6= j

0 i = j,
(5.1)

where ‖ · ‖ is a symmetric distance function, and σ is a scaling parameter. In our notation,

unquantified indices such as i, j belong to {1, . . . , |X |}, unless stated otherwise.

Random walk-based closeness. As argued in Section 5.1, it is difficult to reliably capture

how close is sufficiently close in a deterministic manner. In order to develop probabilistic

closeness, we need to represent the event that two points, say xi and xj, are close.

We capture the closeness event based on a random walk on the graph. Consider a random

walk on G visiting a sequence of points {Vt : t = 0, 1, . . .}. While traditionally a visit at

xi (Vt = xi) models a single point xi, a traversal walking from a point xi to another xj

(Vt = xi, Vt+1 = xj) naturally “connects” xi and xj to imply that xi is close to xj on the

underlying manifold.
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Note that our use of random walk serves a novel purpose. It specifically models the first

pointwise aspect (P1) of relating the points X through the closeness event, which, together

with the second aspect (P2) of relating the labels Y in Section 5.2.2, defines smoothness

pointwisely. On the contrary, existing use of random walk [101, 8, 104] models the “propa-

gation” of label Y among X altogether, without treating the two aspects explicitly.

Formally, let (X = xi, X
′ = xj) denote the event that xi is close to xj, which follows the

distribution of observing a random walk traversal from xi to xj in the long run as t → ∞.

Hence, (X,X ′) is a pair of limiting random variables in the sense that a traversal (Vt, Vt+1)

converges in distribution to (X,X ′) jointly:

(Vt, Vt+1)
d−→ (X,X ′). (5.2)

In other words, (X,X ′) describes the closeness between two points with the joint second-

order limit, while X describes a single point with the marginal first-order limit. Their

convergence will be shown later.

Probability space of closeness. We describe the probability space of the random walk-

based closeness model.

Sample space. An outcome that xi is close to xj is a pair of points (xi, xj), which corre-

sponds to a random walk traversal from xi to xj. Hence, the sample space is Ω = X 2. An

outcome can be denoted by a pair of random variables (X,X ′) ∈ Ω, as defined in Eq. 5.2.

Events. As discussed, each outcome (xi, xj) itself is an event that xi is close to xj, i.e.,

{(X,X ′) ∈ Ω : X = xi, X
′ = xj} or denoted (X = xi, X

′ = xj). In order to relate

the behavior of two close points, we are also interested in the following two events. First,

{(X,X ′) ∈ Ω : X = xi}, or denoted X = xi, is the event of observing X as a point xi.

It corresponds to a traversal from xi to some point. Second, {(X,X ′) ∈ Ω : X ′ = xi},

or denoted (X, X ′ = xi), is the event of observing X as some point close to xi (i.e., X is

implicitly constrained by X ′ = xi). It corresponds to a traversal from some point to xi.
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Without loss of generality, here we treat X as the random variable of interest, and our

ultimate goal is to estimate p (Y |X). However, we could also treat X ′ as the variable of

interest, and find p (Y ′|X ′) in a symmetric manner given that W is symmetric.

Probability measure. Finally, we evaluate the probability of the events. The random walk

can be formally represented by a transition matrix Q such that

Qij = Wij/Zi, where Zi ,
∑

jWij. (5.3)

As (Vt, Vt+1) converges in distribution to (X,X ′), the closeness event (X = xi, X
′ = xj)

obeys the second-order stationary distribution of the random walk:

p (X = xi, X
′ = xj) = limt→∞ p (Vt = xi, Vt+1 = xj) . (5.4)

As established in the following, a unique second-order stationary distribution exists. As a

further consequence, the probability of the events can also be computed.

Proposition 5.1 (Probability of events).

(a) The limit of p (Vt, Vt+1) as t→∞ exists uniquely.

(b) Given that (Vt, Vt+1)
d−→ (X,X ′),

∀ij, p (X = xi, X
′ = xj) ∝ Wij, (5.5)

∀i, p (X = xi) = p (X, X ′= xi) ∝ Zi. (5.6)

Intuitively, Eq. 5.5 means that the stronger affinity between xi and xj, the more likely

they are close. Second, Eq. 5.6 implies that observing xi is as likely as observing a point

close to xi, which is not surprising given that two close points lie near each other.

5.2.2 Label Coupling Model (P2)

Next, we propose a label coupling model to relate the label behavior of two close points. In

our realization, the label Y of X distributes similarly whether X is xi itself, or X is some

point close to xi. That is, p (Y |X = xi) and p (Y |X, X ′= xi) shall be alike.
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Indistinguishability. We leverage the concept of statistical indistinguishability [50]: two

distributions are statistically indistinguishable if they cannot be told apart to some extent.

Definition 5.1 (Statistical Indistinguishability). Two distributions D1 and D2

are ε-statistically indistinguishable if and only if 1
2
‖D1 −D2‖1 ≤ ε.

In our context, p (Y |X = xi) and p (Y |X, X ′= xi) shall be statistically indistinguishable.

In other words, the label Y of X is produced in an indistinguishable manner regardless of

X being xi or a point close to xi.

Label Coupling. To achieve indistinguishability, xi’s label shall distribute similarly to that

of a point close to xi. At the same time, some “distrust” of the close points shall be allowed,

as small variances in their labels are still expected. These factors can be accounted for by a

simple mixture:

p (Y |X = xi) = (1− α)p (Y |X, X ′= xi) + αD, (5.7)

where α ∈ (0, 1) is a parameter, and D is the distribution to fall back on when the close

points are not trusted. In the distrust case, we assign xi to an “unknown” class φ /∈ Y , i.e.,

D(y) = 0,∀y ∈ Y and D(φ) = 1. Our label coupling model represented by this mixture

formally satisfies statistical indistinguishability.

Proposition 5.2 (Label coupling). Given that Eq. 5.7 holds, the label distribution

of xi, p (Y |X = xi), is α-statistically indistinguishable from the label distribution of some

point close to xi, p (Y |X, X ′= xi).

Note that Eq. 5.7 couples the label distributions in a discriminative form of p (Y |X). To

model the generative probability p (X|Y ), we also derive its generative counterpart below.
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∀y ∈ Y ,∀xi ∈ X ,

p (X = xi|Y = y)

= p (Y = y|X = xi) p (X = xi) /p (Y = y)

= (1− α)p (Y = y|X, X ′= xi) p (X, X ′= xi) /p (Y = y)

= (1− α)p (X, X ′= xi|Y = y) . (5.8)

In particular, D is eliminated since D(y) = 0,∀y ∈ Y , i.e., points of class y ∈ Y cannot be

generated from D. The intuition is that indistinguishability slowly “fades” along a “chain”

of close points due to the 1− α factor.

5.3 Probability Constraint-based Learning

Under the smoothness framework in Section 5.2, we develop a set of probability constraints.

The constraints can either assume the generative form over p (X|Y ), or the discriminative

form over p (Y |X). Although the ultimate goal is p (Y |X), generative models that learn

p (X|Y ) and p (Y ) are often favorable in SSL [24]. Thus, we focus on the generative con-

straints, and show that a unique solution satisfying the constraints exists, which can be

leveraged for class prediction.

Nevertheless, we also include a preliminary discussion on the discriminative counterpart

under the same smoothness framework. As it turns out, forward and backward random walks

represent two different “modes” of smoothness, which simply correspond to two different

probabilistic formulations (i.e., generative and discriminative models) under one unifying

framework for smoothness.

Finally, we contrast with existing methods to highlight the major novelty in PGP.
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5.3.1 Generative Probability Constraints

For each y ∈ Y , we aim to learn the generative distribution

πy , (πy1, . . . , πy|X |), (5.9)

where πyi , p (X = xi|Y = y). To find πy, we develop and solve a set of constraints on πy.

On the one hand, for xi ∈ L the constraints can be modeled using the known labels. On the

other hand, while there is no known label for xi /∈ L, the constraints can be modeled using

points close to xi, based on our smoothness framework.

Labeled points. We rewrite p (X = xi|Y = y) for xi ∈ L, relating it to p (Y = y|X = xi)

which can be estimated from the known labels (as we will see in Section 5.3.2). For a

particular y ∈ Y ,

p (X = xi|Y = y)

= p (Y = y|X = xi) p (X = xi) /p (Y = y)

∝ p (Y = y|X = xi)Zi. (5.10)

The proportionality follows from the conclusion that p (X = xi) ∝ Zi (Proposition 5.1), for

a given y ∈ Y . We can transform this result into a set of constraints on πy below, where

K is the sum of πyi for labeled points, and θyi is the proportion each πyi gets from the sum

K according to Eq. 5.10. Note that we write p (y|xi) as a shorthand for p (Y = y|X = xi),

when there is no ambiguity.

Constraints on Labeled Data:

πyi = K · θyi, ∀i : xi ∈ L. (5.11)

where K =
∑
i:xi∈L

πyi,

θyi =
p (y|xi)Zi∑

k:xk∈L p (y|xk)Zk
.
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Unlabeled points. We also rewrite p (X = xi|Y = y) for unlabeled points xi /∈ L, relating

it to that of its close points. Specifically, for a given y ∈ Y ,

p (X = xi|Y = y)

1
= (1− α)p (X, X ′= xi|Y = y)

2
= (1− α)

∑
j p (X = xj, X

′ = xi|Y = y)

3
= (1− α)

∑
j p (X ′ = xi|X = xj, Y = y) p (X = xj|Y = y)

4
= (1− α)

∑
j p (X ′ = xi|X = xj) p (X = xj|Y = y)

5
= (1− α)

∑
jWji/Zj · p (X = xj|Y = y) (5.12)

Step 1 is the generative form of smoothness (Eq 5.8). In step 2, we relate xi to each xj

through their second-order (joint) distributions, where each xj has a different probability of

being close to xi. In step 3, we apply Bayes’ rule. In step 4, based on our closeness model,

given X = xj, X ′ = xi only depends on W and is conditionally independent of Y . In step 5,

p (X ′ = xi|X = xj) is simply the transition probability Qji = Wji/Zj. This result imposes

another set of constraints on πy.

Constraints on Unlabeled Data:

πyi = (1− α)
∑

jWji/Zj · πyj, ∀i : xi /∈ L. (5.13)

5.3.2 Solving the Generative Constraints

The goal is to solve πy that satisfies the constraints on labeled and unlabeled data. In

particular, we can show that πy is the stationary distribution of some Markov chain with X

as its state space. Intuitively, the unlabeled constraint (Eq. 5.13) already tells us how state

xj transitions to each xi /∈ L. Thus, we only need to deduce the transition to each state

xi ∈ L. Proposition 5.3 establishes the exact transition between the states.
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Proposition 5.3 (Solution to Generative Constraints). ∀y ∈ Y , suppose πy
satisfies the constraints in Eq. 5.11 and 5.13. The following can be established.

(a) πy is the stationary distribution of a Markov chain C with states X and transition

matrix P , where

Pji =


∑

k:xk∈LWjk + α
∑

k:xk /∈LWjk

Zj
· θyi i : xi ∈ L

(1− α)Wji

Zj
i : xi /∈ L,

(5.14)

(b) The stationary distribution of C exists uniquely.

In fact, Eq. 5.14 means that πy = πyP . If we rewrite it as element-wise operations, we

see that a constraint is placed on every individual point.

Class prediction. Based on πy, we predict the label yi for xi as follows:

yi = arg maxy∈Y p (Y = y|X = xi)

= arg maxy∈Y p (X = xi|Y = y) p (Y = y) . (5.15)

Here p (X = xi|Y = y) is simply πyi, and p (Y = y) is the class prior which can be estimated

from L or given by domain experts.

Solution computation. Next, we discuss how πy can be computed. Proposition 5.3 entails

that πy can be found iteratively, if the transition matrix P is known:

π(t+1)
y = π(t)

y P, t = 0, 1, 2, . . . , (5.16)

where π(t)
y converges uniquely as t→∞ for an arbitrary initial distribution π(0)

y .

Solution estimation. We can only find a solution estimator π̂y since P is unknown—P

is a function of W and θy, both of which can only be estimated, resulting in two types

of error. First, there is data sampling error. W is defined on X , but only a partial X̂

is observed through L and U . Thus, we can only construct an estimator Ŵ using the

incomplete X̂ . Second, there is label sampling error. θy is defined by p (y|xi) ,∀xi ∈ L, but
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p (y|xi) is unknown. We can only estimate it as the sample mean based on the given labels,

p̂ (y|xi) = |Ly ∩ Lxi |/|Lxi | where Ly is the set of all samples with y in L, and Lxi is the set

of all samples with xi in L. (As the samples are i.i.d., there can be different samples with y

or xi.) Subsequently, we obtain an estimator θ̂y based on p̂ (y|xi).

Efficiency. While efficiency is not our focus in this chapter, PGP can be solved efficiently

using standard iterative techniques, and its complexity is comparable to, if not better than,

most existing SSL methods. In terms of time efficiency, if we use a widely adopted kNN

graph, the cost is O(k|X |s), where s is the number of iterations needed for convergence. In

typical settings, k ∼ 10 and s ∼ 100. Although constructing an exact kNN graph can take

quadratic time, an approximate graph is often adequate in most scenarios [25]. In terms

of space efficiency, we can store the kNN graph in a sparse representation (as an adjacency

list), thus needing only O(k|X |) space.

5.3.3 Discussion: Discriminative Constraints and Interpretation

Our smoothness framework can accommodate both generative and discriminative formu-

lations. In other words, our framework unifies two different “modes” of smoothness, each

corresponding to one of the probabilistic formulations. In particular, parallel to our earlier

derivation, we are able to derive a discriminative counterpart to the generative model, in

terms of probability constraints over p (Y |X).

To develop the discriminative constraints, we start from the indistinguishability-based

label coupling model below, which is already in the discriminative form. (D is eliminated as

D(y) = 0,∀y ∈ Y .)

p (Y |X = xi) = (1− α)p (Y |X, X ′= xi) + αD,

= (1− α)p (Y |X, X ′= xi) . (5.17)

Subsequently, a corresponding set of probability constraints in terms of p (Y |X) can be
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developed for unlabeled data. For xi ∈ U and a particular y ∈ Y ,

p (Y = y|X = xi)
1
= (1− α)p (Y = y|X, X ′= xi)

2
= (1− α)

∑
j

p (Y = y,X = xj|X, X ′= xi)

3
= (1− α)

∑
j

p (Y = y|X = xj, X
′ = xi) p (X = xj|X ′ = xi)

4
= (1− α)

∑
j

p (Y = y|X = xj) p (X = xj|X ′ = xi)

5
= (1− α)

∑
j

p (Y = y|X = xj)Wji/Zi (5.18)

Step 1 is given by the indistinguishability model. Step 2 expands into the joint distri-

butions. Step 3 is an application of Bayes’ rule. In step 4, the label Y of X, given

X = xj, is conditionally independent of X ′. In step 5, we have p (X = xj|X ′ = xi) =

p (X = xj, X
′ = xi) /p (X ′ = xi) = Wji/Zi. Thus, p (Y = y|X = xi) is rewritten, relating

the label distribution of xi to that of its close points xj.

The generative and discriminative constraints on unlabeled data in Eq. 5.13 and 5.18, re-

spectively, appear symmetric. They differ in their normalizations—the generative constraints

(Eq. 5.13) normalize each summand by Zj, while the discriminative constraints (Eq. 5.18)

normalize each summand by Zi. Interestingly, such different normalizations correspond to

two different but symmetric forms of random walk, namely the forward and backward ran-

dom walks. Loosely speaking, on the one hand, the generative constraints correspond to

the forward walk, which starts from a labeled point and we are interested in the probability

of reaching each xi. On the other hand, the discriminative constraints correspond to the

backward walk, which starts from xi and we are interested in the probability of reaching a

labeled point. These two forms of random walk not only travel in “opposite” directions, but

also convey symmetric and complementary semantics: probabilistic recall and precision in

Chapter 2, or importance and specificity in Chapter 3.

In summary, the generative and discriminative formulations of smoothness, corresponding
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to forward and backward walks, can be unified under one framework. However, in the rest of

our discussion, we only assume the solution based on the generative formulation. Developing

a concrete solution based on the discriminative constraints is left to future work.

5.3.4 Discussion: Comparison to Existing Methods

Our constraints on unlabeled points (Eq. 5.13) may appear similar to existing works, in

particular GRF [113] of the following formulation:

Fi =
∑

jWij/Zi · Fj, (5.19)

where Fi ∈ [0, 1] is the label function at xi.

Although they resemble in the surface form, their exact forms are still disparate. We

stress that such resemblance—expressing xi’s label as some function of its neighbors xj—is

quite expected, since it is a common insight of graph-based SSL to relate a point and its

neighbors on the graph [107, 98]. Nonetheless, our exact function still differs in that PGP

normalizes each xj differently by Zj and has a damping factor 1−α, whereas GRF normalizes

each xj by the same Zi and has no damping factor. Beneath the surface resemblance, there

also exist some fundamental differences.

First, most existing cost function [107, 14] or random walk [101, 8, 104] approaches,

including GRF, do not correspond to an explicit formulation of pointwise smoothness. For

instance, GRF boils down to the energy function of a Gaussian field, which is the aggre-

gated sum of pairwise losses. Such aggregation is not designed for or derived from requiring

smoothness at every individual point. Thus, smoothness does not necessarily occur “ev-

erywhere.” Even though GRF eventually leads to a local weighted average of neighbors

(Eq. 5.19), it is a consequence of minimizing an aggregate loss function, rather than origi-

nating from the pointwise nature in terms of the two aspects P1 & P2. In contrast, PGP is

not derived from an aggregate function, but directly builds on the data closeness model (for

P1) and label coupling model (for P2).
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Figure 5.1: Toy problem on the two-spiral dataset. (a) The two-spiral dataset; (b1–3)
Visualization of smoothness by different methods; (c) Decision function over a structure.

Second, while many approaches [113, 104] have probabilistic interpretations, they do not

directly model p (Y |X) or p (X|Y ). In GRF, {Fi} represents the most probable configuration

of a Gaussian field. Fi is also the probability of hitting a positively labeled node in a random

walk starting from xi. Both interpretations do not explicitly capture p (Y |X) or p (X|Y ).

In contrast, in PGP, the solution πy directly corresponds to p (X|Y = y).

Lastly, we use a two-spiral dataset [97] to illustrate that PGP results in better smooth-

ness. The dataset shown in Figure 5.1(a) consists of two spiral structures as the two classes

(i.e., Y = {1, 2}). We compare the smoothness of PGP with the well-known GRF and the

state-of-the-art MP [98], which are graph-based methods with different cost functions.

Smoothness implies that the decision function of a classifier should change slowly on a

coherent structure [107], i.e., on each spiral in this toy problem. One previously proposed
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decision function is h(xi) , (H1i − H2i)/(H1i + H2i), where Hyi is xi’s “score” for class y

(assigned by each method). The corresponding decision rule is sign(h(xi)), as employed by

all the methods compared here.

In Figure 5.1(b1–3), we visualize the predictions made by the three methods, respectively.

All methods use the same four points marked by××× as labeled, whereas the rest are unlabeled.

Their respective optimal parameters are adopted. The color of a point xi represents the

predicted class yi, and the size of a point xi represents the magnitude of the decision function

at xi, |h(xi)|. Thus, a smoother decision function shall result in a sequence of points in more

uniform sizes over each structure. Clearly, among the three methods, PGP generates points

of the most uniform sizes, and is smooth nearly everywhere. Alternatively, we plot the

decision function over the sequence of points in one of the structures in Figure 5.1(c), which

shows that PGP has a smoother decision function.

With better smoothness, PGP achieves a perfect result against the ideal classification in

Figure 5.1(a) (where the size of each point has no significance). In contrast, GRF and MP

misclassify 4 and 2 points, respectively.

5.4 Theoretical Analysis

We present an theoretical analysis of PGP, in terms of its error and robustness.

5.4.1 Error in Solution

It is crucial that we can bound the error in the solution estimator π̂y, which is estimated

from the samples L and U .

We show that the expected error, E
[
‖π̂y − πy‖1

]
, can be bounded by two terms, corre-

sponding to the two types of error discussed in Section 5.3.2. Formally, as our solution is

the stationary distribution of a Markov chain, the proof can be established based on the

perturbation theory of Markov chains [27, 92].
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Proposition 5.4 (Error Analysis). Given the two constraints (Eq. 5.11 and 5.13),

for any constant ε ∈ (0, 1),

E
[
‖π̂y − πy‖1

]
≤ O

(
(1− λ1)|U|

)
+O

(
exp

(
−2ε2λ2 min

xi∈L,p(y|xi)>0
|Lxi |

))
, (5.20)

where λ1, λ2 ∈ (0, 1] are constants such that

λ1 = min
xi∈X ,p(xi)>0

p (xi) , λ2 = min
xi∈L,p(y|xi)>0

p (y|xi)2 .

This result presents two major implications. First, both labeled and unlabeled data can

help, as the bound improves when L or U grows. Second, the bound is fundamentally limited

by L. Given a fixed set of L, even as |U| → ∞, we can achieve no better than the second

error term. In other words, unlabeled data can only help so much. While our analysis is

tailored to PGP, the result is consistent with previous analysis [84].

5.4.2 Robustness of Solution

Until now, we have assumed that the graph construction function (Eq. 5.1) is perfect. If

the graph were constructed differently (i.e., perturbed), can we assess the robustness of our

solution? That is, do small perturbations only cause a small change in the solution? Note

that our goal is not to improve the graph construction itself studied elsewhere [26].

In our perturbation model, the pairwise affinity Wij can be perturbed by some scale

factor s. We show that the solution derived from the perturbed matrix W̃ does not change

much if s is small, based on the perturbation theory of Markov chains [27, 92].

Proposition 5.5 (Robustness Analysis). Suppose a matrix W̃ is perturbed from

W , such that for some s > 1, Wij/s ≤ W̃ij ≤ Wij · s, ∀ij. Let π̃y be the the solution

vector based on W̃ . It holds that

‖π̃y − πy‖1 ≤ O(s2 − 1). (5.21)
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Name Task Points Features Classes Balanced
Digit1 synthetic digits recognition 1500 241 2 yes
Text newsgroup classification 1500 11960 2 yes
ISOLET spoken letters recognition 1200 617 4 yes
Cancer breast cancer diagnostics 569 30 2 no
USPS handwritten digits recognition 1500 241 2 no
Yeast protein sites localization 721 8 4 no

Figure 5.2: Summary of the datasets.

5.5 Experiments

In this section, we empirically evaluate our approach PGP and show that PGP outperforms

various existing graph-based SSL algorithms.

5.5.1 Experimental Settings

Datasets. We use six public datasets shown in Figure 5.2. Three of them, Digit1, Text and

USPS, come from a benchmark [24]. As the benchmark datasets are mostly balanced, we

also use three datasets from UCI repository [9], namely, Yeast, ISOLET and Cancer. Note that

Cancer is originally known as “Breast Cancer Wisconsin (Diagnostic)” in the UCI repository.

Only a subset of Yeast (classes cyt, me1, me2, me3 ) and of ISOLET (classes a, b, c, d) are

used. The benchmark datasets are taken without further processing. For the UCI datasets,

feature scaling is performed so that all features have zero mean and unit variance.

Graph. We construct a kNN graph [24], where k is a parameter to be selected. To instantiate

Eq. 5.1, we use Euclidean distance for all datasets except Text, and Cosine distance for Text.

σ is set to the average distance of all neighboring pairs on the graph.

Labeling. For a given |L|, we sample 200 runs, where in each run |L| points are randomly

chosen as labeled, and the rest are treated as unlabeled. The sampling ensures at least

one labeled point for each class. 5% of the runs are reserved for model selection, and the

remaining are for testing.
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Evaluation. We evaluate the mean performance over the testing runs on each dataset.

As classification accuracy is not a truthful measure of the predictive power on imbalanced

datasets, we adopt macro F-score [44] as the performance metric.

5.5.2 Comparison to Baseline Algorithms

We compare PGP to five state-of-the-art SSL algorithms, which have been shown [113, 14, 98]

to significantly outperform earlier ones such as TSVM [63] and SGT [64].

• Gaussian Random Fields (GRF) [113]: a pioneering method based on Gaussian fields,

equivalent to optimizing the squared loss.

• LapSVM (LSVM) [14]: an effective graph-based extension of SVM.

• Graph-based Generative SSL (GGS) [53]: a probabilistic generative approach.

• Measure Propagation (MP) [98]: a divergence-based optimization formulation over

probability distributions.

• Partially Absorbing Random Walk (PARW) [104]: a random walk method on graphs.

An existing implementation [77] is used for LSVM, whereas our own implementations

are used for the others. Each algorithm integrates class priors as in their respective work,

if any. Model selection is performed on the reserved runs. For each algorithm, we search

k ∈ {5, 10, 15, 20, 25} to construct the kNN graph. GRF and GGS has no other parameters.

For LSVM, we search γA ∈ {1e–6, 1e–4, .01, 1, 100}, r ∈ {0, 1e–4, .01, 1, 100, 1e4, 1e6}. For

MP, we search α ∈ {.5, 1, 5, 20, 100}, u ∈ {1e–8, 1e–6, 1e–4, .01, .1, 1, 10}, as well as v ∈

{1e–8, 1e–6, 1e–4, .01, .1}. For PARW, we search α ∈ {1e–8, 1e–6, 1e–4, .01, 1, 100}. Lastly,

for our method PGP, we search α ∈ {.01, .02, .05, .1, .2, .5}.

The mean macro F-scores on the testing runs are reported in Figure 5.3, leading to three

major findings. First, PGP performs the best or not significantly different from the best in

15 out of the 18 cases (i.e., columns), whereas GRF, LSVM, GGS, MP and PARW perform
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(a) Number of labeled points |L| = 10

Digit1 Text ISOLET Cancer USPS Yeast
GRF .894 .451 .627 .871 .638 .510
LSVM .833 .428 .719 .886 .698 .562
GGS .855 .567 .677 .867 .666 .540
MP .901 .558 .692 .898 .713 .574

PARW .881 .587 .721 .893 .706 .575
PGP .910 .592 .734 .910 .704 .593

(b) Number of labeled points |L| = 20

Digit1 Text ISOLET Cancer USPS Yeast
GRF .932 .467 .686 .913 .682 .569
LSVM .935 .472 .780 .914 .780 .614
GGS .886 .648 .771 .918 .758 .578
MP .940 .611 .735 .924 .794 .617

PARW .923 .640 .782 .920 .791 .613
PGP .939 .634 .786 .927 .796 .633

(c) Number of labeled points |L| = 150

Digit1 Text ISOLET Cancer USPS Yeast
GRF .979 .744 .849 .958 .902 .718
LSVM .979 .771 .901 .956 .908 .729
GGS .965 .771 .905 .948 .906 .727
MP .979 .746 .854 .957 .913 .718

PARW .975 .729 .897 .955 .916 .715
PGP .978 .732 .902 .958 .931 .721

Figure 5.3: Performance comparison of SSL methods. In each column, the best result and
those not significantly different (p > .05 in t-test) are bolded.

as such in only 3, 6, 4, 7, 5 cases, respectively. Second, while PGP has relatively stable

performance across all the cases, the baselines can be volatile. In particular, when PGP is

not the best, there is no consistent best method, which varies between LSVM, GGS and MP.

Third, PGP is especially advantageous with limited labeled data (e.g., |L| = 10), which is

the very motivation of SSL. In contrast, when abundant data are labeled (e.g., |L| = 150),

all of the algorithms perform better, and thus not surprisingly, the margin between them

becomes smaller.
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5.5.3 Integrating Class Priors

A concrete benefit of probabilistic modeling is to enable better integration of class priors,

which is also probabilistic in nature. We demonstrate that principled integration of class

priors is more effective than heuristics, and integrating more accurate priors helps.

Integration of priors. We compare two different methods of integrating class priors:

• BAYES: integrating in PGP in a Bayesian way (Eq. 5.15);

• CMN: integrating in GRF using the popular heuristic Class Mass Normalization [113].

Note that BAYES and CMN respectively apply to a different algorithm as they are originally

intended for, and they are not designed for the other algorithm. The priors are approximated

in the same way for both methods, using the labeled points with add-one smoothing.

We study the corrective power of each method: integrating priors can be seen as “correc-

tions” to the base model that does not incorporate priors. Directly assessing the improvement

over the base model is unfair, since the base performances of PGP and GRF differ. Instead,

we compute the F-score from the precision and recall of the corrections:

precision =
# true corrections
# corrections made

; recall =
# true corrections

# corrections needed
. (5.22)

The results are presented in Figure 5.4(a) on the imbalanced datasets, which are more

interesting given their non-uniform class priors. In all but one case, BAYES possesses much

better corrective power than CMN.

More accurate priors. Using more accurate priors is expected to improve the performance.

Suppose we know the exact priors by considering the labels of all points. We then apply

the approximate and exact priors to PGP. We directly measure the performance with or

without priors, given the same base model. The results are presented in Figure 5.4(b),

which illustrate that, while the estimated priors are effective in many cases, the supposedly

more accurate exact priors are able to further improve the performance.
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(a) Corrective power of different prior integration

|L| = 10 |L| = 20 |L| = 150

Cancer USPS Yeast Cancer USPS Yeast Cancer USPS Yeast
CMN .449 .264 .310 .255 .275 .307 .087 .250 .084
BAYES .333 .564 .388 .373 .692 .504 .475 .781 .607

(b) Accuracy of PGP using different estimations of priors on

|L| = 10 |L| = 20 |L| = 150

Cancer USPS Yeast Cancer USPS Yeast Cancer USPS Yeast
None .923 .636 .568 .927 .722 .600 .950 .873 .678

Approx. .910 .704 .593 .927 .796 .633 .958 .931 .721
Exact .929 .733 .622 .937 .805 .647 .960 .932 .730

Figure 5.4: Effect of incorporating class priors in prediction.

5.5.4 Validating Theoretical Analysis

We empirically validate the analysis in Section 5.4. First, while the expected effect of

increasing labeled points is shown in Figure 5.3, our findings on unlabeled data also match

the error bound analysis. That is, more unlabeled data reduces the error, but the rate of

reduction decreases as unlabeled data are further increased. Second, the findings also support

our robustness conclusion. That is, small perturbations in W only cause small changes in

the solution πy.

5.5.4.1 Effect of unlabeled data

We investigate unlabeled points here to validate the error analysis in Proposition 5.4. For

each dataset, we sample |L| + |U| data points, where we fix |L| = 10 while |U| is varied

from ∆ to 5∆. ∆ is different for different datasets in order to visualize the performance

trend clearer. Among these points, we draw 10 points as labeled L, and treat the others as

unlabeled U .

We present the mean performance over 10 such samples in Figure 5.5. The empirical

results are consistent with our analysis. As expected, the performance improves when we

use more unlabeled data even though the labeled data remain the same. The result also
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Figure 5.5: Effect of unlabeled data.

shows that the rate of improvement slows down as we introduce more unlabeled data, even-

tually hitting a ceiling. This means growing unlabeled data alone cannot reduce the error

indefinitely, since it is also limited by labeled data as explained by the second error term in

our analysis. In more intuitive words, unlabeled data can only help so much.

5.5.4.2 Effect of graph perturbation

Lastly, we study the robustness of our solution against graph perturbation. As Propo-

sition 5.5 has established, the change in the solution πy can be bounded by O(s2 − 1),

where s ≥ 1 is the degree of perturbation. Given s, we independently generate a random

W̃ij ∈ [Wij/s,Wij · s], ∀ij, and use W̃ as the perturbed affinity matrix.

We illustrate the effect of perturbation on USPS with |L| = 10. In Figure 5.6, when the

graph is perturbed to various degrees (s ∈ {1.01, 1.02, . . . , 1.1}), the change in πy (averaged

over the testing runs with standard deviation bars) for both y = 1 and y = 2 is linear

in s. This result is better than (yet still consistent with) the theoretical bound O(s2 −

1). The reason is that we consider the worst case scenario in deriving the bound, but

in our experiments here the perturbations are generated randomly within the degree s.

Furthermore, we observe that the change in the actual predictive power in terms of macro
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F-measure is highly correlated with the change in πy. The same trend is observed on all

datasets with different |L|’s. Thus, our solution is robust—small degrees of perturbation

cause small changes in πy and the predictive power.

5.6 Conclusion

We proposed a novel framework of Probabilistic Graph-based Pointwise Smoothness (PGP),

hinging on the foundational data closeness and label coupling models. Our framework can ac-

commodate both generative and discriminative formulations, unifying two different “modes”

of smoothness which correspond to forward and backward random walks on the graph. We

focused on the generative formulation and developed a set of probability constraints over

p (X|Y ). Solving these constraints ultimately enables us to infer p (Y |X) for class prediction.

We also studied the theoretical properties of PGP in terms of its generalization error and

robustness. Finally, we empirically demonstrated that PGP is superior to existing state-of-

the-art baselines.
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Chapter 6

Conclusion: Unification and Beyond

In this chapter, we first highlight the significance of this dissertation, and then discuss a few

future research directions.

6.1 Conclusion: Unifying Framework

Graph representations of data enable many crucial tasks, including the extraction, ranking

and classification of objects addressed in earlier chapters. Despite of the widely varying

problem formulations, they all boil down to a measure of similarity between nodes on the

graph. As their common insight, similar objects (or neighboring nodes in graph terminology)

should behave similarly. To summarize, in pattern-based relation extraction, similar tuples

could be extracted by a similar set of patterns; in networked object ranking, similar objects

should appear near each other in the ranked list; in graph-based classification, similar objects

would be more likely to have the same label.

To realize this insight, a great number of graph-based techniques have been proposed. As

we have explored in this dissertation, one popular and effective family of approaches are based

on random walks. Even though they are fundamentally built upon the same insight, many

different forms and variations of random walk exist, including the forward and backward

walks. Given these varying forms of random walk, their differences and similarities are not

thoroughly investigated in the existing literature. Apart from using them to solve different

graph-based searching and mining problems, which we also contributed to in the first part

of this dissertation (Chapters 2–4), little understanding has been developed regarding how
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they are unified by the same underlying insight, and what makes them different within

the unifying framework. Such understanding is crucial for two reasons. First, it helps

us identify the “right” forms of random walk in different scenarios. Second, a unifying

framework encourages the development of new solutions for novel purposes in a systematic

and principled manner.

Thus, in the second part of this dissertation (Chapter 5), we attempted to investigate

the fundamental principle governing two symmetric forms of random walk: the forward and

backward random walks, focused on a framework unifying them as well as their differences

within the framework. In particular, we identified the core mechanism of random walks as

smoothness on the graph, i.e., the principle governing the common insight of graph-based

searching and mining—the behavior of two close nodes on the graph tends to be the same—as

we just remarked earlier.

Subsequently, we showed that the forward and backward random walks simply represent

two different “modes” of smoothness under one framework. In particular, the forward ran-

dom walk correspond to the generative modeling, whereas the backward walk correspond to

the discriminative modeling, both under the same smoothness framework. In other words,

the former captures the likelihood and the latter captures posterior probabilities, respec-

tively. Thus, it becomes natural that the backward random walk is appropriate for object

classification in Chapter 4. Furthermore, probabilistic precision and recall in Chapter 2 can

also be interpreted as the posterior distribution and likelihood, and thus correspond to the

discriminative and generative models of smoothness, respectively. Let us consider a pattern.

On the one hand, given a tuple extracted by the pattern (observable evidence), the proba-

bility that it is a relevant tuple (latent variable) is our definition of probabilistic precision.

On the other hand, given a relevant tuple, the probability that it is extracted by the pattern

is probabilistic recall. While the notions of specificity and importance in Chapter 3 seem

to intuitively parallel precision and recall, and can be respectively represented by backward

and forward random walks, their direct correspondence to the two modes of smoothness still
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remains open for future work. Nevertheless, our attempt at the unification sheds light on

the “right” form of random walk for different scenarios.

The unifying smoothness framework also provides avenue to extend to or develop new

solutions systematically. While our framework can adopt either discriminative or generative

models, so far they are only explored on individual nodes. Note that this is not a restric-

tion of the framework; potentially, we can model the joint probability of a set of nodes

under the same framework, which may be useful for novel scenarios (for example, we may

have additional constraints on a set of user nodes belonging to the same community in a

social network). In general, the smoothness framework is a foundation upon which different

probabilistic formulations can be adopted.

6.2 Future Agenda

While this dissertation studied various graph-based searching and mining problems and their

underlying principle, there are some promising future directions to explore.

Strengthening the unification. Even though our smoothness framework has unified

the forward and backward random walks, it would be interesting to extend or adapt the

framework to also incorporate other forms of random walk or graph-based techniques in

general. It is also important to identify and interpret the semantics conveyed by different

solutions, parallel to what we have studied in this dissertation (for instance, the concepts of

probabilistic precision and recall, as well as specificity and importance).

Collective and structured measures. In this dissertation, we only considered different

graph-based measures for individual objects, whether in extraction, ranking, or classification.

However, it is sometimes useful to measure the quality of a set of nodes. For instance,

what are the best K patterns in conjunction for extracting a given relation? Note that

the best K patterns often differ from the K best patterns, due to the “overlaps” between
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different patterns. Hence, it is crucial that we can define a “collective” measure for a set of

objects which need to be assessed together. The collective measure can be further extended

to become a “structured” measure, in order to measure a substructure on the graph. For

instance, a community on a social network is a substructure with internal connections, which

is more complex than a “flat” collection of objects.

Learning graph structure. We always assumed the full knowledge of a graph in this dis-

sertation. However, for many real-world graphs such as social networks, this is often untrue

due to various reasons. The missing information could be edges in the graph. For example,

public access to social connections between users may be blocked for privacy considerations.

Node attributes could also be missing or noisy. For instance, users may not supply their

hometowns in their profiles, or fill in uninformative values such as “earth” or “home.” Thus,

it is desirable if we can learn the missing information on a graph, in particular through a

mutually reinforcing mechanism—inferring more edges can improve the inference of node

attributes, and vice versa. A more complete graph would ultimately enable us to improve

the effectiveness of searching and mining on this graph.
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Appendix A Proofs of Propositions

Proof of Proposition 2.1 (Equivalence Sampling)

We first establish the result for precision.∑
ti∈τ(pj)

P(ti)
Wij

|τ(pj)|
1
=

∑
k:τ(pj)∩Tk 6=∅

(∑
ti∈Tk

P(ti)
Wij

|τ(pj)|

)

2
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k:τ(pj)∩Tk 6=∅

(
ρ
∑
ti∈Tk

P(ti)
Wij

ρ|τ(pj)|

)

3
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k:τ(pj)∩Tk 6=∅

(
ρ
∑
ti∈Tk

P(ti)
Wij

|τ̂(pj)|

)
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(
ρ|Tk|P(ti)

Wij

|τ̂(pj)|

)
5
=

∑
k:τ(pj)∩Tk 6=∅

(
|T̂k|P(ti)

Wij

|τ̂(pj)|

)

6
=

∑
k:τ(pj)∩T̂k 6=∅

∑
ti∈T̂k

P(ti)
Wij

|τ̂(pj)|


7
=

∑
ti∈τ(p)∩T̂

P(ti)
Wij

|τ̂(pj)|
. (A.1)

Step 1 partitions the tuples in τ(pj) into equivalent classes Tk. Step 2 rewrites the equation

to introduce ρ. In step 3, we have ρ|τ(pj)| = |τ̂(pj)| due to Eq. 2.13. Step 4 follows since

P(ti) and Wij are the same for tuples in the same equivalence class (Eq. 2.13 and 2.14),

where ti is any tuple in Tk. Step 5 is due to |T̂k| = ρ|Tk|. Step 6 rewrites the multiplication

into a summation over T̂k. Step 7 combines the sampled equivalence classes into T̂ .

The proof for recall can be derived quite similarly. �
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Proof of Proposition 3.2 (Linearity of RoundTripRank)

r(Q, v) , p (WL = v|W0 = WL+L′ ,W0 ∈ Q)

1
=
∑
q∈Q

p (WL = v,W0 = q|W0 = WL+L′ ,W0 ∈ Q)

2
=
∑
q∈Q

p (WL = v|W0 = q,W0 = WL+L′ ,W0 ∈ Q) p (W0 = q|W0 = WL+L′ ,W0 ∈ Q)

3
=
∑
q∈Q

p (WL = v|W0 = q,W0 = WL+L′) p (W0 = q|W0 = WL+L′ ,W0 ∈ Q)

4
=
∑
q∈Q

r(q, v)λ(q) (A.2)

Step 1 expands to the joint distribution with W0 for each q ∈ Q. In step 2, we apply Bayes’

rule. In step 3, W0 ∈ Q is removed from the condition given that W0 = q. �

Proof of Proposition 3.3 (Decomposition of RoundTripRank)

r(q, v) , p (WL = v|W0 = WL+L′ ,W0 = q)

1
= p (WL = v,W0 = WL+L′ |W0 = q) /p (W0 = WL+L′|W0 = q)

2∝ p (WL = v,WL+L′ = q|W0 = q)

3
= p (WL+L′ = q|WL = v,W0 = q) p (WL = v|W0 = q)

4
= p (WL+L′ = q|WL = v) p (WL = v|W0 = q)

5
= p (WL′ = q|W0 = v) p (WL = v|W0 = q) (A.3)

Step 1 applies Bayes’ rule. In step 2, the v-independent denominator is dropped without

altering ranking. Step 3 is another application of Bayes’ rule. In step 4, given WL, WL+L′ is

conditionally independent of W0 in a Markovian walk. In step 5, a shift in time by −L does

not affect the transition probability. �
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Proof of Proposition 3.4 (Decomposition of RoundTripRank+)

As each surfer walks independently, we can factor rΩ(q, v) into the product of individual

surfers. Then, for each surfer, apply Proposition 3.3. Since some surfers shortcut the round

trip, e.g., p
(
W ω
L+L′ = q|W ω

L = v
)

= 1 for ω ∈ Ω10, and similarly for ω ∈ Ω01, we will get

rΩ(q, v) ∝ f(q, v)|Ω11|+|Ω10| · b(q, v)|Ω11|+|Ω01|. (A.4)

We can further normalize the exponents in Eq. A.4 without altering ranking, since the

power function is monotonic:

rΩ(q, v) ∝
(
f(q, v)|Ω11|+|Ω10| · b(q, v)|Ω11|+|Ω01|

) 1
|Ω|+|Ω11|

= f(q, v)
|Ω11|+|Ω10|
|Ω|+|Ω11| · b(q, v)

|Ω11|+|Ω01|
|Ω|+|Ω11|

= f(q, v)1−β · b(q, v)β. (A.5)

The above result concludes the proof. �

Proof of Proposition 3.5 (Bounds of F-Rank)

It is already known that Eq. 3.23 holds [15]. Thus, we only need to prove Eq. 3.22, upon

which Eq. 3.24 can also be built. For any node v, consider an upper bound U for the sum

of residual that is already at v or may spread to v for the first time. An α portion of U

adds to ρ(q, v), while the remaining (1 − α) spreads to v’s out-neighbors. Then, the same

mechanism repeats—residual spread to neighbors may come back to v for a second or third

time, adding α portion to ρ(q, v) each time, totaling to

U · [α + (1− α)2α + (1− α)4α + . . .] = U/(2− α). (A.6)

Thus, U/(2 − α) is the maximum residual that may add to ρ(q, v) for any node v, i.e.,
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an unseen upper bound. It can be further transformed to become Eq. 3.22, since

U ≤ µ(q, v) + (1− α)
∑
u6=v

µ(q, u)

= µ(q, v) + (1− α)
∑
u∈V

µ(q, u)− (1− α)µ(q, v)

= αµ(q, v) + (1− α)
∑
u∈V

µ(q, u)

≤ αmax
u∈V

µ(q, u) + (1− α)
∑
u∈V

µ(q, u). (A.7)

Note that in the last step, we apply µ(q, v) ≤ maxu∈V µ(q, u) to make the upper bound

independent of v.

Finally, Eq. 3.24 can be obtained by adding a seen node v’s current ρ(q, v) to f̂ (0)(q). �

Proof of Proposition 4.1 (Convergence of Local Errors)

Let Λ0 denote that all parameters λτ are zero. Then,

min
Λ
L(t)

err(OL,Λ) ≤ L(t)
err(OL,Λ0)

∗
= min

Λ
L(t−1)

err (OL,Λ). (A.8)

Note that (∗) holds since Λ0 implies that no regularization is done—we get the same error

as the minimum error of the previous iteration. Thus, the sequence is monotonically non-

increasing. Additionally, the minimum error is bounded from below by zero. Any bounded

monotone sequence converges to a finite limit. �

Proof of Proposition 5.1 (Probability of events)

(a) First, p (Vt, Vt+1) = p (Vt+1|Vt) p (Vt). On the one hand, since a random walk is a time-

homogeneous Markov chain, p (Vt+1|Vt) is constant as t varies. On the other hand, the limit

of p (Vt) as t → ∞ is the (first-order) stationary distribution of the random walk, which

exists uniquely for an arbitrary initial state V0, subject to the irreducibility and aperiodicity
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of the graph [79]. Thus, limt→∞ p (Vt, Vt+1) = p (Vt+1|Vt) limt→∞ p (Vt), which also exists

uniquely regardless of the initial state V0.

Now we discuss the irreducibility and aperiodicity of the graph. In particular, our graph

(Eq. 5.1) satisfies such conditions. As a minor caveat, it is a popular practice to construct

a kNN graph instead, where two points xi and xj are connected only if xi is among the k

nearest neighbors of xj or xj is among the k nearest neighbors of xi. The two conditions

are generally satisfied in a kNN graph as well; in the rare case where the conditions are not

met, a simple tweak is to add some dummy edges of small weights [52].

(b) Since (Vt, Vt+1)
d−→ (X,X ′), we have

p (X = xi, X
′ = xj)

1
= lim

t→∞
p (Vt = xi, Vt+1 = xj)

2
= lim

t→∞
p (Vt+1 = xj|Vt = xi) p (Vt = xi)

3
=
Wij

Zi
lim
t→∞

p (Vt = xi)

4
=
Wij

Zi

Zi∑
uvWuv

5
=

Wij∑
uvWuv

6∝ Wij (A.9)

In step 3, p (Vt+1 = xj|Vt = xi) = Wij/Zi is given by the transition probability. In step 4,

limt→∞ p (Vt = xi) = Zi/
∑

uvWuv is the (first-order) stationary distribution of the random

walk, which is established elsewhere [79].

Next, we find p (X = xi) by marginalizing the joint distribution p (X,X ′).

p (X = xi) =
∑
j

p (X = xi, X
′ = xj) =

∑
j

Wij∑
uvWuv

=
Zi∑
uvWuv

∝ Zi (A.10)

Finally, p (X, X ′= xi) can be found similarly. �
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Proof of Proposition 5.2 (Label coupling)

We can bound the L1 difference as follows:

1

2
‖p (Y |X = xi)− p (Y |X, X ′= xi)‖1

=
1

2
‖(1− α)p (Y |X, X ′= xi) + αD − p (Y |X, X ′= xi)‖1

=
1

2
α ‖D − p (Y |X, X ′= xi)‖1 ≤ α. (A.11)

The inequality in the last step follows since the L1 difference between any two distributions

is at most 2. Thus, the proof is concluded. �

Proof of Proposition 5.3 (Solution of Generative Constraints)

(a) Our goal is to derive the transition matrix P . As the unlabeled constraint (Eq. 5.13)

already tells us the transition from each state xj to xi /∈ L, we now need to find out the

transition from each xj to xi ∈ L, i.e., to express K (Eq. 5.11) as a function of πyj.

K
1
=
∑
k:xk∈L

πyk
2
= 1−

∑
k:xk /∈L

πyk

3
= 1−

∑
k:xk /∈L

(
(1− α)

∑
j

Wjk

Zj
πyj

)
4
= 1− (1− α)

∑
j

∑
k:xk /∈L

Wjk

Zj
πyj

5
= 1−

∑
j

∑
k:xk /∈L

Wjk

Zj
πyj + α

∑
j

∑
k:xk /∈L

Wjk

Zj
πyj

6
=
∑
j

∑
k

Wjk

Zj
πyj −

∑
j

∑
k:xk /∈L

Wjk

Zj
πyj + α

∑
j

∑
k:xk /∈L

Wjk

Zj
πyj

7
=
∑
j

∑
k:xk∈L

Wjk

Zj
πyj + α

∑
j

∑
k:xk /∈L

Wjk

Zj
πyj

8
=
∑
j

∑
k:xk∈LWjk + α

∑
k:xk /∈LWjk

Zj
πyj (A.12)
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Step 2 follows since πy is a distribution and its entries sum up to 1. Step 3 applies the

constraint on unlabeled data (Eq. 5.13). In step 6,
∑

j

∑
k
Wjk

Zj
πyj =

∑
j

(
πyj
∑

k
Wjk

Zj

)
=∑

j πyj = 1. Thus, ∀i : xi ∈ L, we have

πyi = K · θyi =
∑
j

∑
k:xk∈LWjk + α

∑
k:xk /∈LWjk

Zj
πyj · θyi. (A.13)

It is easy to verify that πyP = πy and
∑

i Pji = 1, concluding the first part of the proof.

(b) An irreducible and aperiodic Markov chain has a unique stationary distribution. P is

irreducible and aperiodic except in one case below. When θyi = 0 for some i : xi ∈ L,

P is not irreducible since Pji = 0. When this happens, it means p (y|xi) = 0, which also

implies πyi = 0. Thus, we can do a minor tweak by excluding xi from the state space X , and

derive a new transition matrix P ′ over X\{xi}, which is always irreducible. The solution

would then be π′y corresponding to P ′, coupled with πyi = 0. Alternatively, we can assume

p (y|xi) ≥ ε,∀xi ∈ X , where ε is a very small positive constant. �

Proof of Proposition 5.3 (Solution to Generative Constraints)

Our solution estimator π̂y can differ from the true πy due to insufficient samples, which

produce two types of error as follows.

First, there exists data sampling error. We only observe a potentially partial X̂ for

X , through samples in L and U . Hence, the affinity matrix W would not be correctly

constructed, resulting in a different transition matrix P . (Here we suppose that the graph

construction function itself is perfect.)

Second, there exists label sampling error. We estimate θy as θ̂y based on L, which is

potentially erroneous, also resulting in a different P .

Corresponding to the two types of error, we consider two scenarios X̂ ⊂ X and X̂ = X .

On the one hand, when X̂ ⊂ X , we do not need to consider the second type of error caused
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by θ̂y, since regardless of the error in θ̂y, the error in π̂y can be as large as 2 (the maximal

L1 difference between two distributions). On the other hand, when X̂ = X , the first type of

error does not exist, and we only need to investigate the error caused by θ̂y. Formally,

E
[
‖π̂y − πy‖1

]
= E

[
‖π̂y − πy‖1

∣∣∣X̂ ⊂ X ]p(X̂ ⊂ X)+ E
[
‖π̂y − πy‖1

∣∣∣X̂ = X
]
p
(
X̂ = X

)
≤ 2p

(
X̂ ⊂ X

)
+ E

[
‖π̂y − πy‖1

∣∣∣X̂ = X
]
. (A.14)

Now, we only need to bound p
(
X̂ ⊂ X

)
and E

[
‖π̂y − πy‖1

∣∣∣X̂ = X
]
for the two scenar-

ios, respectively. Let Lxi (or Uxi) denote the set that contains all the samples with xi in L

(or U). Similarly, let Ly denote the set that contains all the samples with y in L. Note that

since the samples are i.i.d, there can be different samples with xi or y.

The first scenario X̂ ⊂ X happens only when there exists some xi ∈ X , such that

p (xi) > 0 but it is not sampled in L or U . Hence,

p
(
X̂ ⊂ X

)
1
= p

 ⋃
xi∈X ,p(xi)>0

|Lxi |+ |Uxi | = 0


2

≤
∑

xi∈X ,p(xi)>0

p (|Lxi |+ |Uxi | = 0)

3
=

∑
xi∈X ,p(xi)>0

(1− p (xi))
|L|+|U|

4
= O

((
1− min

xi∈X ,p(xi)>0
p (xi)

)|L|+|U|)
. (A.15)

Step 2 is an application of Bonferroni inequalities. Step 3 follows since the samples in L

and U are i.i.d. In step 4, min
xi∈X ,p(xi)>0

p (xi) is a constant in (0, 1], which we denote as λ1.

Furthermore, if we consider |U| � |L|, we can rewrite Eq. A.15 as follows:

p
(
X̂ ⊂ X

)
≤ O

(
(1− λ1)|U|

)
. (A.16)

In the second scenario X̂ = X , we investigate the second type of error due to θ̂y. Note

that θyi itself is defined in terms of p (y|xi) (Eq. 5.11). Thus, we need to quantify the error
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in p (y|xi), further translate it to the error in θ̂y, and finally derive the error in π̂y.

We first bound the error |p̂ (y|xi)− p (y|xi)|. Note that we only need to consider xi

such that p (y|xi) > 0, since when p (y|xi) = 0, we have |p̂ (y|xi)− p (y|xi)| = 0 almost

surely. Recall that p̂ (y|xi) is estimated as the sample mean |Ly ∩Lxi |/|Lxi|. By Hoeffding’s

inequality, the error in the sample mean can be bounded. That is, for any constant ε ∈ (0, 1),

p (|p̂ (y|xi)− p (y|xi)| > p (y|xi) ε) ≤ 2 exp
(
−2p (y|xi)2 ε2|Lxi |

)
. (A.17)

To obtain a bound on the error in θ̂y, we need |p̂ (y|xi)− p (y|xi)| to be bounded for all

xi ∈ L in conjunction, whose probability can be computed as follows.

p

 ⋂
xi∈L,p(y|xi)>0

|p̂ (y|xi)− p (y|xi)| ≤ p (y|xi) ε


1
= 1− p

 ⋃
xi∈L,p(y|xi)>0

|p̂ (y|xi)− p (y|xi)| > p (y|xi) ε


2

≥ 1−
∑

xi∈L,p(y|xi)>0

p (|p̂ (y|xi)− p (y|xi)| > p (y|xi) ε)

3

≥ 1− 2
∑

xi∈L,p(y|xi)>0

exp
(
−2p (y|xi)2 ε2|Lxi |

)
4
= 1− ρ (A.18)

Step 1 follows from De Morgan’s laws. Step 2 is an application of Bonferroni inequalities.

Step 3 follows from Eq. A.17. In step 4 we denote ρ , 2
∑

xi∈L,p(y|xi)>0

exp
(
−2p (y|xi)2 ε2|Lxi|

)
.

Next, we can translate the error |p̂ (y|xi)− p (y|xi)| to
∣∣∣θ̂yi − θ̂yi∣∣∣. Eq. A.18 means that

there is a probability of at least 1− ρ such that ∀xi ∈ L, p (y|xi) > 0,

1− ε ≤ p̂ (y|xi)
p (y|xi)

≤ 1 + ε. (A.19)

Hence, with probability at least 1− ρ, ∀xi ∈ L, p (y|xi) > 0,

1− ε
1 + ε

≤ θ̂yi
θyi
≤ 1 + ε

1− ε
⇒

∣∣∣θ̂yi − θyi∣∣∣ ≤ 2ε

1− ε
θyi (A.20)
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Finally, we can translate the error
∣∣∣θ̂yi − θ̂yi∣∣∣ to ‖π̂y − πy‖1. Based on the perturbation

theory of Markov chains [27, 92], we can bound ‖π̂y − πy‖1 in terms of the ∞-norm of the

error matrix P̂ − P . Specifically, when X̂ = X , with probability at least 1− ρ,

‖π̂y − πy‖1

1

≤ C
∣∣∣P̂ − P ∣∣∣

∞

2
= C max

j

∑
i

∣∣∣P̂ji − Pji∣∣∣
3
= C max

j

∑
i:xi∈L

∑
k α

1{k:xk /∈L}Wjk

Zj

∣∣∣θ̂yi − θyi∣∣∣
4

≤ C max
j

∑
i:xi∈L

∣∣∣θ̂yi − θyi∣∣∣
5

≤ C max
j

∑
i:xi∈L

2ε

1− ε
θyi

6
=

2Cε

1− ε
. (A.21)

Step 1 follows from the perturbation theory of Markov chains, where C is called a condition

number and is a constant for a given P . In step 3, we only sum over i where xi ∈ L, since

P̂ji = Pji when xi /∈ L. Step 4 follows since Zj =
∑

kWjk ≥
∑

k α
1{k:xk /∈L}Wjk for 0 < α < 1.

Step 5 applies Eq. A.20.

As ‖π̂y − πy‖1 is also bounded by 2 (the maximal L1 difference between two distributions),

when X̂ = X , we can determine with probability at least 1− ρ,

‖π̂y − πy‖1 ≤ min

{
2,

2Cε

1− ε

}
. (A.22)

Let δ , min
{

2, 2Cε
1−ε

}
, which is a constant. It is easy to see that

E
[
‖π̂y − πy‖1

∣∣∣X̂ = X
]
≤ δ(1− ρ) + 2ρ

= δ + (2− δ)ρ

= O(ρ)

= O

(
exp

(
−2ε2 min

xi∈L,p(y|xi)>0
p (y|xi)2 min

xi∈L
|Lxi |

))
. (A.23)
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Here min
xi∈L,p(y|xi)>0

p (y|xi)2 is a constant in (0, 1], which we denote as λ2. Plugging Eq. A.16

and A.23 into Eq. A.14, we conclude the proof. �

Proof of Proposition 5.5 (Robustness Analysis)

Let P̃ be an estimator of the transition matrix based on W̃ . As Wij/s ≤ W̃ij ≤ Wij · s, we

can derive that

Pji/s
2 ≤ P̃ji ≤ Pji · s2 ⇒

∣∣∣P̃ji − Pji∣∣∣ ≤ (s2 − 1)Pji. (A.24)

From the sensitivity theory of Markov chains [27, 92], for a condition number C which

is a constant for a given P ,

L(π̃y−πy)
err ≤ C

∣∣∣P̃ − P ∣∣∣
∞

(A.25)

= C max
j

∑
i

∣∣∣P̃ji − Pji∣∣∣
≤ C max

j

∑
i

(s2 − 1)Pji

= C(s2 − 1). (A.26)

Hence, the proof is concluded. �
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