

B.Comp. Dissertation

Finding Skyline Objects in Streaming Data

By

Fang Yuan

Department of Computer Science

School of Computing

National University of Singapore

2008/2009

i

Title

B.Comp. Dissertation

Finding Skyline Objects in Streaming Data

By

Fang Yuan

Department of Computer Science

School of Computing

National University of Singapore

2008/2009

Project No. : H024310

Advisor : Associate Professor Chan Chee Yong

Deliverables :

Report: 1 Volume

Program and test cases: 1 CD

ii

Abstract

Recently there is much research interest in skyline computation. In this project, we

focus on skyline query over partially-ordered attribute domains in an online streaming

context. We study an existing work, identify problems and limitations of it, and

realize techniques to address them. In particular, we introduce an extension algorithm

to adapt the existing work for a more general dominance definition that can work

correctly without making assumptions about the attributes. In addition, we develop a

new scheme to map tuples into lines in the Cartesian plane, which considers all

attributes instead of the arbitrarily chosen two. The new mapping scheme improves

pruning efficiency of the geometric arrangement. Finally, we conduct experiments to

analyze the existing work and evaluate our proposed techniques.

Subject Descriptors:

 E.1 Data Structures

 H.2.8 Database Applications

H.3.3 Information Search and Retrieval

I.1.2 Algorithms

Keywords:

Skyline, Dominance, Query, Data Stream, Partial Order

Implementation Software and Hardware:

Java Standard Edition 1.5

JGraphT 0.7.3

iii

Acknowledgement

I would like to give special thanks to my project advisor, Associate Professor Chan

Chee Yong from the Department of Computer Science.

Prof. Chan has been patiently guiding me throughout this project, offering me insights

into the project and feedback on my work from time to time.

I would also like to thank my family who have always shown me their unwavering

support.

iv

List of Figures

Figure 1: A sample DAG representing a partially-ordered domain2

Figure 2*: Algorithm of skyline computation framework ..6

Figure 3*: Value grouping and focused search in SkyGrid ..7

Figure 4: Flowchart for skyline arrangement query ...9

Figure 5*: Geometric arrangement for the skyline ...10

Figure 6: Auxiliary query line...13

Figure 7: Extension algorithm of skyline arrangement query14

Figure 8: Algorithm of minmax mapping scheme ..16

Figure 9: Transitive closure of a DAG..22

Figure 10: Mapping of SkyGrid to 1D array ..23

Figure 11: Performance analysis of major STARS operations27

Figure 12: Frequency percentages of skyline mending operation..............................29

Figure 13: Frequency percentages of skyline retrieval operation...............................29

Figure 14: Summary of minmax versus worst and best performing pairs..................32

Figure 15: Comparison of average performance on 3D data......................................33

Figure 16: Comparison of average performance on 4D data......................................34

Figure 17: Comparison of average pruning efficiency on 3D data.............................36

Figure 18: Comparison of average pruning efficiency on 4D data.............................37

*

* Figures reproduced from [9] Categorical Skylines for Streaming Data (N. Sarkas, G. Das, N. Koudas, and
Anthony K.H. Tung, 2008).

v

List of Tables

Table 1: Parameters of a DAG ..25

Table 2: Major operations in STARS..26

Table 3: Domains used in experiments to evaluate the minmax scheme....................31

Table 4: Notations used in this report ..ix

Table 5: Raw results for 3D uniform data..xi

Table 6: Raw results for 3D anti-correlated data ..xii

Table 7: Raw results for 3D correlated data.. xiii

Table 8: Raw results for 4D uniform data..xiv

Table 9: Raw results for 4D anti-correlated data ..xv

Table 10: Raw results for 4D correlated data...xvi

Table 11: Performance improvement of minmax against best and worst pairs.........xvii

vi

Table of Contents

Title ...i

Abstract ..ii

Acknowledgement ... iii

List of Figures ...iv

List of Tables..v

Table of Contents ..vi

1 Introduction...1

2 Related Work...4

2.1 Overview of Skyline Computation in STARS..5

2.2 Skybuffer Organization in STARS..7

2.3 Skyline Organization in STARS ...8

3 Design... 11

3.1 Extension Algorithm to Query the Skyline...11

3.2 The Minmax Mapping Scheme...14

3.3 Other Optimizations..19

3.3.1 SkyGrid for the Skyline..19

3.3.2 Focused Search Pre-computation..20

4 Implementation ...22

4.1 Transitive Closure of DAG...22

4.2 SkyGrid Implementation...23

4.3 Skybuffer as a FIFO Queue ..23

4.4 Skyline Arrangement as a Hash Table ..24

5 Experiments...25

vii

5.1 Analysis of STARS ...26

5.2 Correctness of the Extension Algorithm...30

5.3 Effects of the Minmax Mapping Scheme ...31

6 Conclusion ...39

6.1 Summary...39

6.2 Limitations and Future Work ..39

References... viii

Appendix A: Notations Used in the Report ..ix

Appendix B: Results of Experiment Sets I, II, III, IV ...x

Appendix C: Program Listing.. xviii

1

1 Introduction

Recently, skyline queries have been under much research interest. A skyline query

returns a set of tuples (the so called “skyline”) that are considered dominant among all

available data tuples. Let us first review some definitions [5] for ease of further

discussion.

Definition 1. A tuple X dominates a tuple Y iff X is better than or equal to Y in every

attribute, and is better in at least one attribute. Two tuples are tied if neither of them

dominates the other.

Definition 2. The skyline of a set of data tuples consists of all tuples that are not

dominated by any other tuples in the set. A skyline tuple is said to be dominant.

Clearly, the skyline is highly sought by users because of its dominant nature [5]. It is

especially valuable in the presence of a large amount of data, in extracting relevant

information that might interest users.

Using the common example in the literature, consider the scenario where a tourist is

looking for a hotel. Suppose the tourist prefers to stay at a cheap hotel that is close to

the city. A hotel X is considered to dominate another hotel Y if and only if:

(1) X.price ≤ Y.price; and

(2) X.distance ≤ Y.distance; and

(3) at least one of the two relations in (1) and (2) is strict.

The skyline of hotels consists of all hotels that are not dominated by any other, which

are desired by the tourist.

While much work focuses on skyline queries with totally-ordered attribute domains

2

[5][6][8], some deals with partially-ordered domains instead [2][9]. Partially-ordered

domains have wider applicability as in the representations of hierarchies, preferences

and interval data [2]. Attribute values on a partially-ordered domain may be

comparable or incomparable, and their relations are commonly represented as directed

acyclic graphs (DAG). Each attribute value is mapped to a vertex, and a directed edge

is used to indicate the relation between two comparable values whose relation cannot

be inferred by transitivity [9].

Figure 1: A sample DAG representing a partially-ordered domain

For example, in Figure 1, there are five possible values in a partially-ordered domain

(a, b, c, d and e). Among those which are comparable, for example, a is better than c,

and c is better than d, as indicated by the directed edges connecting them. a is also

better than d, which can be inferred by the transitive property and therefore a directed

edge from a to d is not required. If two values are incomparable, neither is better than

the other (a and b, d and e). Additionally, if two values are said to be equal, they are

meant to be represented by the same vertex. Using this notion, dominance and skyline

are well defined in Definition 1 and Definition 2 for tuples with partially-ordered

attribute domains.

Skyline queries may also take place in an online or offline environment. In an online

environment, there is a stream of incoming data tuples to the system. The skyline is

continuously updated upon the arrival of new tuples. In an offline environment,

however, the data is less dynamic and skylines are answered on demand instead of

continuously computed [9].

a b

c

d e

3

In this project, we investigate efficient algorithms to compute skylines on

partially-ordered domains in an online streaming data context. We examine the

state-of-the-art algorithm Streaming Arrangement Skyline (STARS) [9], identify its

problems and limitations, and design solutions to address them. We have made the

following major contribution:

(1) Extended STARS to work with the standard definition of dominance as

introduced in Definition 1;

(2) Identified the limitation of STARS in using a geometric arrangement for the

skyline, and introduced a novel scheme “minmax” to utilize it more

efficiently;

(3) Conducted extensive experiments to analyze and compare STARS and our

proposed techniques.

The rest of this report is organized as follows. In Section 2 we review related work,

with an emphasis on STARS. In Section 3 we analyze the design adopted by STARS,

identify its problems and limitations, and devise possible solutions to address them. In

Section 4 we address any implementation issues while in Section 5, we showcase

experimental evaluations. Finally, Section 6 concludes the report.

4

2 Related Work

A number of algorithms have been proposed to answer skyline queries. While earlier

algorithms do not utilize any index structure, most of the recent ones use some index

structure (e.g. R-tree is utilized in [5] and [8], and ZBtree in [6]). It is generally

agreed that non-index-based algorithms are inferior to the index-based ones [2], due

to the capability of effective pruning by the index structures.

The above works of NN [5], ZBtree [6] and BBS [8] deal exclusively with totally

ordered domains. There are also some algorithms that are able to work on

partially-ordered domains (e.g. SDC [2] and STARS [9]). As expected, the latter is

more complex than the former, as the latter must transform partially-ordered domains

in a suitable way in order to utilize some index structure for effective pruning.

In SDC [2], each value v in a partially-ordered domain is mapped to an interval

fi(v)∈N × N, where N denotes the set of natural numbers, such that if fi(v) contains

fi(v’), then v dominates v’. But the inverse is not true, thus there may be false positives

in the skylines computed based on the transformed domain, which must be checked.

R-tree [2] is then used as an index structure on the transformed domains to exploit the

pruning potential.

In STARS [9], each value v in a partially-ordered domain is mapped to its order r(v) in

a specific topological sort [7] of the DAG that represents the domain.

Definition 3. A topological sort of a DAG is a linear ordering of all the vertices in the

DAG such that for any directed edge, the vertex where it starts is always listed before

the vertex where it ends. We denote the integer indicating vertex v’s position in a

specific topological sort by r(v).

5

According to Definition 3, there could be more than one valid topological sort for a

DAG. However, for the purpose of STARS, any specific topological sort suffices [9].

Additionally, by the definition of a topological sort, if r(v) ≥ r(v’), then v cannot be

better than v’ (or equivalently, v cannot dominate v’). Similarly, its inverse is not true.

In this case, the actual and more expensive dominance comparison must be invoked to

determine the dominance relation. The geometric arrangement [9] is then used in

STARS on the transformed domains.

As our project focuses on skyline computation on partially-ordered domains in an

online streaming data context, the approach by STARS is more appropriate. Although

the SDC approach is efficient in an offline environment on partially-ordered domains,

it suffers from the increase in data dimensionality (each attribute value is mapped to

an interval represented by two integers, effectively doubling each dimension), in

addition to the reduced performance in maintaining and querying the buffer in a

streaming context [9]. Therefore, for the rest of this section, we review the STARS

algorithm which this project is based on.

2.1 Overview of Skyline Computation in STARS

In STARS [9], a buffer of fixed size is maintained. A sliding window model is

assumed, which means a new incoming tuple is inserted into the buffer, while the

oldest tuple is removed or expires from the buffer if it was already full. The skyline of

the streaming data is computed based only on the current buffer. Following each

incoming tuple, the skyline is updated to reflect the changes in the buffer accordingly.

Furthermore, older tuples that are dominated by newer ones can never be promoted to

the skyline because newer ones expire only after older ones. Therefore, these older

tuples are irrelevant for the skyline computation. Only the relevant part of the buffer

(the so called “skybuffer”) needs to be considered.

6

Algorithm Skyline computation framework

Input: skybuffer SB, skyline S ⊆ SB, incoming tuple in, outgoing tuple out

1. if in not dominated by S then

2. Insert in in S and remove any dominated tuples from S;

 endif

3. Insert in in SB and remove any dominated tuples from SB;

4. if out is in S then

5. Remove out from S;

6. Retrieve tuples in SB dominated by out;

7. Insert retrieved tuples that are not dominated by S into S;

 endif

8. Remove out from SB;

Figure 2: Algorithm of skyline computation framework

An overview of the skyline computation framework from STARS [9] is reproduced in

Figure 2. The framework is invoked for every incoming tuple in a stream. It is

abstract and independent of the underlying index structures. However, it reveals that

retrieving tuples in the skybuffer that are dominated by a query tuple1 (line 3 and 6),

and answering if a query tuple is dominated by the skyline (line 1 and 7) are two

major operations that are performed every time the computation framework is

invoked. To address them, STARS introduces a SkyGrid structure for the skybuffer

and geometric arrangement structure for the skyline, which are capable of pruning

irrelevant tuples during queries, and thus allowing the two otherwise expensive

operations to be executed more efficiently.

1 A query tuple Q is a tuple involved in a query issued to a data structure, such as the skybuffer or skyline. A set of
tuples satisfying certain relations to Q, or a result related to Q, is expected to be returned.

7

This project is based on the same framework in Figure 2, with modifications mainly

in the sub-operations of the framework.

2.2 Skybuffer Organization in STARS

Skybuffer uses a SkyGrid as its underlying index structure. As discussed in Section

2.1, the main query it needs to support is to return the set of tuples in skybuffer that

are dominated by a query tuple.

Each dimension of a data tuple is mapped to a dimension of the SkyGrid, forming a

multi-dimensional grid. Values in a dimension are grouped, with each group (which

may consist of one or more values) mapped to a bucket in the corresponding

dimension of the grid. Grouping controls grid granularity without which the solution

does not scale because the number of grid cells increases rapidly with the size of

domains.

We will use the figure from [9] to illustrate the SkyGrid, which is reproduced in

Figure 3. In this example, the data is 2-dimensional, and its domain on each

dimension is represented by the DAG in Figure 3(a). Given a desired grid granularity,

grouping of values is done using a partitioning heuristic as in Figure 3(a). The

SkyGrid based on such a grouping is shown in Figure 3(b).

Figure 3: Value grouping and focused search in SkyGrid

b

c d e

f g h

a

(a) Domain DAG (b) SkyGrid

g,h f d,e c b a

c

g,h

f

d,e

b

a

× •

• •

8

The partition heuristic aims to reduce the number of SkyGrid cells returned by

focused search. Focused search is the pruning capability provided by the SkyGrid,

which finds relevant cells that can possibly be dominated by the query cell2 where the

query tuple would have belonged to. In Figure 3(b), the query cell is marked by a

cross (×), and the candidate cells returned by focused search are marked by dots (•).

The actual and more expensive dominance comparison needs to be invoked only for

tuples in candidate cells found by focused search. All other SkyGrid cells are ignored,

as they contain no tuple which can be dominated by the query tuple.

2.3 Skyline Organization in STARS

For the skyline, each tuple is mapped to a line y = r(a) · x – r(b) in the Cartesian plane,

where a, b are two attributes of the tuple. Recall that the notation r(v) refers to the

topological sorting order of v as introduced in Definition 3. The two attributes a and b

are selected arbitrarily but statically before skyline computation starts. This means

once a selection is determined, it remains bound for all tuples.

The skyline is then organized as a geometric arrangement of the mapped lines in the

Cartesian plane [9]. As discussed in Section 2.1, the main query it needs to support is

to answer whether the any skyline tuple dominates a query tuple.

STARS claims a query tuple TQ can be dominated by a skyline tuple TS only if the

lines mapped from them intersect on the positive half of the x-axis3. It follows from

the reasoning that if the x-coordinate of the intersecting point is negative, the two

tuples are tied. Using basic algebra, the x-coordinate of the intersecting point is

).().(

).().(

aTraTr

bTrbTr
x

SQ

SQ

−
−

= .

2 By saying a cell X can possibly dominate another cell Y, we mean it is possible for some tuples in X to dominate
some tuples in Y. We call X the query cell, and Y a candidate cell for X.
3 As we will see in Section 3.1, this claim is only true given the assumption in [9], which ignores the case of equal
attribute values in dominance comparison.

9

If x < 0, then either

r(TQ.b) > r(TS.b) and r(TQ.a) < r(TS.a),

or r(TQ.b) < r(TS.b) and r(TQ.a) > r(TS.a),

which implies either

 TQ does not dominate TS and TS does not dominate TQ

or TS does not dominate TQ and TQ does not dominate TS

In either case, the two tuples are tied and can be pruned.

Therefore, the geometric arrangement only needs to store the parts of lines on the

positive half of the x-axis, and only the lines that intersected by the query line needs

to be further evaluated. Additionally, the query is progressive, returning immediately

if a positive result is encountered (i.e. a skyline tuple dominates the query tuple). This

progressive process can be demonstrated by the flowchart in Figure 4.

Figure 4: Flowchart for skyline arrangement query

Again, we will use the figure from [9] to illustrate the geometric arrangement, which

is reproduced in Figure 5. In this example, the skyline consists of three tuples T1, T2

and T3 which are mapped to l1, l2 and l3 respectively. The query tuple TQ is mapped to

lQ and is represented by the dotted line in Figure 5.

anymore

intersecting lines?

yes

no return false

retrieve next intersecting

line and its tuple TS

TS dominates

query tuple?
yes

return true no

query

10

Figure 5: Geometric arrangement for the skyline

Starting from the y-axis, the query progressively encounters lines intersected by the

query line lQ, namely l3 and l2, in that order. Since lQ encounters l3 first, STARS first

checks whether T3 dominates TQ by invoking the actual dominance comparison. If not,

it continues and checks whether T2 dominates TQ, and so on. l1 is pruned and no actual

dominance comparison is needed, because it does not intersect with lQ on positive half

of the x-axis.

To ensure efficient operations of the geometric arrangement, STARS makes use of the

data structure doubly-connected-edge-list (DCEL) [1], which allows the retrieval of

lines intersected by a query line in O(s) time, where s is the size of the skyline.

Y

X
lQ: query line

l1

l3 l2

11

3 Design

Our design is based on the STARS [9] approach introduced in Section 2. We have

examined this approach, and identified some problems and limitations with it. In the

following subsections, we discuss our proposed solutions:

(1) An extension algorithm which allows STARS to work correctly with the

standard definition of dominance introduced in Definition 1;

(2) A novel “minmax” mapping scheme for the geometric arrangement used in the

skyline, which has better performance;

(3) Other minor optimizations.

3.1 Extension Algorithm to Query the Skyline

Sarkas et al [9] ignores the case of equal attribute values in order to simplify the

discussion. With this assumption, their definition of dominance can be simplified as:

 “A tuple X dominates a tuple Y iff X is better than Y in every attribute.”

Comparing this with the standard definition in the literature as stated in Definition 1,

the case of equal attribute values are eliminated.

Although this assumption seems trivial, direct application of STARS to the standard

definition of dominance invalidates the pruning of the skyline by the geometric

arrangement. Recall that in STARS, the geometric arrangement only stores the parts

of lines mapped from skyline tuples on the positive half of the x-axis. A query tuple

TQ can be dominated by a skyline tuple TS, only if the lines mapped from them

intersect on the positive half of the x-axis. Unfortunately, this is only valid given the

assumption in [9], where the case of equal attribute values is ignored.

The STARS approach reasons the validity of only checking lines intersecting on the

positive half of the x-axis by proving lines intersecting on the negative half are

12

irrelevant (see Section 2.3). However, the relation of two lines that do not intersect on

the negative half of the x-axis can have three disjoint scenarios:

(1) They intersect on the positive half of the x-axis;

(2) They intersect exactly on the y-axis (i.e. same y-intercept);

(3) They are parallel (i.e. same gradient).

The STARS approach only addresses Scenario (1), which is sufficient under their

assumption, as the other two scenarios can be discarded if the case of equal attribute

values is not considered.

Let us now consider the case of equal attribute values. Each tuple is mapped to a line

y = r(a) · x – r(b), where a, b are two selected attributes of the tuple. For tuples with

equal value in attribute a, they map to parallel lines; for tuples with equal value in

attribute b, they map to lines with same y-intercept. By Definition 1, they are still

possible to dominate each other. Therefore, we have to consider the other two

scenarios if we want to apply STARS to the standard definition.

Falsely pruned tuples in Scenario (2) is trivial to recover. Since the lines intersect on

the y-axis, we just need to extend the geometric arrangement to store the parts of the

lines on the non-negative half of the x-axis, as opposed to only the positive half in the

STARS approach.

However, Scenario (3) needs some modifications to the original query algorithm. The

original query is unable to retrieve any parallel lines. Therefore, a second auxiliary

query is required to retrieve all lines parallel to the original query line lQ. Note that

doing two queries instead of one does not change the efficiency class of the algorithm.

The problem now lies in choosing a suitable auxiliary query. Apparently the auxiliary

query line lA must have a different gradient as lQ in order to intersect lines parallel to

lQ. Furthermore, its gradient has to be larger, not only different. A query tuple TQ can

be dominated by a skyline tuple TS when their line representations are parallel, only if

13

r(TS.b) ≤ r(TQ.b), i.e. only by the parallel lines above the query line lQ
4. In order for lA

to intersect with all lines parallel to and above lQ, lA must have a gradient larger than

lQ, and have the same y-intercept as lQ.

As illustrated in Figure 6, the skyline consists of four tuples Ti, which map to four

parallel lines l i respectively, where i = 1, 2, 3, 4. The query tuple TQ maps to the line

lQ. Only T3 and T4 can possibly dominate TQ, because their lines l3 and l4 are above lQ.

T1 and T2 can be pruned immediately because of their neither better nor equal values

in attribute b. An auxiliary query line lA with a larger gradient and the same y-intercept

as the original query line lQ would suffice.

Figure 6: Auxiliary query line

Furthermore, in the process of an auxiliary query, any non-parallel lines are irrelevant

and must be discarded. Therefore, we want lA to intersect as few non-parallel lines as

possible, which implies its gradient should be as small as possible. If the gradient is

represented by integer, we could set lA’s gradient to r(TQ.a) + 1, where r(TQ.a) is the

gradient of lQ.

4 From Definition 3, a smaller topological sorting order implies a possible better value. In addition, y-intercept of a
line is -r(b), and thus a better value (with a smaller r(b)) corresponds to a higher line.

Y

X

lQ: original query line

l1

l2

l3

l4

lA: auxiliary query line

14

Based on our analysis, we now suggest an extension algorithm for the skyline

arrangement query, shown in Figure 7. In line 1 and 4, the Query calls invoke the

query function of the skyline arrangement in the original STARS approach. In essence,

the first Query call (line 1) is the original query, making use of the original query line;

while the second Query call (line 4) is the auxiliary query, making use of the auxiliary

query line discussed earlier. If the original query returns false, it could be a mistake.

In this case, the auxiliary query is issued, trying to identify and check any incorrectly

pruned skyline tuple that may still be able to dominate the query tuple.

Algorithm Extension to skyline arrangement query

Input: skyline s, query line l mapped from the query tuple

Output: whether s dominates the query tuple (true or false)

1. if Query(s, l) then /* original query */

2. return true;

 else

3. Add 1 to the gradient of l;

4. return Query(s, l); /* auxiliary query */

 endif

Figure 7: Extension algorithm of skyline arrangement query

3.2 The Minmax Mapping Scheme

Another observation of the skyline computation framework in Figure 2, is that the

so-called “skyline mending” operation (line 7) is very expensive. The mending

operation identifies all tuples in the skybuffer that are exclusively dominated by the

expiring tuple from the skyline (i.e. not dominated by any other tuple in the skyline),

which are then promoted to the skyline. For each tuple in the skybuffer that is

dominated by the expiring tuple from the skyline, it needs a query to the skyline to

15

determine the exclusiveness. Therefore, the operation that checks whether a query

tuple is dominated by the skyline is invoked repeatedly in a single skyline mending

operation, which makes it very expensive5.

Therefore, improve the pruning efficiency of the geometric arrangement is crucial in

improving the overall performance. Currently, the pruning capability of the geometric

arrangement is provided by ignoring lines that do not intersect with the query line.

However, how the mapping from tuples to lines affects pruning efficiency is not

discussed in the STARS approach [9].

In the STARS approach, a tuple is mapped to a line y = r(a) · x – r(b), where a, b are

two arbitrarily and statically selected attributes of the tuple (see Section 2.3). There

are two problems associated with this mapping scheme on data with more than two

dimensions.

Firstly, it fails to specify how to select attributes. There could be a significant

performance gap between the best and worst pair of selected attributes6. The arbitrary

and static selection scheme ignores other information available, such as the

characteristics of the attribute domains. If we make use of this information to make a

more informed selection, we may overcome such a performance gap between the best

and worst pair. Unfortunately, while there are some trends associated with certain

parameters of the attribute domains, we fail to find a clear cut between best and worst

pairs in other cases.

Secondly, this approach prunes tuples based on only two of their attributes. In higher

dimensional data tuples, there exists other attributes whose values are simply

disregarded during the pruning process. This hurts the pruning efficiency, as values of

the other non-selected attributes can possibly prune off more tuples, if they were also

5 See the performance analysis of major STARS operations in Section 5.1, Figure 11.
6 There is indeed a significant performance gap especially on higher dimensional uniform or anti-correlated data,
as we will see in Section 5.3, Figure 16(a)(b).

16

considered during the prune. A mapping scheme that considers all of the attributes is

conceivably better because it utilizes more available information. We expect such a

scheme to perform even better as the data dimensionality increases, as in higher

dimensional data, more information is ignored in the STARS approach. Also, in such

a scheme, we do not have to devise an attributes selection algorithm, as all attributes

are considered.

For reasons stated above, we define a new mapping scheme “minmax” that makes use

of all attributes. An n-dimensional tuple X with attributes attr-1, attr-2, …, attr-n, is

mapped to a line y = A · x - B, where

 A = max(r(X.attr-1), r(X.attr-2), …, r(X.attr-n))

and B = min(r(X.attr-1), r(X.attr-2), …, r(X.attr-n)).

The maximal and minimal topological sorting orders of attribute values for each tuple

are computed only once on tuple creation, as show in Figure 8.

Algorithm Minmax mapping scheme

Input: tuple t

Output: the maximal and minimal topological sorting order pair (max_t, min_t).

1. Set max_t to -∞, and min_t to +∞;

2. foreach attribute attr in t

4. if r(attr) > max_t then Set max_t to r(attr) endif;

5. if r(attr) < min_t then Set min_t to r(attr) endif;

 endforeach

6. return (max_t, min_t)

Figure 8: Algorithm of minmax mapping scheme

This scheme considers all of the attributes, but yet it does not invalidate the pruning

17

capability of the geometric arrangement. Before we prove its correctness7, we

introduce two lemmas on which our proof is based.

Let lX and lY be the lines mapped from n-dimensional tuples X and Y respectively,

where each tuple has n attributes attr-1, attr-2, …, attr-n. Also let l.A be the gradient

and l.B be the negative of the y-intercept of the line l.

Lemma 1. If lX.A is greater (or smaller) than lY.A, then there exists at least one pair of

corresponding attributes in X and Y, say X.attr-k and Y.attr-k, that satisfies the relation

r(X.attr-k) is greater (or smaller) than r(Y.attr-k).

Proof. From the mapping scheme, we have

lX.A = r(X.attr-i) so that r(X.attr-i) > r(X.attr-k), where k ≠ i,

and lY.A = r(Y.attr-j) so that r(Y.attr-j) > r(Y.attr-k), where k ≠ j.

Given that lX.A is greater (or smaller) than lY.A, so r(X.attr-i) is also greater (or

smaller) than r(Y.attr-j). Now we have two cases.

Case 1: i = j. There is a corresponding pair X.attr-k and Y.attr-k, where k = i = j, that

follows the relation r(X.attr-k) is greater (or smaller) than r(Y.attr-k).

Case 2: i ≠ j. We have to separate the discussion of the greater and smaller than

relations. In the greater than relation, there is a corresponding pair X.attr-i and Y.attr-i,

that follows r(X.attr-i) > r(Y.attr-j) > r(Y.attr-i). In the smaller than relation, there is a

corresponding pair X.attr-j and Y.attr-j, that follows r(X.attr-j) < r(X.attr-i) <

r(Y.attr-j).

In either case, there exists at least one pair of corresponding attributes that satisfy the

7 We first ignore the case of equal attribute values as in the original STARS approach. Later, we show that the
extension algorithm introduced in Section 3.1 is still applicable to the minmax scheme.

18

relation. Q.E.D.

Lemma 2. If lX.B is greater (or smaller) than lY.B, then there is at least one pair of

corresponding attributes from X and Y, say X.attr-k and Y.attr-k, that satisfies the

relation r(X.attr-k) is greater (or smaller) than r(Y.attr-k).

We do not include its proof here, because it is similar to the proof of Lemma 1. B is

the minimum which is symmetric to A the maximum in Lemma 1.

Now, we claim that if two lines lX and lY intersect on the negative half of the x-axis,

they can be pruned, i.e. there is no need to invoke the actual but more expensive

dominance comparison operation.

Proof. Using basic algebra, the x-coordinate of the intersecting point of two lines lX

and lY is

AlAl

BlBl
x

YX

YX

..

..
−
−= .

If they intersect on the negative half of the x-axis, then we have x < 0, which implies

either

lX.B > lY.B and lX.A < lY.A,

or lX.B < lY.B and lX.A > lY.A.

By Lemma 1 and Lemma 2, it is equivalent to either

 ∃i, j: r(X.attr-i) > r(Y.attr-i) and r(X.attr-j) < r(Y.attr-j),

or ∃i, j: r(X.attr-i) < r(Y.attr-i) and r(X.attr-j) > r(Y.attr-j).

In either case, there exist at least two pairs of corresponding attributes from X and Y

that make X and Y tied. They can never dominate each other; therefore, the actual

dominance comparison can be avoided. Q.E.D.

19

Let us also consider the effect of equal attribute values on the minmax mapping

scheme. As discussed in Section 3.1, Scenario (2) is trivial and we only need to

validate Scenario (3). Fortunately, the extension algorithm suggested in Section 3.1

can still be applied to the minmax mapping scheme.

Likewise, to retrieve parallel lines, we require an auxiliary query in the extension

algorithm. The auxiliary query line lA in Figure 6 only intersects with lines above the

original query line lQ, for example l3 and l4. Only tuples mapped to these lines are

possible to dominate the query tuple. Tuples mapped to lines below lQ, for example l1

and l2, are impossible to dominate the query tuple. Say l1 is mapped from the skyline

tuple T1, and lQ mapped from the query tuple TQ. We then have l1.B > lQ.B, because B

is the negative of y-intercept. By Lemma 2, there exists a k such that r(T1.attr-k) >

r(TQ.attr-k), which implies T1 can never dominate TQ. Therefore, the extension

algorithm is still applicable.

3.3 Other Optimizations

3.3.1 SkyGrid for the Skyline

Referring to Figure 2 in Section 2.1, the skyline includes an operation that retrieves

tuples which are dominated by a query tuple (line 2), in a similar fashion as the

skybuffer does8 (line 3 and 6). Generally, as the buffer size increases, so does the size

of the skyline. The skyline may also become larger in the presence of anti-correlated

data than in the case of uniform or correlated data. Without a proper index structure

(for example, the SkyGrid), the skyline retrieval operation is expected to be more

expensive than the skybuffer retrieval operation. Given that the SkyGrid is an

effective index structure for the skybuffer9, it is natural to speculate whether it is

possible to port it for the skyline as well.

8 We name the two operations “skyline retrieval” and “skybuffer retrieval” respectively. See Table 2 in Section 5.
9 See the performance analysis of major STARS operations in Section 5.1, Figure 11.

20

However, performance analysis in Section 5.1 also reveals that the skyline retrieval

operation occurs with very low frequency when compared with the skybuffer retrieval

operation (see Figure 13). Therefore, we expect any improvement on skyline retrieval

operation would only bring a marginal benefit to the overall performance. The

improvement would be outweighed by the overhead required to maintain a SkyGrid

structure for the skyline.

Therefore, we do not see using a SkyGrid structure for the skyline is crucial, and we

do not support using it.

3.3.2 Focused Search Pre-computation

Focused search retrieves possible candidates from the skybuffer that may be

dominated by a query tuple. Only the retrieved candidates are subjected to the more

expensive dominance comparison operation, while other tuples are pruned by the

method. We notice that for a given mapping from data dimensionality to a SkyGrid,

candidate cells found by focused search in the grid can be determined independent of

any data tuple present in the grid. Thus in the preprocessing stage we can do a focused

search for every cell (or “query cell”, where a query tuple would have belonged to),

pre-computing and storing their candidate cells.

To store the pre-computed candidate cells, we need a separate grid. It would have the

same structure as the SkyGrid, except that instead of storing tuples, indices of

candidate cells are stored. When a query is issued, instead of doing an on-the-fly

focused search for the query cell, the candidates are directly retrieved from the new

grid.

For each incoming tuple, we can expect the computation framework in Figure 2 from

Section 2.1 to save no better than a constant time. The saving would be more

significant in higher dimensional data, as the time needed to do a focused search

21

increases with data dimensionality. However, this saving in time does not come

without a price. An O(n2d) space overhead and preprocessing time is needed for the

new grid, where n is the grid granularity and d is the dimensionality, because each of

the nd cells stores O(nd) candidates. As dimensionality increases, the storage overhead

increases exponentially, making the pre-computation of candidate cells for all query

cells infeasible. For example, in 4-dimensional data with n = 20, the space overhead

and preprocessing time is on the scale of 202×4 = 2.56 × 1010.

Given the large space overhead and preprocessing time needed, and the relative small

portion of time spent by focused search10, we do not support the pre-computation of

focused search.

10 Focused search is a part of the skybuffer retrieval operation as defined in Table 2 from Section 5. Skybuffer
retrieval itself is not an expensive operation as evident from Section 5.1, Figure 11.

22

4 Implementation

Our project is implemented based on the original STARS technique [9], with

modifications suggested in Section 3. The implementation is done in Java, with the

help of a free external library JGraphT 0.7.3 [4] (which is used for implementing

DAGs). The STARS technique in [9] only sketches a general outline on the algorithm.

To build an actual efficient framework, many implementation details cannot be

overlooked. In the following subsections, we discuss the challenges encountered in

the implementation of the STARS and our proposed techniques.

4.1 Transitive Closure of DAG

The transitive closure of a directed graph with n vertices is given by an n × n matrix,

which stores a Boolean value in its (i, j) entry indicating whether a path from i-th

vertex to j-th vertex exists. The existence of such a path also implies that the value

represented by the i-th vertex is better than that of the j-th. For example, the transitive

closure matrix of the DAG in Figure 9(a) is shown in Figure 9(b). This matrix can be

computed by Warshall’s algorithm [7] in O(n3) time, where n is the number of vertices

in the DAG.

Figure 9: Transitive closure of a DAG

b

c d

e f

a

(a) DAG (b) Transitive closure matrix

f e d c b a

c

f

e

d

b

a 1 1 1 1 0 0

1 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

23

Without a pre-computed transitive closure, dominance comparison between two

tuples is extremely expensive because of the complexity of checking graph

connectivity on-the-fly. The benefit of the transitive closure outweighs the one-time

overhead of cubic time requirement. The transitive closure must be pre-computed in

order to answer skyline queries with any reasonably sized domain.

4.2 SkyGrid Implementation

The SkyGrid is a multi-dimensional grid structure with variable dimensionality and

granularity. Although most modern programming languages do support

multi-dimensional arrays, it remains difficult to construct such a grid directly. Instead,

in our implementation, the SkyGrid is mapped to a one-dimensional auxiliary array.

Each row in the grid is mapped to the array successively, as illustrated in Figure 10.

Accessing a cell in the grid thus requires a method to index into the auxiliary array,

which is computed based on the indices, dimensionality and granularity of the grid.

An Abstract Data Type is used to hide array access details and to create a virtual

SkyGrid with variable dimensionality and granularity.

Figure 10: Mapping of SkyGrid to 1D array

4.3 Skybuffer as a FIFO Queue

Recall that skybuffer uses the SkyGrid index structure to allow efficient pruning when

• • •
0 1 2

3 4 5

6 7 8

9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

internal representation

virtual SkyGrid

24

answering queries. But we also have to model the skybuffer as a first-in-first-out

(FIFO) queue in order to keep track of the order of the tuples coming into the

skybuffer. When a new tuple comes in, and the buffer was already full, the oldest

tuple expires and will be removed from both the buffer and skybuffer (if it resides in

the latter as well). A FIFO queue allows retrieval of the oldest tuple at the head of the

queue from the skybuffer in constant time, which will be compared against the oldest

tuple in the full buffer. If they match, they are the same tuple which is expiring.

Removing the expiring tuple at the head of the queue can also be done in constant

time.

In our implementation, a FIFO queue is used in addition to the SkyGrid to model the

skybuffer. While the former allows efficient enqueue and dequeue operations, the

latter allows efficient pruning for a given query. A memory overhead of O(s) is

required, where s is the size of the skybuffer. But given the relative smaller size of the

skybuffer as compared to the actual buffer, we expect the additional linear memory

requirement is reasonable with any modern hardware.

4.4 Skyline Arrangement as a Hash Table

A hash table is used in the geometric arrangement data structure to keep track of all

lines present in the structure. Each class of identical lines (i.e. lines with same

gradient and y-intercept, mapped from different tuples) are stored in a list, which is in

turn stored in the hash table. For each list, only one line is actually involved in the

arrangement. This reduces duplication of identical lines, simplifies the arrangement,

and improves query time. Using a hash table facilitates an amortized constant time

access to a specific list as required by tuple addition and removal operations.

25

5 Experiments

This section showcases our experimental evaluations to support our design proposed

in Section 3. While Section 5.1 analyzes and identifies potential room for

improvements in the STARS technique [9], subsequent subsections compare our

suggested design with the original STARS design.

Before going into the experiments, we would like to introduce the notations used in [9]

to specify input forms. Recall that an attribute domain can be modeled by a DAG. A

DAG can be characterized by parameters (m, h, c, f), which are defined in Definition 4

and Table 1 [9]. We will refer to a DAG and the domain it represents by its parameters,

for example, (500, 8, 0.3, tree).

Definition 4. In a directed acyclic graph, a vertex without any incoming edge is a

source. The depth or depth level of a vertex is the length of the longest path from any

source to this vertex.

Parameter Description

m Number of vertices in the DAG.

h Height of the DAG.

It is the number of depth levels of all vertices in the DAG.

c Inter-connectivity ratio.

A vertex has outgoing edges directed to c of the vertices on the next

depth level, where 0 < c ≤ 1.

f Tree or wall structure.

In a tree structure, each depth level has twice as many vertices as the

previous depth level has; while in a wall structure, each depth level

has the same number of vertices.

Table 1: Parameters of a DAG

26

We also name four major operations of the STARS technique in Table 2 to ease

further discussion.

Operation Description

Tuple update A complete run of the skyline computation framework as

outlined in Section 2.1 and Figure 2.

Skyline mending Identify tuples in the skybuffer that are exclusively dominated

by the expiring tuple, and promote them into the skyline.

Skyline retrieval Retrieve all tuples from the skyline that are dominated by a

query tuple.

Skybuffer retrieval Retrieve all tuples from the skybuffer that are dominated by a

query tuple.

Table 2: Major operations in STARS

All experiments are conducted on Solaris 10, in Java Server Virtual Machine (VM)

version 1.5. A heap size of 3.5GB is allocated for the Java VM.

5.1 Analysis of STARS

Experiments on 2D, 3D and 4D data are conducted. Synthetic data on domains (500, 8,

0.3, tree) is used, and each tuple in the stream is generated uniformly and

independently. The average execution time for major STARS operations is shown in

Figure 11. Note that the scales on the y-axis are logarithmic.

By comparing the experiment results on 2D data in Figure 11(a), 3D data in Figure

11(b) and 4D data in Figure 11(c), we observe the sharp increase in execution time for

all operations with respect to data dimensionality. In addition, skyline mending is the

most expensive operation across all dimensions of data.

27

(a) 2D data

0.0

0.1

1.0

10.0

10K 20K 50K 100K 200K 500K 1000K

Buffer size

E
xe

cu
tio

n
tim

e
 (

m
s)

(b) 3D data

0.1

1.0

10.0

100.0

10K 20K 50K 100K 200K 500K 1000K

Buffer size

E
xe

cu
tio

n
 t

im
e

(m
s)

(c) 4D data

1.0

10.0

100.0

1000.0

10K 20K 50K 100K 200K 500K 1000K

Buffer size

E
xe

cu
tio

n
 t

im
e

(m
s)

Tuple update Skyline retrieval

Skyline mending Skybuffer retrieval

Figure 11: Performance analysis of major STARS operations

28

It also reveals that the SkyGrid is an efficient index structure to retrieve the set of

tuples dominated by a query tuple, as evident in the small skybuffer retrieval time. In

addition, as the buffer increases, the skybuffer retrieval time is fairly stable and

remains small.

The skyline retrieval operation does the same job on the skyline, as the skybuffer

retrieval operation does on the skybuffer. However, the skyline lacks an efficient

index structure such as the SkyGrid; therefore, the skyline retrieval operation is

expected to be more expensive than the skybuffer retrieval operation. Fortunately, due

to the smaller size of the skyline with respect to the skybuffer, the skyline retrieval

operation still gives acceptable performance, especially in comparison with the

skyline mending operation.

On the other hand, the skyline mending operation is very expensive, and grows

rapidly particularly in higher dimensional data. In a skyline mending operation, there

are repeated queries of the skyline in order to answer if tuples in the skybuffer are

exclusively dominated by the expiring tuple from the skyline. The repeated

invocations to query the skyline attribute to the expensive nature of the skyline

mending operation.

Now we have identified two operations that have potential room for improvement: the

skyline mending and skyline retrieval operations. In order to see if they are relevant to

the overall performance, we must examine the frequency of such operations as well.

Figure 12 and Figure 13 shows that as buffer size increases, the frequencies of skyline

mending and retrieval operations decrease. As the buffer size increases, the

probability of an expiring tuple to affect the skyline decreases, resulting in a

decreased frequency of skyline mending operation. In addition, when the buffer size

increases, the skyline becomes more saturated, resulting in a decreased probability for

an incoming tuple to affect the skyline. This implies a decreased frequency of skyline

29

retrieval operation.

Frequency percentages of skyline mending

0%

4%

8%

12%

10K 20K 50K 100K 200K 500K 1000K

Buffer size

F
re

qu
e

nc
y

pe
rc

e
nt

a
ge

s

2D data 3D data 4D data

Figure 12: Frequency percentages of skyline mending operation

Frequency percentages of skyline retrieval

0%

4%

8%

12%

10K 20K 50K 100K 200K 500K 1000K

Buffer size

F
re

qu
e

nc
y

pe
rc

e
nt

a
ge

s

2D data 3D data 4D data

Figure 13: Frequency percentages of skyline retrieval operation

30

Another observation is that the two identified operations are more frequent on higher

dimensional data. This is also expected, as the size of the skyline is generally larger

on higher dimensional data, and thus there is a higher probability that an incoming or

expiring tuple affects the skyline.

Given the expensiveness of the skyline mending operation, and its non-negligible

frequencies especially on higher dimensional data, it is justified to improve it in order

to improve the overall performance11. Note that even though the frequency is low in

certain cases, and the overall performance would be less affected, it is still worth to

improve the skyline mending operation, especially in time-critical systems where

every tuple update must be accomplished in a specified period of time.

On the other hand, the skyline retrieval operation is much cheaper than the skyline

mending operation. Although their frequencies of occurrences are at a similar level,

any improvement to the skyline retrieval operation would only be marginal to the

overall performance. If we were using the SkyGrid for the skyline, its improvement

would be outweighed by the overhead required to maintain such a grid structure.

5.2 Correctness of the Extension Algorithm

While we have explained the correctness of the extension algorithm for the original

STARS mapping scheme in Section 3.1, and for the minmax mapping scheme in

Section 3.2, our experimental results have also shown support for its correctness. For

the extension algorithm on the original STARS mapping scheme, we compare it with

a brute force approach on small buffers. Results show that the skylines generated by

both methods are identical. For the minmax mapping scheme, we compare it with the

STARS mapping scheme. Again, results confirm that the generated skylines are

identical.

11 We have improved it by using the minmax scheme as introduced in Section 3.2.

31

5.3 Effects of the Minmax Mapping Scheme

We have conducted experiments comparing the minmax and the STARS arbitrary

selection scheme on 3D and 4D data12. For the STARS scheme, we have run

experiments on all possible selections of the attribute pairs, and recorded

performances of the worst and best pairs.

We have synthesized domains of various parameters in Table 3. We have also fed each

set of experiments streams of different statistical distribution, namely uniform,

correlated and anti-correlated tuples [3][5]. The definition of an anti-correlated tuple

is not clear when there are more than two dimensions. In our experiments, we

randomly choose two dimensions and make them anti-correlated [5]. Additionally,

within each set of experiments, we vary the buffer size from 10K to 1000K.

Dimension Set I Set II Set III Set IV

(254, 7, 0.3, tree) (127, 7, 0.2, tree) (100, 10, 0.1, wall) (510, 8, 0.3, tree)

(189, 6, 0.6, tree) (127, 7, 0.2, tree) (100, 10, 0.2, wall) (510, 8, 0.3, tree)

(180, 20, 0.3, wall) (124, 5, 0.2, tree) (100, 10, 0.4, wall) (510, 8, 0.3, tree)

3D

4D (90, 4, 0.2, tree) (124, 5, 0.2, tree) (100, 10, 0.8, wall) (510, 8, 0.3, tree)

Rationale
randomized

parameters

different heights different inter-

connectivity ratios

same parameters

Table 3: Domains used in experiments to evaluate the minmax scheme

For each experiment, average performance13 per tuple update using minmax scheme

is compared with the best and worst performing pairs of attributes using the STARS

approach. The performance of the minmax scheme and the best pair are normalized

against that of the worst pair. All worst pairs have their performance normalized to 1

or 100%, serving as one standard unit. A summary14 of all experiments comparing the

12 For 2D data, all mappings are consistent, because there are only two attributes in a tuple.
13 Performance refers to the measure of the execution time required for a certain operation.
14 The detailed results for each experiment can be found in Appendix B: Results of Experiment Sets I, II, III, IV.

32

performance of minmax scheme to the worst and best performing pairs is presented in

Figure 14(a) and Figure 14(b) respectively.

(a) Summary of minmax versus worst performing pairs

-40%

-20%

0%

20%

40%

60%

3D uniform 3D anti-
correlated

3D
correlated

4D uniform 4D anti-
correlated

4D
correlated

P
e

rc
e

nt
a

ge
 Im

pr
ov

e

(b) Summary of minmax versus best performing pairs

-40%

-20%

0%

20%

40%

60%

3D uniform 3D anti-
correlated

3D
correlated

4D uniform 4D anti-
correlated

4D
correlated

P
e

rc
e

nt
a

ge
 Im

pr
ov

e

Most improve Least improve Average improve

Figure 14: Summary of minmax versus worst and best performing pairs

Results are also averaged across all sets of experiments, grouped by data

dimensionality, statistical distribution and buffer size, as shown in Figure 15 for 3D

33

data and in Figure 16 for 4D data.

(a) 3D uniform data average

60%

80%

100%

120%

10K 20K 50K 100K 200K 500K 1000K

Buffer size

P
e

rf
or

m
a

nc
e

(n
or

m
a

liz
e

d)

(b) 3D anti-correlated data average

60%

80%

100%

120%

10K 20K 50K 100K 200K 500K 1000K

Buffer size

P
e

rf
or

m
a

nc
e

 (
no

rm
a

liz
e

d)

(c) 3D correlated data average

60%

80%

100%

120%

10K 20K 50K 100K 200K 500K 1000K

Buffer size

P
e

rf
or

m
a

nc
e

 (
no

rm
a

liz
e

d)

Average best pair Average minmax

Figure 15: Comparison of average performance on 3D data

34

(a) 4D uniform data average

60%

80%

100%

120%

10K 20K 50K 100K 200K 500K 1000K

Buffer size

P
e

rf
or

m
a

nc
e

 (
no

rm
a

liz
ed

)

(b) 4D anti-correlated data average

60%

80%

100%

120%

10K 20K 50K 100K 200K 500K 1000K

Buffer size

P
e

rf
or

m
a

nc
e

 (
no

rm
a

liz
ed

)

(c) 4D correlated data average

60%

80%

100%

120%

10K 20K 50K 100K 200K 500K 1000K

Buffer size

P
e

rf
or

m
a

nc
e

 (
no

rm
a

liz
ed

)

Average best pair Average minmax

Figure 16: Comparison of average performance on 4D data

35

One immediate observation from the results is the minmax scheme performs better in

higher dimensional data for all statistical distributions (see Figure 14, and compare

Figure 15 with Figure 16). This is expected, as in higher dimensional data, the

original STARS scheme ignores more attributes, which could be otherwise useful in

pruning irrelevant tuples. For example, on 3D data 1 out of 3 (or 33%) attributes are

disregarded, while on 4D data 2 out of 4 (or 50%) attributes are disregarded. Also, the

skyline mending operation, which utilizes the minmax scheme, occurs more

frequently on higher dimensional data, as evident in Figure 12.

In addition to performance, we have also recorded the pruning efficiency15 of each

experiment. Results are aggregated, normalized and averaged in a similar fashion as

performance. The average pruning efficiency16, grouped by data dimensionality,

statistical distribution and buffer size, is presented in Figure 17 for 3D data and in

Figure 18 for 4D data.

From the results in Figure 17(a)(b) and Figure 18(a)(b), we observe that on uniform

and anti-correlated data, the minmax scheme generally gives better pruning efficiency

than the original STARS technique. Consequently, the minmax scheme not only

overcomes the performance gap between the best and worst pairs, but also gives a

lead over the best pair, as evident in Figure 15(a)(b) and Figure 16(a)(b). Moreover,

on anti-correlated data, the minmax scheme achieves a slightly better performance

(see Figure 14), as the skyline tends to be larger on anti-correlated data, which

increases the frequency of the skyline mending operation.

Also note that in Figure 17(a)(b), there are some irregularities in the pruning

efficiency with 3D data when the buffer is large (500K and 1000K). This irregularity

could be caused by insufficient sample, as the frequency of skyline mending

operations is low on 3D data when the buffer is large (see Figure 12).

15 It is the portion of skyline tuples that require actual dominance comparison (i.e. portion of the skyline tuples
that are not pruned). A smaller value indicates better pruning efficiency.
16 The detailed results for each experiment can be found in Appendix B: Results of Experiment Sets I, II, III, IV.

36

(a) 3D uniform data average

40%

70%

100%

130%

160%

10K 20K 50K 100K 200K 500K 1000K

Buffer size

P
ru

ni
ng

 e
ffi

ci
e

nc
y

(n
or

m
a

liz
e

d)

(b) 3D anti-correlated data average

40%

70%

100%

130%

160%

10K 20K 50K 100K 200K 500K 1000K

Buffer size

P
ru

ni
ng

 e
ffi

ci
e

nc
y

(n
or

m
a

liz
e

d)

(c) 3D correlated data average

40%

70%

100%

130%

160%

10K 20K 50K 100K 200K 500K 1000K

Buffer size

P
ru

ni
ng

 e
ffi

ci
e

nc
y

(n
or

m
a

liz
e

d)

Average best pair Average minmax

Figure 17: Comparison of average pruning efficiency on 3D data

37

(a) 4D uniform data average

40%

70%

100%

130%

160%

10K 20K 50K 100K 200K 500K 1000K

Buffer size

P
ru

ni
ng

 e
ffi

ci
e

nc
y

(n
or

m
a

liz
e

d)

(b) 4D anti-correlated data average

40%

70%

100%

130%

160%

10K 20K 50K 100K 200K 500K 1000K

Buffer size

P
ru

ni
ng

 e
ffi

ci
e

nc
y

(n
or

m
a

liz
e

d)

(c) 4D correlated data average

40%

70%

100%

130%

160%

10K 20K 50K 100K 200K 500K 1000K

Buffer size

P
ru

ni
ng

 e
ffi

ci
e

nc
y

(n
or

m
a

liz
e

d)

Average best pair Average minmax

Figure 18: Comparison of average pruning efficiency on 4D data

38

On the other hand, on correlated data, the minmax scheme fails in terms of pruning

efficiency (see Figure 17(c) and Figure 18(c)). This failure is expected due to the

nature of correlated tuples.

Say we have two independently generated tuples X and Y, each with n correlated

attributes attr-1, attr-2, …, attr-n.

If max(r(X.attr-1), …, r(X.attr-n)) > max(r(Y.attr-1), …, r(Y.attr-n)),

then the following tends to hold as well:

min(r(X.attr-1), …, r(X.attr-n)) > min(r(Y.attr-1), …, r(Y.attr-n)).

This tendency hurts the pruning efficiency, which relies on conflicting attribute pairs

to conclude that X and Y are tied and can be pruned.

However, in terms of overall performance, the minmax scheme is only marginally

inferior to the original STARS scheme when used with correlated data, especially on

higher dimensional data (see Figure 14, Figure 15(c) and Figure 16(c)). There are two

reasons for this result. Firstly, with correlated data, the skyline generated is generally

smaller when compared to that with uniform or anti-correlated data. This leads to a

lower frequency of skyline mending operations. Secondly, with correlated data, tuples

in the skybuffer tends to concentrate in a few cells of the SkyGrid, which is used to

model the skybuffer. This tendency reduces the effectiveness of the SkyGrid, resulting

in more expensive skybuffer retrieval operations. As a result, the skyline mending

operation takes up a smaller portion of the overall tuple update time, and any

difference in the pruning efficiency of the arrangement structure would contribute less

to the overall performance.

Based on the results of these experiments, we conclude that the minmax scheme is

successful, particularly when used on higher dimensional, uniform or anti-correlated

data. On correlated data, it is marginally inferior to the original STARS scheme in

terms of overall performance, especially on higher dimensional data.

39

6 Conclusion

6.1 Summary

In this project, we studied techniques for skyline computation on partially-ordered

domains in an online streaming context. We used the STARS [9] approach as a

starting point, identified its limitations and problems, and devised improvements and

solutions to address them.

To summarize this project, we have:

(1) Introduced an extension algorithm to apply STARS technique to the standard

definition of dominance in Definition 1, which works correctly with equal

attribute values;

(2) Designed the novel minmax mapping scheme, which considers all attributes

instead of the arbitrarily chosen two. The minmax mapping scheme improves

performance significantly, especially when used on high-dimensional uniform

or anti-correlated data;

(3) Discussed the possibility of pre-computing focused search as well as using the

SkyGrid structure for the skyline;

(4) Presented the challenges encountered during implementation, and our

solutions for them;

(5) Conducted extensive experiments to analyze STARS and evaluate our

proposed techniques.

6.2 Limitations and Future Work

One limitation in our work is the inability to choose a scheme based on the statistical

distribution of the data stream. Although the minmax scheme is generally better than

40

the STARS approach, it is outperformed sometimes as we see in Section 5.3 when

correlated data is used. If the distribution of the incoming stream is known beforehand,

it might be easier to address this limitation. Otherwise, it is possible to analyze a

sample of the data stream before the actual skyline computation begins.

Another limitation lies in the implementation of this project. In current

implementation, all data resides in the main memory. One notable data structure is the

geometric arrangement for the skyline. It requires an O(s2) space, which can grow out

of bound when the size s of the skyline increases. Additionally, the buffer may

become very large in certain real-life applications. Future work may consider the

storage of some less frequently used data in secondary memory.

Finally, the SkyGrid may deserve our attention in future work. It becomes less

efficient when used on correlated data.

 viii

References

[1] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. (2000).

Computational Geometry: Algorithms and Applications. Second edition.

Springer-Verlag, 2000.

[2] C.Y. Chan, P.-K. Eng, and K.-L. Tan. (2005). Stratified Computation of Skylines

with Partially-Ordered Domains. In SIGMOD, pages 203-214, 2005.

[3] P.-K. Eng and Y. Li (2008). Skyline Data Generator.

[4] JGraphT team. (2008). JGraphT 0.7.3. At http://jgrapht.sourceforge.net/.

[5] D. Kossmann, F. Ramsak, and S. Rost. (2002). Shooting Stars in the Sky: an

Online Algorithm for Skyline Queries. In VLDB, pages 275-286, 2002.

[6] Ken C.K. Lee, B. Zheng, H. Li, and W.-C. Lee. (2007). Approaching the Skyline

in Z Order. In VLDB, pages 279-290, 2007.

[7] A. Levitina. (2007). Introduction to the Design and Analysis of Algorithms.

Second edition. Pearson Education, 2007.

[8] D. Papadias, Y. Tao, G. Fu, and B. Seeger. (2003). An Optimal and Progressive

Algorithm for Skyline Queries. In SIGMOD, pages 467-478, 2003.

[9] N. Sarkas, G. Das, N. Koudas, and Anthony K.H. Tung. (2008). Categorical

Skylines for Streaming Data. In SIGMOD, pages 239-250, 2008.

 ix

Appendix A: Notations Used in the Report

We have tabulated in Table 4 a list of notations that are frequently used in this report.

Some standard or widely used notations are not included.

Notation Meaning

DAG Directed acyclic graph, a directed graph without cycles.

STARS Streaming Arrangement Skyline algorithm.

r(v),

or topological

sorting order of

v

The integer indicating vertex v’s position in a specific topological sort of the

DAG containing v. Sometimes, we also use v as an attribute value in a

partially-ordered domain which corresponds to a vertex in the DAG that

represents the domain.

T.v The value of attribute v in tuple T.

T.a The value of the first arbitrarily selected attribute in tuple T, used in the STARS

technique.

T.b The value of the second arbitrarily selected attribute in tuple T, used in the

STARS technique.

l.A Gradient of the line l in the Cartesian plane.

l.B Negative of the y-intercept of the line l in the Cartesian plane.

max(a1, …, an) The maximum value among ai, where i = 1, 2, …, n.

min(a1, …, an) The minimum value among ai, where i = 1, 2, …, n.

nD n-dimensional, where n∈N, the set of natural numbers.

Table 4: Notations used in this report

 x

Appendix B: Results of Experiment Sets I, II, III, IV

Detailed results of experiment sets (as designed in Table 3) are tabulated in this

appendix.

Table 5, Table 6 and Table 7 contain raw results for 3D uniform, anti-correlated and

correlated data respectively. 3D data tuples have three attributes numbered 0 through

2, and an attribute selection is a pair of integers indicating the attribute combination

selected. There are a total of three possible attribute selections, namely (0, 1), (0, 2)

and (1, 2).

Similarly Table 8, Table 9 and Table 10 contain raw results for 4D uniform,

anti-correlated and correlated data respectively. 4D data tuples have four attributes

numbered 0 through 3, and there are a total of six possible attribute selections, namely

(0, 1), (0, 2), (0, 3), (1, 2), (1, 3) and (2, 3).

Finally, results derived from comparing the performance of the minmax scheme and

the best and worst pairs are presented in Table 11. Statistical indicators are given on

the performance improvement.

(The rest of this page is intentionally left blank.)

 xi

^+

Buffer Experiment Set I Set II Set III Set IV
size Attribute selection Perf.^ P.E.+ Perf. P.E. Perf. P.E. Perf. P.E.

(0, 1) 0.92 8.06% 1.36 14.08% 2.00 10.45% 0.87 8.68%
10K (0, 2) 0.82 5.62% 1.21 10.29% 1.93 10.11% 0.93 10.25%

(1, 2) 0.84 5.56% 1.22 10.05% 1.85 9.80% 0.92 10.18%
Minmax 0.85 6.27% 1.18 11.58% 1.77 9.60% 0.76 5.56%

(0, 1) 0.83 6.70% 0.94 10.70% 1.87 9.42% 0.76 6.37%
20K (0, 2) 0.76 4.21% 0.85 8.50% 1.77 8.56% 0.86 8.61%

(1, 2) 0.76 4.34% 0.84 8.00% 1.73 8.63% 0.90 8.44%
Minmax 0.76 5.01% 0.81 8.44% 1.62 8.25% 0.68 4.23%

(0, 1) 0.68 5.28% 0.70 8.80% 1.71 7.56% 0.74 5.39%
50K (0, 2) 0.64 3.52% 0.68 7.29% 1.65 7.57% 0.83 7.72%

(1, 2) 0.64 3.47% 0.66 7.38% 1.64 9.06% 0.83 7.23%
Minmax 0.65 4.69% 0.62 7.27% 1.50 7.08% 0.65 3.60%

(0, 1) 0.66 5.80% 0.57 9.29% 1.64 6.39% 0.77 6.50%
100K (0, 2) 0.62 2.75% 0.56 8.47% 1.58 6.12% 0.82 5.16%

(1, 2) 0.62 2.68% 0.54 8.49% 1.58 7.84% 0.80 4.71%
Minmax 0.62 4.46% 0.52 6.71% 1.45 5.67% 0.64 2.74%

(0, 1) 0.68 6.13% 0.62 8.33% 1.61 7.47% 0.66 4.83%
200K (0, 2) 0.64 3.14% 0.63 11.21% 1.52 6.30% 0.70 3.70%

(1, 2) 0.66 3.07% 0.61 9.15% 1.53 7.56% 0.70 3.49%
Minmax 0.64 4.28% 0.58 6.62% 1.41 4.90% 0.59 2.60%

(0, 1) 0.65 4.15% 0.61 6.26% 1.60 8.09% 0.56 4.54%
500K (0, 2) 0.63 2.82% 0.59 9.12% 1.54 7.26% 0.58 2.98%

(1, 2) 0.64 2.72% 0.58 5.78% 1.61 10.79% 0.58 3.00%
Minmax 0.64 3.36% 0.56 7.46% 1.46 4.52% 0.54 4.00%

(0, 1) 0.68 3.92% 0.55 5.46% 1.68 9.53% 0.61 2.73%
1000K (0, 2) 0.67 3.01% 0.55 7.32% 1.64 8.89% 0.62 1.75%

(1, 2) 0.67 2.78% 0.55 5.09% 1.77 13.36% 0.62 1.99%
Minmax 0.66 3.05% 0.54 3.68% 1.55 4.10% 0.58 2.32%

Table 5: Raw results for 3D uniform data

^ Perf. = Performance (ms).
+ P.E. = Pruning efficiency (%).

 xii

Buffer Experiment Set I Set II Set III Set IV
size Attribute selection Perf. P.E. Perf. P.E. Perf. P.E. Perf. P.E.

(0, 1) 0.87 9.30% 1.61 10.69% 2.08 10.86% 0.91 9.03%
10K (0, 2) 0.80 5.25% 1.64 11.75% 2.02 9.95% 0.97 10.34%

(1, 2) 0.76 5.42% 1.61 11.64% 1.96 9.84% 0.95 10.51%
Minmax 0.80 6.39% 1.49 11.21% 1.83 9.71% 0.78 5.65%

(0, 1) 0.78 7.63% 1.26 9.14% 1.92 9.62% 0.87 6.87%
20K (0, 2) 0.73 4.40% 1.22 8.71% 1.85 8.72% 0.96 8.98%

(1, 2) 0.70 4.43% 1.22 8.66% 1.81 8.40% 0.94 8.89%
Minmax 0.71 5.36% 1.17 9.48% 1.69 8.78% 0.74 4.30%

(0, 1) 0.82 5.50% 0.92 7.53% 1.69 7.71% 0.64 5.51%
50K (0, 2) 0.79 3.29% 0.90 7.02% 1.62 7.50% 0.67 5.81%

(1, 2) 0.78 3.48% 0.89 6.44% 1.58 7.03% 0.66 6.12%
Minmax 0.75 3.72% 0.83 6.69% 1.48 6.81% 0.54 2.61%

(0, 1) 0.79 5.21% 0.91 6.91% 1.63 6.26% 0.65 5.54%
100K (0, 2) 0.70 2.71% 0.88 5.88% 1.56 5.91% 0.70 6.45%

(1, 2) 0.72 3.01% 0.87 5.63% 1.56 6.35% 0.69 6.32%
Minmax 0.72 3.55% 0.82 5.71% 1.42 5.12% 0.54 2.14%

(0, 1) 0.77 4.57% 0.79 5.18% 1.60 5.79% 0.62 3.54%
200K (0, 2) 0.71 2.14% 0.79 4.96% 1.55 5.85% 0.66 3.74%

(1, 2) 0.74 2.28% 0.78 4.69% 1.58 6.98% 0.66 4.05%
Minmax 0.72 2.99% 0.73 4.04% 1.42 4.29% 0.56 1.51%

(0, 1) 0.76 3.25% 0.65 5.85% 1.56 7.32% 0.71 2.51%
500K (0, 2) 0.74 2.33% 0.65 4.42% 1.53 7.51% 0.74 3.11%

(1, 2) 0.72 2.40% 0.65 4.54% 1.56 9.19% 0.75 3.55%
Minmax 0.71 3.80% 0.62 5.20% 1.41 4.54% 0.65 1.50%

(0, 1) 0.70 4.52% 0.61 7.44% 1.65 10.05% 0.65 2.63%
1000K (0, 2) 0.68 1.70% 0.60 3.09% 1.61 8.36% 0.71 3.84%

(1, 2) 0.66 1.24% 0.59 4.89% 1.69 10.41% 0.71 4.29%
Minmax 0.64 6.59% 0.57 11.19% 1.47 3.85% 0.61 1.37%

Table 6: Raw results for 3D anti-correlated data

 xiii

Buffer Experiment Set I Set II Set III Set IV
size Attribute selection Perf. P.E. Perf. P.E. Perf. P.E. Perf. P.E.

(0, 1) 1.67 6.91% 1.23 32.48% 3.26 12.38% 1.06 12.98%
10K (0, 2) 1.60 6.85% 1.23 27.58% 3.23 12.24% 1.07 11.89%

(1, 2) 1.60 6.75% 1.21 21.87% 3.19 9.47% 1.07 11.04%
Minmax 1.63 8.86% 1.25 31.08% 3.23 12.36% 1.08 11.59%

(0, 1) 1.67 5.86% 1.18 22.22% 3.72 11.53% 1.07 18.97%
20K (0, 2) 1.65 6.66% 1.15 24.79% 3.84 11.03% 1.07 15.86%

(1, 2) 1.61 6.26% 1.16 23.62% 3.75 7.66% 1.06 12.31%
Minmax 1.65 8.54% 1.21 25.58% 3.83 11.52% 1.08 15.34%

(0, 1) 1.85 5.37% 1.10 21.74% 5.84 9.75% 1.08 17.96%
50K (0, 2) 1.88 5.15% 1.13 26.45% 5.84 8.83% 1.07 14.68%

(1, 2) 1.85 5.28% 1.14 24.21% 5.55 6.12% 1.07 9.96%
Minmax 1.94 8.94% 1.15 19.71% 6.03 11.14% 1.08 16.93%

(0, 1) 2.14 4.96% 1.20 22.61% 9.14 9.71% 1.04 12.92%
100K (0, 2) 2.18 4.97% 1.24 27.99% 8.92 8.39% 1.03 10.24%

(1, 2) 2.14 4.96% 1.27 26.03% 8.47 5.55% 1.03 8.06%
Minmax 2.29 9.00% 1.31 22.07% 9.64 13.43% 1.04 14.09%

(0, 1) 2.44 3.61% 1.32 19.03% 15.38 10.49% 1.12 11.52%
200K (0, 2) 2.50 3.81% 1.39 28.58% 14.86 8.45% 1.12 10.45%

(1, 2) 2.52 3.41% 1.44 26.97% 13.62 4.51% 1.13 8.72%
Minmax 2.77 8.28% 1.50 16.99% 16.69 13.69% 1.14 12.67%

(0, 1) 3.22 4.71% 1.59 17.90% 32.98 6.88% 1.17 20.74%
500K (0, 2) 3.43 7.08% 1.67 17.94% 32.58 6.01% 1.15 11.08%

(1, 2) 3.37 5.86% 1.81 11.11% 30.97 4.33% 1.14 5.94%
Minmax 3.90 10.30% 2.01 16.70% 39.33 12.42% 1.20 22.13%

(0, 1) 4.79 5.64% 1.48 9.47% 62.27 6.71% 1.17 1.50%
1000K (0, 2) 5.01 7.51% 1.59 6.64% 60.74 6.39% 1.17 5.06%

(1, 2) 4.98 6.35% 1.71 4.28% 57.81 4.65% 1.16 6.84%
Minmax 6.08 12.30% 1.73 4.93% 76.23 13.32% 1.21 11.92%

Table 7: Raw results for 3D correlated data

 xiv

Buffer Experiment Set I Set II Set III Set IV
size Attribute selection Perf. P.E. Perf. P.E. Perf. P.E. Perf. P.E.

(0, 1) 8.18 12.75% 19.55 22.27% 19.41 12.20% 6.33 14.85%
(0, 2) 8.65 16.15% 18.70 21.88% 19.36 12.60% 6.39 14.85%
(0, 3) 7.88 10.65% 18.34 21.36% 19.32 12.58% 6.36 15.40%

10K (1, 2) 8.69 16.52% 18.38 21.63% 19.23 11.92% 6.29 14.55%
(1, 3) 7.76 10.75% 18.69 21.58% 19.14 11.88% 6.31 15.02%
(2, 3) 7.83 10.70% 18.30 21.90% 19.07 11.91% 6.25 14.74%

minmax 7.66 10.70% 13.42 18.37% 17.75 9.71% 5.30 6.25%
(0, 1) 8.51 10.71% 23.86 18.32% 18.56 10.44% 6.98 14.92%
(0, 2) 9.23 13.48% 22.92 17.88% 18.56 10.19% 6.83 12.68%
(0, 3) 8.14 8.49% 22.99 18.50% 18.50 10.49% 6.71 12.74%

20K (1, 2) 9.03 13.94% 22.64 17.59% 17.93 9.62% 6.73 12.35%
(1, 3) 7.85 8.84% 22.65 18.39% 18.41 9.75% 6.61 12.21%
(2, 3) 8.14 8.83% 22.69 18.63% 18.05 9.43% 6.61 12.46%

minmax 7.77 9.15% 15.33 15.62% 16.72 7.85% 5.50 5.94%
(0, 1) 8.50 6.92% 19.11 13.41% 17.14 6.87% 8.21 10.77%
(0, 2) 9.79 9.41% 17.81 11.98% 17.08 7.00% 7.97 9.24%
(0, 3) 8.07 5.22% 17.51 12.14% 17.05 6.89% 8.05 10.23%

50K (1, 2) 9.24 9.76% 18.26 12.06% 17.04 6.78% 7.52 9.24%
(1, 3) 7.67 5.87% 17.56 11.85% 16.72 6.54% 7.72 9.79%
(2, 3) 7.79 5.38% 17.10 11.47% 16.52 6.41% 7.74 9.93%

minmax 7.64 6.21% 12.18 10.76% 15.18 5.02% 6.08 4.69%
(0, 1) 8.60 5.24% 13.88 8.92% 17.39 6.39% 9.32 9.03%
(0, 2) 10.35 8.10% 13.02 8.41% 17.01 6.50% 9.06 8.19%
(0, 3) 8.33 4.65% 12.69 8.26% 17.04 6.56% 8.93 7.91%

100K (1, 2) 10.00 8.83% 12.93 8.17% 16.72 6.43% 8.85 8.03%
(1, 3) 7.87 5.22% 12.69 8.09% 16.70 6.29% 8.81 7.55%
(2, 3) 8.14 4.62% 12.11 7.77% 16.45 6.18% 8.71 7.95%

minmax 7.73 5.70% 9.42 7.04% 14.87 4.84% 6.66 4.18%
(0, 1) 8.29 4.74% 12.63 6.45% 16.35 5.42% 9.81 6.71%
(0, 2) 10.08 7.19% 11.41 5.16% 15.73 5.68% 9.41 6.00%
(0, 3) 7.78 3.95% 11.36 5.93% 15.30 5.01% 9.38 6.05%

200K (1, 2) 9.72 8.09% 11.18 5.29% 15.58 5.84% 9.59 6.09%
(1, 3) 7.46 4.71% 11.50 5.90% 15.49 5.37% 9.62 6.09%
(2, 3) 7.76 4.01% 11.39 5.76% 15.22 5.17% 9.49 6.19%

minmax 7.26 4.84% 8.51 5.24% 14.32 4.01% 6.58 3.30%
(0, 1) 8.04 2.74% 10.97 4.00% 15.85 3.90% 11.83 4.49%
(0, 2) 9.97 4.38% 9.35 3.05% 15.75 4.38% 12.50 4.63%
(0, 3) 7.92 2.19% 9.46 3.62% 15.09 4.13% 12.60 4.52%

500K (1, 2) 9.56 5.29% 9.31 3.01% 15.43 4.61% 11.66 4.60%
(1, 3) 7.39 2.91% 9.38 3.55% 15.22 4.77% 11.73 4.32%
(2, 3) 7.81 2.31% 9.34 3.57% 14.95 4.87% 13.23 4.67%

minmax 6.98 2.98% 7.55 3.49% 14.01 3.02% 8.02 2.50%
(0, 1) 8.14 2.23% 8.07 3.60% 15.36 3.14% 10.63 4.40%
(0, 2) 9.49 3.46% 7.45 2.42% 14.77 3.44% 10.05 3.10%
(0, 3) 8.18 1.93% 7.42 2.91% 14.95 3.14% 10.56 3.52%

1000K (1, 2) 9.24 4.75% 7.50 2.50% 15.06 3.79% 10.25 3.12%
(1, 3) 7.87 3.10% 7.23 2.77% 14.87 3.70% 10.44 3.42%
(2, 3) 7.83 1.99% 7.31 2.93% 14.85 4.27% 10.04 3.58%

minmax 7.13 2.41% 6.66 2.66% 13.88 2.11% 7.91 1.98%

Table 8: Raw results for 4D uniform data

 xv

Buffer Experiment Set I Set II Set III Set IV
size Attribute selection Perf. P.E. Perf. P.E. Perf. P.E. Perf. P.E.

(0, 1) 10.66 11.67% 20.97 23.09% 19.64 12.75% 9.10 17.94%
(0, 2) 11.22 14.26% 20.17 21.54% 19.47 12.35% 9.03 17.45%
(0, 3) 10.18 9.45% 20.16 21.32% 19.33 12.36% 9.19 18.05%

10K (1, 2) 11.14 14.85% 20.25 22.55% 19.02 11.60% 8.81 16.33%
(1, 3) 9.97 9.87% 19.95 22.03% 19.08 11.74% 9.02 17.43%
(2, 3) 10.16 10.27% 20.00 20.98% 18.97 11.46% 9.11 17.68%

minmax 9.95 11.38% 14.42 18.10% 17.75 10.10% 7.54 9.02%
(0, 1) 9.61 7.99% 21.20 18.77% 18.55 10.12% 11.28 15.42%
(0, 2) 10.32 10.64% 19.95 17.15% 18.31 9.82% 11.95 17.07%
(0, 3) 9.21 6.40% 19.68 16.39% 18.25 9.56% 11.38 14.73%

20K (1, 2) 10.17 11.34% 19.79 18.17% 18.03 9.40% 11.33 14.97%
(1, 3) 8.89 6.85% 19.07 16.76% 18.11 9.10% 11.29 14.55%
(2, 3) 9.30 6.82% 19.12 16.06% 17.83 8.95% 11.16 13.97%

minmax 8.72 7.33% 13.29 14.39% 16.52 7.49% 8.93 8.11%
(0, 1) 9.27 5.22% 23.18 13.67% 16.98 7.00% 11.12 12.35%
(0, 2) 10.56 7.87% 20.82 11.28% 16.74 6.86% 11.37 12.57%
(0, 3) 8.98 4.28% 20.85 11.41% 16.57 6.26% 10.45 10.07%

50K (1, 2) 10.15 8.22% 20.27 12.15% 16.54 6.57% 10.66 10.98%
(1, 3) 8.32 4.83% 19.88 11.68% 16.24 6.10% 10.55 10.22%
(2, 3) 8.62 4.66% 19.00 11.12% 16.12 5.97% 10.37 10.01%

minmax 7.87 4.75% 13.37 10.11% 14.05 5.06% 8.25 6.30%
(0, 1) 8.46 3.84% 19.61 10.72% 16.39 6.32% 11.82 8.12%
(0, 2) 10.23 5.95% 15.64 7.73% 16.03 5.93% 11.93 7.91%
(0, 3) 8.10 3.20% 16.61 8.12% 15.94 5.92% 11.42 7.17%

100K (1, 2) 9.50 6.53% 15.86 8.27% 15.72 5.76% 11.50 7.41%
(1, 3) 7.75 3.75% 15.57 8.57% 15.68 5.65% 11.22 6.77%
(2, 3) 8.18 3.64% 14.33 8.18% 15.47 5.82% 11.21 7.00%

minmax 7.25 3.72% 10.92 8.11% 14.31 4.51% 8.20 3.80%
(0, 1) 8.10 2.78% 13.80 7.25% 16.05 5.53% 9.67 6.37%
(0, 2) 10.07 4.80% 11.74 5.10% 15.68 5.58% 9.86 6.40%
(0, 3) 7.91 2.14% 13.76 5.03% 15.43 5.02% 9.47 5.60%

200K (1, 2) 9.30 4.85% 11.53 5.46% 15.46 5.15% 9.83 6.11%
(1, 3) 7.69 2.58% 11.56 5.03% 15.23 4.79% 9.38 5.58%
(2, 3) 7.72 2.41% 10.81 4.91% 14.96 4.88% 9.31 5.53%

minmax 7.06 2.79% 8.85 5.41% 14.09 3.71% 6.28 2.46%
(0, 1) 8.42 2.26% 12.74 4.79% 15.52 4.27% 8.73 4.07%
(0, 2) 9.71 3.49% 10.82 3.12% 15.29 4.34% 8.71 4.31%
(0, 3) 7.83 1.62% 11.53 3.37% 15.13 4.08% 8.78 4.03%

500K (1, 2) 9.05 3.65% 10.58 3.30% 15.08 4.26% 8.67 4.24%
(1, 3) 7.24 2.05% 11.03 3.45% 14.94 3.96% 8.69 4.03%
(2, 3) 7.56 1.81% 10.44 3.48% 14.70 4.60% 8.68 4.03%

minmax 6.81 2.31% 8.77 3.68% 13.78 2.81% 5.87 1.29%
(0, 1) 7.65 1.60% 10.07 3.71% 16.37 4.00% 9.02 3.17%
(0, 2) 8.61 2.64% 8.88 2.43% 15.18 4.02% 8.87 2.99%
(0, 3) 7.62 1.04% 9.03 2.32% 15.18 3.88% 8.80 2.60%

1000K (1, 2) 8.59 2.88% 8.69 2.62% 15.11 3.67% 8.90 2.87%
(1, 3) 7.24 1.38% 8.89 2.42% 14.87 3.62% 8.81 2.60%
(2, 3) 7.40 1.20% 8.64 2.40% 14.71 4.08% 8.67 2.66%

minmax 6.67 1.72% 7.98 2.70% 13.85 2.38% 6.31 1.02%

Table 9: Raw results for 4D anti-correlated data

 xvi

Buffer Experiment Set I Set II Set III Set IV
size Attribute selection Perf. P.E. Perf. P.E. Perf. P.E. Perf. P.E.

(0, 1) 29.65 7.60% 24.68 16.47% 48.14 11.09% 18.66 9.95%
(0, 2) 29.81 6.98% 24.47 14.86% 47.47 11.47% 18.60 10.08%
(0, 3) 29.67 6.55% 24.34 17.01% 48.06 11.11% 18.68 10.41%

10K (1, 2) 29.60 7.56% 24.41 14.70% 47.18 10.15% 18.62 10.57%
(1, 3) 29.53 7.96% 24.44 17.01% 47.99 9.56% 18.63 10.57%
(2, 3) 29.74 6.67% 24.34 17.76% 48.23 9.24% 18.62 10.74%

minmax 29.62 7.65% 24.55 17.58% 48.06 11.43% 18.66 10.26%
(0, 1) 29.28 7.63% 23.55 15.31% 46.10 10.75% 18.53 10.33%
(0, 2) 30.15 6.65% 23.52 14.14% 47.22 11.15% 18.45 9.55%
(0, 3) 29.37 6.24% 23.18 15.74% 46.22 10.90% 18.35 10.57%

20K (1, 2) 29.27 7.35% 23.59 14.07% 47.33 8.85% 18.42 9.72%
(1, 3) 29.67 8.01% 23.60 15.41% 46.25 8.94% 18.35 10.55%
(2, 3) 29.33 6.31% 23.51 16.20% 46.86 8.11% 18.38 11.13%

minmax 29.33 8.08% 23.46 18.45% 46.26 10.00% 18.34 9.83%
(0, 1) 28.57 7.92% 22.27 14.60% 47.70 9.41% 17.93 11.72%
(0, 2) 28.66 6.27% 22.36 12.91% 47.81 10.46% 17.86 10.86%
(0, 3) 28.39 5.59% 22.30 13.95% 48.62 10.37% 17.92 11.58%

50K (1, 2) 28.41 6.43% 22.16 12.46% 48.67 7.05% 17.86 11.05%
(1, 3) 28.82 7.01% 21.66 12.54% 48.58 7.94% 17.95 11.53%
(2, 3) 28.46 5.26% 22.23 14.37% 47.19 7.22% 17.92 12.31%

minmax 28.60 8.61% 22.44 17.52% 47.90 9.20% 17.85 11.62%
(0, 1) 28.71 7.36% 22.78 15.01% 48.61 8.63% 17.89 10.73%
(0, 2) 28.75 6.21% 22.59 13.29% 48.86 9.00% 17.91 10.08%
(0, 3) 28.62 5.67% 22.67 14.41% 49.02 9.68% 17.95 11.24%

100K (1, 2) 29.03 7.17% 22.54 11.84% 49.18 6.05% 18.00 10.85%
(1, 3) 28.82 8.34% 22.59 12.70% 49.70 7.50% 18.03 11.87%
(2, 3) 28.65 4.82% 22.63 14.51% 48.98 5.84% 18.01 12.48%

minmax 28.77 8.37% 22.93 19.29% 49.50 7.98% 17.98 12.63%
(0, 1) 28.45 5.90% 21.63 15.51% 54.35 7.23% 17.09 10.87%
(0, 2) 28.79 5.80% 21.58 13.24% 55.09 8.53% 17.10 10.10%
(0, 3) 28.68 4.48% 21.64 14.73% 55.90 9.64% 17.16 11.55%

200K (1, 2) 29.04 9.33% 21.54 11.40% 54.66 5.43% 17.10 9.48%
(1, 3) 28.79 7.39% 21.54 12.31% 53.96 6.51% 17.15 10.22%
(2, 3) 28.42 3.83% 21.78 14.52% 53.33 4.60% 17.10 12.55%

minmax 29.13 7.07% 23.01 19.35% 55.56 7.80% 17.13 14.18%
(0, 1) 29.51 5.74% 22.01 16.53% 71.09 8.24% 17.01 12.43%
(0, 2) 29.32 6.43% 21.71 11.35% 69.64 7.58% 17.04 9.18%
(0, 3) 28.88 5.31% 21.84 15.41% 71.28 10.53% 17.31 11.04%

500K (1, 2) 30.01 9.94% 21.69 9.38% 67.22 4.46% 17.05 7.59%
(1, 3) 30.06 8.82% 21.77 13.08% 69.73 6.80% 17.07 10.34%
(2, 3) 28.74 5.01% 21.64 15.55% 68.07 5.73% 17.05 12.28%

minmax 29.54 7.57% 23.81 22.10% 72.58 8.37% 17.02 14.14%
(0, 1) 31.23 7.74% 23.77 14.28% 99.10 6.00% 16.75 8.08%
(0, 2) 31.07 6.24% 22.74 8.08% 99.47 6.58% 16.74 7.84%
(0, 3) 30.92 5.50% 23.31 11.52% 101.61 8.53% 16.84 9.67%

1000K (1, 2) 32.66 9.50% 23.50 6.74% 97.76 3.34% 16.79 8.26%
(1, 3) 32.68 9.47% 23.86 11.45% 97.43 4.57% 16.74 10.07%
(2, 3) 31.07 4.80% 23.72 13.64% 95.05 4.06% 16.97 10.63%

minmax 32.60 10.61% 27.63 23.83% 103.04 7.19% 16.80 13.11%

Table 10: Raw results for 4D correlated data

 xvii

(a) Performance improvement of minmax against worst pair

Distribution Uniform Anti-correlated Correlated

 Dimension
Improve

3D 4D 3D 4D 3D 4D

Average 10.73% 22.97% 11.48% 24.91% -5.02% -0.57%
Maximum 24.44% 39.38% 22.92% 44.31% 2.40% 2.72%
3rd quartile 13.27% 31.23% 13.10% 31.25% -0.88% 0.92%
Median 10.38% 25.09% 9.83% 26.46% -2.86% 0.47%
1st quartile 6.79% 13.97% 8.42% 15.47% -6.23% -0.32%
Minimum 1.54% 8.55% 4.62% 9.62% -22.42% -15.80%

(b) Performance improvement of minmax against best pair

Distribution Uniform Anti-correlated Correlated

 Dimension
Improve

3D 4D 3D 4D 3D 4D

Average 4.91% 13.89% 6.26% 14.82% -10.08% -3.06%
Maximum 16.88% 32.29% 16.92% 32.55% -0.93% 0.06%
3rd quartile 7.49% 22.54% 8.51% 24.56% -2.33% -0.34%
Median 4.62% 9.27% 6.52% 10.52% -5.24% -1.36%
1st quartile 1.74% 6.00% 3.74% 6.39% -14.58% -3.75%
Minimum -3.66% 0.39% -5.26% 0.20% -31.86% -21.50%

Table 11: Performance improvement of minmax against best and worst pairs

 xviii

Appendix C: Program Listing

The program source code is organized by Java packages. We list here a directory of

source code files, together with their descriptions.

(default package)

♦ Stars.java contains main class, an entry point to STARS

(datastruct)

♦ Dag.java implements directed acyclic graph

♦ Dimensionality.java handles data dimensionality

♦ IntList.java a list structure for holding intergers

♦ SkyBuffer.java implements skybuffer

♦ SkyGrid.java implements SkyGrid

♦ Skyline.java implements skyline

♦ SkylineMaintenance.java skyline computation framework

♦ Tuple.java data structure for tuple

♦ TupleList.java a list structure for holding tuples

♦ ValueList.java a list structure for holding attribute values

(geometry)

♦ Arrangement.java implements geometric arrangment

♦ Face.java data structure for face in arrangment

♦ HalfEdge.java data structure for half edge in arrangment

♦ Line.java data structure for line in Cartesian plane

♦ LineList.java a list structure for holding lines

♦ Vertex.java data structure for vertex in arrangment

(generator)

♦ DagGenerator.java a generator of attribute domain

♦ StreamGenerator.java a generator of tuple stream

