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Abstract 

Recently there is much research interest in skyline computation. In this project, we 

focus on skyline query over partially-ordered attribute domains in an online streaming 

context. We study an existing work, identify problems and limitations of it, and 

realize techniques to address them. In particular, we introduce an extension algorithm 

to adapt the existing work for a more general dominance definition that can work 

correctly without making assumptions about the attributes. In addition, we develop a 

new scheme to map tuples into lines in the Cartesian plane, which considers all 

attributes instead of the arbitrarily chosen two. The new mapping scheme improves 

pruning efficiency of the geometric arrangement. Finally, we conduct experiments to 

analyze the existing work and evaluate our proposed techniques. 
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1 Introduction 

Recently, skyline queries have been under much research interest. A skyline query 

returns a set of tuples (the so called “skyline”) that are considered dominant among all 

available data tuples. Let us first review some definitions [5] for ease of further 

discussion. 

 

Definition 1. A tuple X dominates a tuple Y iff X is better than or equal to Y in every 

attribute, and is better in at least one attribute. Two tuples are tied if neither of them 

dominates the other. 

Definition 2. The skyline of a set of data tuples consists of all tuples that are not 

dominated by any other tuples in the set. A skyline tuple is said to be dominant. 

 

Clearly, the skyline is highly sought by users because of its dominant nature [5]. It is 

especially valuable in the presence of a large amount of data, in extracting relevant 

information that might interest users.  

 

Using the common example in the literature, consider the scenario where a tourist is 

looking for a hotel. Suppose the tourist prefers to stay at a cheap hotel that is close to 

the city. A hotel X is considered to dominate another hotel Y if and only if:  

(1) X.price ≤ Y.price; and 

(2) X.distance ≤ Y.distance; and  

(3) at least one of the two relations in (1) and (2) is strict. 

The skyline of hotels consists of all hotels that are not dominated by any other, which 

are desired by the tourist. 

 

While much work focuses on skyline queries with totally-ordered attribute domains 
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[5][6][8], some deals with partially-ordered domains instead [2][9]. Partially-ordered 

domains have wider applicability as in the representations of hierarchies, preferences 

and interval data [2]. Attribute values on a partially-ordered domain may be 

comparable or incomparable, and their relations are commonly represented as directed 

acyclic graphs (DAG). Each attribute value is mapped to a vertex, and a directed edge 

is used to indicate the relation between two comparable values whose relation cannot 

be inferred by transitivity [9]. 

 

Figure 1: A sample DAG representing a partially-ordered domain 

 

For example, in Figure 1, there are five possible values in a partially-ordered domain 

(a, b, c, d and e). Among those which are comparable, for example, a is better than c, 

and c is better than d, as indicated by the directed edges connecting them. a is also 

better than d, which can be inferred by the transitive property and therefore a directed 

edge from a to d is not required. If two values are incomparable, neither is better than 

the other (a and b, d and e). Additionally, if two values are said to be equal, they are 

meant to be represented by the same vertex. Using this notion, dominance and skyline 

are well defined in Definition 1 and Definition 2 for tuples with partially-ordered 

attribute domains. 

 

Skyline queries may also take place in an online or offline environment. In an online 

environment, there is a stream of incoming data tuples to the system. The skyline is 

continuously updated upon the arrival of new tuples. In an offline environment, 

however, the data is less dynamic and skylines are answered on demand instead of 

continuously computed [9]. 

 

a b 

c 

d e 
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In this project, we investigate efficient algorithms to compute skylines on 

partially-ordered domains in an online streaming data context. We examine the 

state-of-the-art algorithm Streaming Arrangement Skyline (STARS) [9], identify its 

problems and limitations, and design solutions to address them. We have made the 

following major contribution: 

 

(1) Extended STARS to work with the standard definition of dominance as 

introduced in Definition 1; 

(2) Identified the limitation of STARS in using a geometric arrangement for the 

skyline, and introduced a novel scheme “minmax” to utilize it more 

efficiently; 

(3) Conducted extensive experiments to analyze and compare STARS and our 

proposed techniques. 

 

The rest of this report is organized as follows. In Section 2 we review related work, 

with an emphasis on STARS. In Section 3 we analyze the design adopted by STARS, 

identify its problems and limitations, and devise possible solutions to address them. In 

Section 4 we address any implementation issues while in Section 5, we showcase 

experimental evaluations. Finally, Section 6 concludes the report. 
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2 Related Work 

A number of algorithms have been proposed to answer skyline queries. While earlier 

algorithms do not utilize any index structure, most of the recent ones use some index 

structure (e.g. R-tree is utilized in [5] and [8], and ZBtree in [6]). It is generally 

agreed that non-index-based algorithms are inferior to the index-based ones [2], due 

to the capability of effective pruning by the index structures. 

 

The above works of NN [5], ZBtree [6] and BBS [8] deal exclusively with totally 

ordered domains. There are also some algorithms that are able to work on 

partially-ordered domains (e.g. SDC [2] and STARS [9]). As expected, the latter is 

more complex than the former, as the latter must transform partially-ordered domains 

in a suitable way in order to utilize some index structure for effective pruning.  

 

In SDC [2], each value v in a partially-ordered domain is mapped to an interval 

fi(v)∈N × N, where N denotes the set of natural numbers, such that if fi(v) contains 

fi(v’), then v dominates v’. But the inverse is not true, thus there may be false positives 

in the skylines computed based on the transformed domain, which must be checked. 

R-tree [2] is then used as an index structure on the transformed domains to exploit the 

pruning potential. 

 

In STARS [9], each value v in a partially-ordered domain is mapped to its order r(v) in 

a specific topological sort [7] of the DAG that represents the domain.  

 

Definition 3. A topological sort of a DAG is a linear ordering of all the vertices in the 

DAG such that for any directed edge, the vertex where it starts is always listed before 

the vertex where it ends. We denote the integer indicating vertex v’s position in a 

specific topological sort by r(v). 
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According to Definition 3, there could be more than one valid topological sort for a 

DAG. However, for the purpose of STARS, any specific topological sort suffices [9]. 

Additionally, by the definition of a topological sort, if r(v) ≥ r(v’), then v cannot be 

better than v’ (or equivalently, v cannot dominate v’). Similarly, its inverse is not true. 

In this case, the actual and more expensive dominance comparison must be invoked to 

determine the dominance relation. The geometric arrangement [9] is then used in 

STARS on the transformed domains. 

 

As our project focuses on skyline computation on partially-ordered domains in an 

online streaming data context, the approach by STARS is more appropriate. Although 

the SDC approach is efficient in an offline environment on partially-ordered domains, 

it suffers from the increase in data dimensionality (each attribute value is mapped to 

an interval represented by two integers, effectively doubling each dimension), in 

addition to the reduced performance in maintaining and querying the buffer in a 

streaming context [9]. Therefore, for the rest of this section, we review the STARS 

algorithm which this project is based on. 

2.1 Overview of Skyline Computation in STARS 

In STARS [9], a buffer of fixed size is maintained. A sliding window model is 

assumed, which means a new incoming tuple is inserted into the buffer, while the 

oldest tuple is removed or expires from the buffer if it was already full. The skyline of 

the streaming data is computed based only on the current buffer. Following each 

incoming tuple, the skyline is updated to reflect the changes in the buffer accordingly. 

 

Furthermore, older tuples that are dominated by newer ones can never be promoted to 

the skyline because newer ones expire only after older ones. Therefore, these older 

tuples are irrelevant for the skyline computation. Only the relevant part of the buffer 

(the so called “skybuffer”) needs to be considered. 
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Algorithm  Skyline computation framework 

Input: skybuffer SB, skyline S ⊆ SB, incoming tuple in, outgoing tuple out 

  

1. if  in not dominated by S then 

2.  Insert in in S and remove any dominated tuples from S; 

 endif 

3. Insert in in SB and remove any dominated tuples from SB; 

4. if  out is in S then 

5.  Remove out from S; 

6.  Retrieve tuples in SB dominated by out; 

7.  Insert retrieved tuples that are not dominated by S into S; 

 endif 

8. Remove out from SB; 

Figure 2: Algorithm of skyline computation framework 

 

An overview of the skyline computation framework from STARS [9] is reproduced in 

Figure 2. The framework is invoked for every incoming tuple in a stream. It is 

abstract and independent of the underlying index structures. However, it reveals that 

retrieving tuples in the skybuffer that are dominated by a query tuple1 (line 3 and 6), 

and answering if a query tuple is dominated by the skyline (line 1 and 7) are two 

major operations that are performed every time the computation framework is 

invoked. To address them, STARS introduces a SkyGrid structure for the skybuffer 

and geometric arrangement structure for the skyline, which are capable of pruning 

irrelevant tuples during queries, and thus allowing the two otherwise expensive 

operations to be executed more efficiently. 

 

                                                        
1 A query tuple Q is a tuple involved in a query issued to a data structure, such as the skybuffer or skyline. A set of 
tuples satisfying certain relations to Q, or a result related to Q, is expected to be returned. 



7 

This project is based on the same framework in Figure 2, with modifications mainly 

in the sub-operations of the framework. 

2.2 Skybuffer Organization in STARS 

Skybuffer uses a SkyGrid as its underlying index structure. As discussed in Section 

2.1, the main query it needs to support is to return the set of tuples in skybuffer that 

are dominated by a query tuple. 

 

Each dimension of a data tuple is mapped to a dimension of the SkyGrid, forming a 

multi-dimensional grid. Values in a dimension are grouped, with each group (which 

may consist of one or more values) mapped to a bucket in the corresponding 

dimension of the grid. Grouping controls grid granularity without which the solution 

does not scale because the number of grid cells increases rapidly with the size of 

domains. 

 

We will use the figure from [9] to illustrate the SkyGrid, which is reproduced in 

Figure 3. In this example, the data is 2-dimensional, and its domain on each 

dimension is represented by the DAG in Figure 3(a). Given a desired grid granularity, 

grouping of values is done using a partitioning heuristic as in Figure 3(a). The 

SkyGrid based on such a grouping is shown in Figure 3(b). 

 

Figure 3: Value grouping and focused search in SkyGrid 

b 

c d e 

f g h 

a 

(a) Domain DAG (b) SkyGrid 

g,h f d,e c b a 

c 

g,h 
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b 

a 
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The partition heuristic aims to reduce the number of SkyGrid cells returned by 

focused search. Focused search is the pruning capability provided by the SkyGrid, 

which finds relevant cells that can possibly be dominated by the query cell2 where the 

query tuple would have belonged to. In Figure 3(b), the query cell is marked by a 

cross (×), and the candidate cells returned by focused search are marked by dots (•). 

The actual and more expensive dominance comparison needs to be invoked only for 

tuples in candidate cells found by focused search. All other SkyGrid cells are ignored, 

as they contain no tuple which can be dominated by the query tuple. 

2.3 Skyline Organization in STARS 

For the skyline, each tuple is mapped to a line y = r(a) · x – r(b) in the Cartesian plane, 

where a, b are two attributes of the tuple. Recall that the notation r(v) refers to the 

topological sorting order of v as introduced in Definition 3. The two attributes a and b 

are selected arbitrarily but statically before skyline computation starts. This means 

once a selection is determined, it remains bound for all tuples.  

 

The skyline is then organized as a geometric arrangement of the mapped lines in the 

Cartesian plane [9]. As discussed in Section 2.1, the main query it needs to support is 

to answer whether the any skyline tuple dominates a query tuple. 

 

STARS claims a query tuple TQ can be dominated by a skyline tuple TS only if the 

lines mapped from them intersect on the positive half of the x-axis3. It follows from 

the reasoning that if the x-coordinate of the intersecting point is negative, the two 

tuples are tied. Using basic algebra, the x-coordinate of the intersecting point is 

).().(

).().(

aTraTr

bTrbTr
x

SQ

SQ

−
−

= . 

                                                        
2 By saying a cell X can possibly dominate another cell Y, we mean it is possible for some tuples in X to dominate 
some tuples in Y. We call X the query cell, and Y a candidate cell for X. 
3 As we will see in Section 3.1, this claim is only true given the assumption in [9], which ignores the case of equal 
attribute values in dominance comparison. 
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If x < 0, then either  

r(TQ.b) > r(TS.b) and r(TQ.a) < r(TS.a), 

or    r(TQ.b) < r(TS.b) and r(TQ.a) > r(TS.a), 

which implies either 

   TQ does not dominate TS and TS does not dominate TQ 

or   TS does not dominate TQ and TQ does not dominate TS 

In either case, the two tuples are tied and can be pruned. 

 

Therefore, the geometric arrangement only needs to store the parts of lines on the 

positive half of the x-axis, and only the lines that intersected by the query line needs 

to be further evaluated. Additionally, the query is progressive, returning immediately 

if a positive result is encountered (i.e. a skyline tuple dominates the query tuple). This 

progressive process can be demonstrated by the flowchart in Figure 4. 

 

Figure 4: Flowchart for skyline arrangement query 

 

Again, we will use the figure from [9] to illustrate the geometric arrangement, which 

is reproduced in Figure 5. In this example, the skyline consists of three tuples T1, T2 

and T3 which are mapped to l1, l2 and l3 respectively. The query tuple TQ is mapped to 

lQ and is represented by the dotted line in Figure 5. 

anymore 

intersecting lines? 

yes 

no return false 

retrieve next intersecting 

line and its tuple TS 

TS dominates 

query tuple? 
yes 

return true no 

query 
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Figure 5: Geometric arrangement for the skyline 

 

Starting from the y-axis, the query progressively encounters lines intersected by the 

query line lQ, namely l3 and l2, in that order. Since lQ encounters l3 first, STARS first 

checks whether T3 dominates TQ by invoking the actual dominance comparison. If not, 

it continues and checks whether T2 dominates TQ, and so on. l1 is pruned and no actual 

dominance comparison is needed, because it does not intersect with lQ on positive half 

of the x-axis. 

 

To ensure efficient operations of the geometric arrangement, STARS makes use of the 

data structure doubly-connected-edge-list (DCEL) [1], which allows the retrieval of 

lines intersected by a query line in O(s) time, where s is the size of the skyline. 

 

Y 

X 
lQ: query line 

l1 

l3 l2 
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3 Design 

Our design is based on the STARS [9] approach introduced in Section 2. We have 

examined this approach, and identified some problems and limitations with it. In the 

following subsections, we discuss our proposed solutions: 

(1) An extension algorithm which allows STARS to work correctly with the 

standard definition of dominance introduced in Definition 1; 

(2) A novel “minmax” mapping scheme for the geometric arrangement used in the 

skyline, which has better performance; 

(3) Other minor optimizations. 

3.1 Extension Algorithm to Query the Skyline 

Sarkas et al [9] ignores the case of equal attribute values in order to simplify the 

discussion. With this assumption, their definition of dominance can be simplified as: 

 “A tuple X dominates a tuple Y iff X is better than Y in every attribute.” 

Comparing this with the standard definition in the literature as stated in Definition 1, 

the case of equal attribute values are eliminated. 

 

Although this assumption seems trivial, direct application of STARS to the standard 

definition of dominance invalidates the pruning of the skyline by the geometric 

arrangement. Recall that in STARS, the geometric arrangement only stores the parts 

of lines mapped from skyline tuples on the positive half of the x-axis. A query tuple 

TQ can be dominated by a skyline tuple TS, only if the lines mapped from them 

intersect on the positive half of the x-axis. Unfortunately, this is only valid given the 

assumption in [9], where the case of equal attribute values is ignored. 

 

The STARS approach reasons the validity of only checking lines intersecting on the 

positive half of the x-axis by proving lines intersecting on the negative half are 
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irrelevant (see Section 2.3). However, the relation of two lines that do not intersect on 

the negative half of the x-axis can have three disjoint scenarios: 

(1) They intersect on the positive half of the x-axis; 

(2) They intersect exactly on the y-axis (i.e. same y-intercept); 

(3) They are parallel (i.e. same gradient). 

The STARS approach only addresses Scenario (1), which is sufficient under their 

assumption, as the other two scenarios can be discarded if the case of equal attribute 

values is not considered. 

 

Let us now consider the case of equal attribute values. Each tuple is mapped to a line 

y = r(a) · x – r(b), where a, b are two selected attributes of the tuple. For tuples with 

equal value in attribute a, they map to parallel lines; for tuples with equal value in 

attribute b, they map to lines with same y-intercept. By Definition 1, they are still 

possible to dominate each other. Therefore, we have to consider the other two 

scenarios if we want to apply STARS to the standard definition. 

 

Falsely pruned tuples in Scenario (2) is trivial to recover. Since the lines intersect on 

the y-axis, we just need to extend the geometric arrangement to store the parts of the 

lines on the non-negative half of the x-axis, as opposed to only the positive half in the 

STARS approach. 

 

However, Scenario (3) needs some modifications to the original query algorithm. The 

original query is unable to retrieve any parallel lines. Therefore, a second auxiliary 

query is required to retrieve all lines parallel to the original query line lQ. Note that 

doing two queries instead of one does not change the efficiency class of the algorithm.  

 

The problem now lies in choosing a suitable auxiliary query. Apparently the auxiliary 

query line lA must have a different gradient as lQ in order to intersect lines parallel to 

lQ. Furthermore, its gradient has to be larger, not only different. A query tuple TQ can 

be dominated by a skyline tuple TS when their line representations are parallel, only if 
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r(TS.b) ≤ r(TQ.b), i.e. only by the parallel lines above the query line lQ
4. In order for lA 

to intersect with all lines parallel to and above lQ, lA must have a gradient larger than 

lQ, and have the same y-intercept as lQ.  

 

As illustrated in Figure 6, the skyline consists of four tuples Ti, which map to four 

parallel lines l i respectively, where i = 1, 2, 3, 4. The query tuple TQ maps to the line 

lQ. Only T3 and T4 can possibly dominate TQ, because their lines l3 and l4 are above lQ. 

T1 and T2 can be pruned immediately because of their neither better nor equal values 

in attribute b. An auxiliary query line lA with a larger gradient and the same y-intercept 

as the original query line lQ would suffice. 

 

 

Figure 6: Auxiliary query line 

 

Furthermore, in the process of an auxiliary query, any non-parallel lines are irrelevant 

and must be discarded. Therefore, we want lA to intersect as few non-parallel lines as 

possible, which implies its gradient should be as small as possible. If the gradient is 

represented by integer, we could set lA’s gradient to r(TQ.a) + 1, where r(TQ.a) is the 

gradient of lQ. 

 

                                                        
4 From Definition 3, a smaller topological sorting order implies a possible better value. In addition, y-intercept of a 
line is -r(b), and thus a better value (with a smaller r(b)) corresponds to a higher line. 

Y 

X 

lQ: original query line 

l1 

l2 

l3 

l4 

lA: auxiliary query line 
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Based on our analysis, we now suggest an extension algorithm for the skyline 

arrangement query, shown in Figure 7. In line 1 and 4, the Query calls invoke the 

query function of the skyline arrangement in the original STARS approach. In essence, 

the first Query call (line 1) is the original query, making use of the original query line; 

while the second Query call (line 4) is the auxiliary query, making use of the auxiliary 

query line discussed earlier. If the original query returns false, it could be a mistake. 

In this case, the auxiliary query is issued, trying to identify and check any incorrectly 

pruned skyline tuple that may still be able to dominate the query tuple. 

 

Algorithm  Extension to skyline arrangement query 

Input: skyline s, query line l mapped from the query tuple 

Output: whether s dominates the query tuple (true or false) 

  

1. if  Query(s, l) then    /* original query */ 

2.  return  true; 

 else 

3.  Add 1 to the gradient of l; 

4.  return  Query(s, l);   /* auxiliary query */ 

 endif 

Figure 7: Extension algorithm of skyline arrangement query 

3.2 The Minmax Mapping Scheme 

Another observation of the skyline computation framework in Figure 2, is that the 

so-called “skyline mending” operation (line 7) is very expensive. The mending 

operation identifies all tuples in the skybuffer that are exclusively dominated by the 

expiring tuple from the skyline (i.e. not dominated by any other tuple in the skyline), 

which are then promoted to the skyline. For each tuple in the skybuffer that is 

dominated by the expiring tuple from the skyline, it needs a query to the skyline to 
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determine the exclusiveness. Therefore, the operation that checks whether a query 

tuple is dominated by the skyline is invoked repeatedly in a single skyline mending 

operation, which makes it very expensive5. 

 

Therefore, improve the pruning efficiency of the geometric arrangement is crucial in 

improving the overall performance. Currently, the pruning capability of the geometric 

arrangement is provided by ignoring lines that do not intersect with the query line. 

However, how the mapping from tuples to lines affects pruning efficiency is not 

discussed in the STARS approach [9]. 

 

In the STARS approach, a tuple is mapped to a line y = r(a) · x – r(b), where a, b are 

two arbitrarily and statically selected attributes of the tuple (see Section 2.3). There 

are two problems associated with this mapping scheme on data with more than two 

dimensions. 

 

Firstly, it fails to specify how to select attributes. There could be a significant 

performance gap between the best and worst pair of selected attributes6. The arbitrary 

and static selection scheme ignores other information available, such as the 

characteristics of the attribute domains. If we make use of this information to make a 

more informed selection, we may overcome such a performance gap between the best 

and worst pair. Unfortunately, while there are some trends associated with certain 

parameters of the attribute domains, we fail to find a clear cut between best and worst 

pairs in other cases.  

 

Secondly, this approach prunes tuples based on only two of their attributes. In higher 

dimensional data tuples, there exists other attributes whose values are simply 

disregarded during the pruning process. This hurts the pruning efficiency, as values of 

the other non-selected attributes can possibly prune off more tuples, if they were also 
                                                        
5 See the performance analysis of major STARS operations in Section 5.1, Figure 11. 
6 There is indeed a significant performance gap especially on higher dimensional uniform or anti-correlated data, 
as we will see in Section 5.3, Figure 16(a)(b). 
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considered during the prune. A mapping scheme that considers all of the attributes is 

conceivably better because it utilizes more available information. We expect such a 

scheme to perform even better as the data dimensionality increases, as in higher 

dimensional data, more information is ignored in the STARS approach. Also, in such 

a scheme, we do not have to devise an attributes selection algorithm, as all attributes 

are considered. 

 

For reasons stated above, we define a new mapping scheme “minmax” that makes use 

of all attributes. An n-dimensional tuple X with attributes attr-1, attr-2, …, attr-n, is 

mapped to a line y = A · x - B, where 

    A = max(r(X.attr-1), r(X.attr-2), …, r(X.attr-n)) 

and    B = min(r(X.attr-1), r(X.attr-2), …, r(X.attr-n)). 

 

The maximal and minimal topological sorting orders of attribute values for each tuple 

are computed only once on tuple creation, as show in Figure 8. 

 

Algorithm  Minmax mapping scheme 

Input: tuple t 

Output: the maximal and minimal topological sorting order pair (max_t, min_t). 

  

1. Set max_t to -∞, and min_t to +∞; 

2. foreach attribute attr in t 

4.  if  r(attr) > max_t then Set max_t to r(attr) endif; 

5.  if  r(attr) < min_t then Set min_t to r(attr) endif; 

 endforeach 

6. return  (max_t, min_t) 

Figure 8: Algorithm of minmax mapping scheme 

 

This scheme considers all of the attributes, but yet it does not invalidate the pruning 
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capability of the geometric arrangement. Before we prove its correctness7, we 

introduce two lemmas on which our proof is based. 

 

Let lX and lY be the lines mapped from n-dimensional tuples X and Y respectively, 

where each tuple has n attributes attr-1, attr-2, …, attr-n. Also let l.A be the gradient 

and l.B be the negative of the y-intercept of the line l.  

 

Lemma 1. If lX.A is greater (or smaller) than lY.A, then there exists at least one pair of 

corresponding attributes in X and Y, say X.attr-k and Y.attr-k, that satisfies the relation 

r(X.attr-k) is greater (or smaller) than r(Y.attr-k). 

 

Proof. From the mapping scheme, we have 

lX.A = r(X.attr-i) so that r(X.attr-i) > r(X.attr-k), where k ≠ i,  

and  lY.A = r(Y.attr-j) so that r(Y.attr-j) > r(Y.attr-k), where k ≠ j.  

 

Given that lX.A is greater (or smaller) than lY.A, so r(X.attr-i) is also greater (or 

smaller) than r(Y.attr-j). Now we have two cases. 

 

Case 1: i = j. There is a corresponding pair X.attr-k and Y.attr-k, where k = i = j, that 

follows the relation r(X.attr-k) is greater (or smaller) than r(Y.attr-k). 

 

Case 2: i ≠ j. We have to separate the discussion of the greater and smaller than 

relations. In the greater than relation, there is a corresponding pair X.attr-i and Y.attr-i, 

that follows r(X.attr-i) > r(Y.attr-j) > r(Y.attr-i). In the smaller than relation, there is a 

corresponding pair X.attr-j and Y.attr-j, that follows r(X.attr-j) < r(X.attr-i) < 

r(Y.attr-j). 

 

In either case, there exists at least one pair of corresponding attributes that satisfy the 

                                                        
7 We first ignore the case of equal attribute values as in the original STARS approach. Later, we show that the 
extension algorithm introduced in Section 3.1 is still applicable to the minmax scheme. 
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relation. Q.E.D. 

 

Lemma 2. If lX.B is greater (or smaller) than lY.B, then there is at least one pair of 

corresponding attributes from X and Y, say X.attr-k and Y.attr-k, that satisfies the 

relation r(X.attr-k) is greater (or smaller) than r(Y.attr-k). 

 

We do not include its proof here, because it is similar to the proof of Lemma 1. B is 

the minimum which is symmetric to A the maximum in Lemma 1. 

 

Now, we claim that if two lines lX and lY intersect on the negative half of the x-axis, 

they can be pruned, i.e. there is no need to invoke the actual but more expensive 

dominance comparison operation. 

 

Proof. Using basic algebra, the x-coordinate of the intersecting point of two lines lX 

and lY is  

     
AlAl

BlBl
x

YX

YX

..

..
−
−= . 

If they intersect on the negative half of the x-axis, then we have x < 0, which implies 

either 

lX.B > lY.B and lX.A < lY.A, 

or    lX.B < lY.B and lX.A > lY.A. 

 

By Lemma 1 and Lemma 2, it is equivalent to either 

  ∃i, j:  r(X.attr-i) > r(Y.attr-i)  and  r(X.attr-j) < r(Y.attr-j), 

or  ∃i, j:  r(X.attr-i) < r(Y.attr-i)  and  r(X.attr-j) > r(Y.attr-j). 

 

In either case, there exist at least two pairs of corresponding attributes from X and Y 

that make X and Y tied. They can never dominate each other; therefore, the actual 

dominance comparison can be avoided. Q.E.D. 
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Let us also consider the effect of equal attribute values on the minmax mapping 

scheme. As discussed in Section 3.1, Scenario (2) is trivial and we only need to 

validate Scenario (3). Fortunately, the extension algorithm suggested in Section 3.1 

can still be applied to the minmax mapping scheme. 

 

Likewise, to retrieve parallel lines, we require an auxiliary query in the extension 

algorithm. The auxiliary query line lA in Figure 6 only intersects with lines above the 

original query line lQ, for example l3 and l4. Only tuples mapped to these lines are 

possible to dominate the query tuple. Tuples mapped to lines below lQ, for example l1 

and l2, are impossible to dominate the query tuple. Say l1 is mapped from the skyline 

tuple T1, and lQ mapped from the query tuple TQ. We then have l1.B > lQ.B, because B 

is the negative of y-intercept. By Lemma 2, there exists a k such that r(T1.attr-k) > 

r(TQ.attr-k), which implies T1 can never dominate TQ. Therefore, the extension 

algorithm is still applicable. 

3.3 Other Optimizations 

3.3.1 SkyGrid for the Skyline 

Referring to Figure 2 in Section 2.1, the skyline includes an operation that retrieves 

tuples which are dominated by a query tuple (line 2), in a similar fashion as the 

skybuffer does8 (line 3 and 6). Generally, as the buffer size increases, so does the size 

of the skyline. The skyline may also become larger in the presence of anti-correlated 

data than in the case of uniform or correlated data. Without a proper index structure 

(for example, the SkyGrid), the skyline retrieval operation is expected to be more 

expensive than the skybuffer retrieval operation. Given that the SkyGrid is an 

effective index structure for the skybuffer9, it is natural to speculate whether it is 

possible to port it for the skyline as well.  

 
                                                        
8 We name the two operations “skyline retrieval” and “skybuffer retrieval” respectively. See Table 2 in Section 5. 
9 See the performance analysis of major STARS operations in Section 5.1, Figure 11.  
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However, performance analysis in Section 5.1 also reveals that the skyline retrieval 

operation occurs with very low frequency when compared with the skybuffer retrieval 

operation (see Figure 13). Therefore, we expect any improvement on skyline retrieval 

operation would only bring a marginal benefit to the overall performance. The 

improvement would be outweighed by the overhead required to maintain a SkyGrid 

structure for the skyline. 

 

Therefore, we do not see using a SkyGrid structure for the skyline is crucial, and we 

do not support using it. 

3.3.2 Focused Search Pre-computation 

Focused search retrieves possible candidates from the skybuffer that may be 

dominated by a query tuple. Only the retrieved candidates are subjected to the more 

expensive dominance comparison operation, while other tuples are pruned by the 

method. We notice that for a given mapping from data dimensionality to a SkyGrid, 

candidate cells found by focused search in the grid can be determined independent of 

any data tuple present in the grid. Thus in the preprocessing stage we can do a focused 

search for every cell (or “query cell”, where a query tuple would have belonged to), 

pre-computing and storing their candidate cells.  

 

To store the pre-computed candidate cells, we need a separate grid. It would have the 

same structure as the SkyGrid, except that instead of storing tuples, indices of 

candidate cells are stored. When a query is issued, instead of doing an on-the-fly 

focused search for the query cell, the candidates are directly retrieved from the new 

grid.  

 

For each incoming tuple, we can expect the computation framework in Figure 2 from 

Section 2.1 to save no better than a constant time. The saving would be more 

significant in higher dimensional data, as the time needed to do a focused search 



21 

increases with data dimensionality. However, this saving in time does not come 

without a price. An O(n2d) space overhead and preprocessing time is needed for the 

new grid, where n is the grid granularity and d is the dimensionality, because each of 

the nd cells stores O(nd) candidates. As dimensionality increases, the storage overhead 

increases exponentially, making the pre-computation of candidate cells for all query 

cells infeasible. For example, in 4-dimensional data with n = 20, the space overhead 

and preprocessing time is on the scale of 202×4 = 2.56 × 1010. 

 

Given the large space overhead and preprocessing time needed, and the relative small 

portion of time spent by focused search10, we do not support the pre-computation of 

focused search. 

 

 

 

                                                        
10 Focused search is a part of the skybuffer retrieval operation as defined in Table 2 from Section 5. Skybuffer 
retrieval itself is not an expensive operation as evident from Section 5.1, Figure 11. 
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4 Implementation 

Our project is implemented based on the original STARS technique [9], with 

modifications suggested in Section 3. The implementation is done in Java, with the 

help of a free external library JGraphT 0.7.3 [4] (which is used for implementing 

DAGs). The STARS technique in [9] only sketches a general outline on the algorithm. 

To build an actual efficient framework, many implementation details cannot be 

overlooked. In the following subsections, we discuss the challenges encountered in 

the implementation of the STARS and our proposed techniques. 

4.1 Transitive Closure of DAG 

The transitive closure of a directed graph with n vertices is given by an n × n matrix, 

which stores a Boolean value in its (i, j) entry indicating whether a path from i-th 

vertex to j-th vertex exists. The existence of such a path also implies that the value 

represented by the i-th vertex is better than that of the j-th. For example, the transitive 

closure matrix of the DAG in Figure 9(a) is shown in Figure 9(b). This matrix can be 

computed by Warshall’s algorithm [7] in O(n3) time, where n is the number of vertices 

in the DAG. 

 

Figure 9: Transitive closure of a DAG 
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Without a pre-computed transitive closure, dominance comparison between two 

tuples is extremely expensive because of the complexity of checking graph 

connectivity on-the-fly. The benefit of the transitive closure outweighs the one-time 

overhead of cubic time requirement. The transitive closure must be pre-computed in 

order to answer skyline queries with any reasonably sized domain. 

4.2 SkyGrid Implementation 

The SkyGrid is a multi-dimensional grid structure with variable dimensionality and 

granularity. Although most modern programming languages do support 

multi-dimensional arrays, it remains difficult to construct such a grid directly. Instead, 

in our implementation, the SkyGrid is mapped to a one-dimensional auxiliary array. 

Each row in the grid is mapped to the array successively, as illustrated in Figure 10. 

Accessing a cell in the grid thus requires a method to index into the auxiliary array, 

which is computed based on the indices, dimensionality and granularity of the grid. 

An Abstract Data Type is used to hide array access details and to create a virtual 

SkyGrid with variable dimensionality and granularity. 

 

Figure 10: Mapping of SkyGrid to 1D array 

4.3 Skybuffer as a FIFO Queue 

Recall that skybuffer uses the SkyGrid index structure to allow efficient pruning when 

• • • 
0 1 2 

3 4 5 

6 7 8 

9 10 11 

0 1 2 3 4 5 6 7 8 9 10 11 

internal representation 

virtual SkyGrid 
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answering queries. But we also have to model the skybuffer as a first-in-first-out 

(FIFO) queue in order to keep track of the order of the tuples coming into the 

skybuffer. When a new tuple comes in, and the buffer was already full, the oldest 

tuple expires and will be removed from both the buffer and skybuffer (if it resides in 

the latter as well). A FIFO queue allows retrieval of the oldest tuple at the head of the 

queue from the skybuffer in constant time, which will be compared against the oldest 

tuple in the full buffer. If they match, they are the same tuple which is expiring. 

Removing the expiring tuple at the head of the queue can also be done in constant 

time. 

 

In our implementation, a FIFO queue is used in addition to the SkyGrid to model the 

skybuffer. While the former allows efficient enqueue and dequeue operations, the 

latter allows efficient pruning for a given query. A memory overhead of O(s) is 

required, where s is the size of the skybuffer. But given the relative smaller size of the 

skybuffer as compared to the actual buffer, we expect the additional linear memory 

requirement is reasonable with any modern hardware. 

4.4 Skyline Arrangement as a Hash Table 

A hash table is used in the geometric arrangement data structure to keep track of all 

lines present in the structure. Each class of identical lines (i.e. lines with same 

gradient and y-intercept, mapped from different tuples) are stored in a list, which is in 

turn stored in the hash table. For each list, only one line is actually involved in the 

arrangement. This reduces duplication of identical lines, simplifies the arrangement, 

and improves query time. Using a hash table facilitates an amortized constant time 

access to a specific list as required by tuple addition and removal operations. 
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5 Experiments 

This section showcases our experimental evaluations to support our design proposed 

in Section 3. While Section 5.1 analyzes and identifies potential room for 

improvements in the STARS technique [9], subsequent subsections compare our 

suggested design with the original STARS design. 

 

Before going into the experiments, we would like to introduce the notations used in [9] 

to specify input forms. Recall that an attribute domain can be modeled by a DAG. A 

DAG can be characterized by parameters (m, h, c, f), which are defined in Definition 4 

and Table 1 [9]. We will refer to a DAG and the domain it represents by its parameters, 

for example, (500, 8, 0.3, tree). 

 

Definition 4. In a directed acyclic graph, a vertex without any incoming edge is a 

source. The depth or depth level of a vertex is the length of the longest path from any 

source to this vertex. 

 

Parameter Description 

m Number of vertices in the DAG. 

h Height of the DAG. 

It is the number of depth levels of all vertices in the DAG. 

c Inter-connectivity ratio. 

A vertex has outgoing edges directed to c of the vertices on the next 

depth level, where 0 < c ≤ 1. 

f Tree or wall structure. 

In a tree structure, each depth level has twice as many vertices as the 

previous depth level has; while in a wall structure, each depth level 

has the same number of vertices. 

Table 1: Parameters of a DAG 
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We also name four major operations of the STARS technique in Table 2 to ease 

further discussion. 

 

Operation Description 

Tuple update A complete run of the skyline computation framework as 

outlined in Section 2.1 and Figure 2. 

Skyline mending Identify tuples in the skybuffer that are exclusively dominated 

by the expiring tuple, and promote them into the skyline. 

Skyline retrieval Retrieve all tuples from the skyline that are dominated by a 

query tuple. 

Skybuffer retrieval Retrieve all tuples from the skybuffer that are dominated by a 

query tuple. 

Table 2: Major operations in STARS 

 

All experiments are conducted on Solaris 10, in Java Server Virtual Machine (VM) 

version 1.5. A heap size of 3.5GB is allocated for the Java VM. 

5.1 Analysis of STARS 

Experiments on 2D, 3D and 4D data are conducted. Synthetic data on domains (500, 8, 

0.3, tree) is used, and each tuple in the stream is generated uniformly and 

independently. The average execution time for major STARS operations is shown in 

Figure 11. Note that the scales on the y-axis are logarithmic. 

 

By comparing the experiment results on 2D data in Figure 11(a), 3D data in Figure 

11(b) and 4D data in Figure 11(c), we observe the sharp increase in execution time for 

all operations with respect to data dimensionality. In addition, skyline mending is the 

most expensive operation across all dimensions of data. 
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Figure 11: Performance analysis of major STARS operations 
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It also reveals that the SkyGrid is an efficient index structure to retrieve the set of 

tuples dominated by a query tuple, as evident in the small skybuffer retrieval time. In 

addition, as the buffer increases, the skybuffer retrieval time is fairly stable and 

remains small.  

 

The skyline retrieval operation does the same job on the skyline, as the skybuffer 

retrieval operation does on the skybuffer. However, the skyline lacks an efficient 

index structure such as the SkyGrid; therefore, the skyline retrieval operation is 

expected to be more expensive than the skybuffer retrieval operation. Fortunately, due 

to the smaller size of the skyline with respect to the skybuffer, the skyline retrieval 

operation still gives acceptable performance, especially in comparison with the 

skyline mending operation. 

 

On the other hand, the skyline mending operation is very expensive, and grows 

rapidly particularly in higher dimensional data. In a skyline mending operation, there 

are repeated queries of the skyline in order to answer if tuples in the skybuffer are 

exclusively dominated by the expiring tuple from the skyline. The repeated 

invocations to query the skyline attribute to the expensive nature of the skyline 

mending operation. 

 

Now we have identified two operations that have potential room for improvement: the 

skyline mending and skyline retrieval operations. In order to see if they are relevant to 

the overall performance, we must examine the frequency of such operations as well. 

Figure 12 and Figure 13 shows that as buffer size increases, the frequencies of skyline 

mending and retrieval operations decrease. As the buffer size increases, the 

probability of an expiring tuple to affect the skyline decreases, resulting in a 

decreased frequency of skyline mending operation. In addition, when the buffer size 

increases, the skyline becomes more saturated, resulting in a decreased probability for 

an incoming tuple to affect the skyline. This implies a decreased frequency of skyline 
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retrieval operation. 
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Figure 12: Frequency percentages of skyline mending operation 
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Figure 13: Frequency percentages of skyline retrieval operation 
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Another observation is that the two identified operations are more frequent on higher 

dimensional data. This is also expected, as the size of the skyline is generally larger 

on higher dimensional data, and thus there is a higher probability that an incoming or 

expiring tuple affects the skyline. 

 

Given the expensiveness of the skyline mending operation, and its non-negligible 

frequencies especially on higher dimensional data, it is justified to improve it in order 

to improve the overall performance11. Note that even though the frequency is low in 

certain cases, and the overall performance would be less affected, it is still worth to 

improve the skyline mending operation, especially in time-critical systems where 

every tuple update must be accomplished in a specified period of time.  

 

On the other hand, the skyline retrieval operation is much cheaper than the skyline 

mending operation. Although their frequencies of occurrences are at a similar level, 

any improvement to the skyline retrieval operation would only be marginal to the 

overall performance. If we were using the SkyGrid for the skyline, its improvement 

would be outweighed by the overhead required to maintain such a grid structure. 

5.2 Correctness of the Extension Algorithm 

While we have explained the correctness of the extension algorithm for the original 

STARS mapping scheme in Section 3.1, and for the minmax mapping scheme in 

Section 3.2, our experimental results have also shown support for its correctness. For 

the extension algorithm on the original STARS mapping scheme, we compare it with 

a brute force approach on small buffers. Results show that the skylines generated by 

both methods are identical. For the minmax mapping scheme, we compare it with the 

STARS mapping scheme. Again, results confirm that the generated skylines are 

identical. 
                                                        
11 We have improved it by using the minmax scheme as introduced in Section 3.2. 
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5.3 Effects of the Minmax Mapping Scheme 

We have conducted experiments comparing the minmax and the STARS arbitrary 

selection scheme on 3D and 4D data12. For the STARS scheme, we have run 

experiments on all possible selections of the attribute pairs, and recorded 

performances of the worst and best pairs. 

 

We have synthesized domains of various parameters in Table 3. We have also fed each 

set of experiments streams of different statistical distribution, namely uniform, 

correlated and anti-correlated tuples [3][5]. The definition of an anti-correlated tuple 

is not clear when there are more than two dimensions. In our experiments, we 

randomly choose two dimensions and make them anti-correlated [5]. Additionally, 

within each set of experiments, we vary the buffer size from 10K to 1000K. 

 

Dimension Set I Set II Set III Set IV 

(254, 7, 0.3, tree) (127, 7, 0.2, tree) (100, 10, 0.1, wall) (510, 8, 0.3, tree) 

(189, 6, 0.6, tree) (127, 7, 0.2, tree) (100, 10, 0.2, wall) (510, 8, 0.3, tree) 

(180, 20, 0.3, wall) (124, 5, 0.2, tree) (100, 10, 0.4, wall) (510, 8, 0.3, tree) 

 

 

3D 

 

 

 

4D (90, 4, 0.2, tree)  (124, 5, 0.2, tree) (100, 10, 0.8, wall) (510, 8, 0.3, tree) 

Rationale 
randomized 

parameters 

different heights different inter- 

connectivity ratios 

same parameters 

Table 3: Domains used in experiments to evaluate the minmax scheme 

 

For each experiment, average performance13 per tuple update using minmax scheme 

is compared with the best and worst performing pairs of attributes using the STARS 

approach. The performance of the minmax scheme and the best pair are normalized 

against that of the worst pair. All worst pairs have their performance normalized to 1 

or 100%, serving as one standard unit. A summary14 of all experiments comparing the 

                                                        
12 For 2D data, all mappings are consistent, because there are only two attributes in a tuple. 
13 Performance refers to the measure of the execution time required for a certain operation. 
14 The detailed results for each experiment can be found in Appendix B: Results of Experiment Sets I, II, III, IV. 
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performance of minmax scheme to the worst and best performing pairs is presented in 

Figure 14(a) and Figure 14(b) respectively. 

 

(a) Summary of minmax versus worst performing pairs
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(b) Summary of minmax versus best performing pairs
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Figure 14: Summary of minmax versus worst and best performing pairs 

 

Results are also averaged across all sets of experiments, grouped by data 

dimensionality, statistical distribution and buffer size, as shown in Figure 15 for 3D 
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data and in Figure 16 for 4D data.  
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(b) 3D anti-correlated data average
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(c) 3D correlated data average
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Figure 15: Comparison of average performance on 3D data 
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(a) 4D uniform data average
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(b) 4D anti-correlated data average
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(c) 4D correlated data average
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Figure 16: Comparison of average performance on 4D data 
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One immediate observation from the results is the minmax scheme performs better in 

higher dimensional data for all statistical distributions (see Figure 14, and compare 

Figure 15 with Figure 16). This is expected, as in higher dimensional data, the 

original STARS scheme ignores more attributes, which could be otherwise useful in 

pruning irrelevant tuples. For example, on 3D data 1 out of 3 (or 33%) attributes are 

disregarded, while on 4D data 2 out of 4 (or 50%) attributes are disregarded. Also, the 

skyline mending operation, which utilizes the minmax scheme, occurs more 

frequently on higher dimensional data, as evident in Figure 12. 

 

In addition to performance, we have also recorded the pruning efficiency15 of each 

experiment. Results are aggregated, normalized and averaged in a similar fashion as 

performance. The average pruning efficiency16, grouped by data dimensionality, 

statistical distribution and buffer size, is presented in Figure 17 for 3D data and in 

Figure 18 for 4D data. 

 

From the results in Figure 17(a)(b) and Figure 18(a)(b), we observe that on uniform 

and anti-correlated data, the minmax scheme generally gives better pruning efficiency 

than the original STARS technique. Consequently, the minmax scheme not only 

overcomes the performance gap between the best and worst pairs, but also gives a 

lead over the best pair, as evident in Figure 15(a)(b) and Figure 16(a)(b). Moreover, 

on anti-correlated data, the minmax scheme achieves a slightly better performance 

(see Figure 14), as the skyline tends to be larger on anti-correlated data, which 

increases the frequency of the skyline mending operation. 

 

Also note that in Figure 17(a)(b), there are some irregularities in the pruning 

efficiency with 3D data when the buffer is large (500K and 1000K). This irregularity 

could be caused by insufficient sample, as the frequency of skyline mending 

operations is low on 3D data when the buffer is large (see Figure 12). 
                                                        
15 It is the portion of skyline tuples that require actual dominance comparison (i.e. portion of the skyline tuples 
that are not pruned). A smaller value indicates better pruning efficiency. 
16 The detailed results for each experiment can be found in Appendix B: Results of Experiment Sets I, II, III, IV. 
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(b) 3D anti-correlated data average
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(c) 3D correlated data average
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Figure 17: Comparison of average pruning efficiency on 3D data 
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(a) 4D uniform data average
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(b) 4D anti-correlated data average

40%

70%

100%

130%

160%

10K 20K 50K 100K 200K 500K 1000K

Buffer size

P
ru

ni
ng

 e
ffi

ci
e

nc
y

(n
or

m
a

liz
e

d)

 

(c) 4D correlated data average
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Figure 18: Comparison of average pruning efficiency on 4D data 
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On the other hand, on correlated data, the minmax scheme fails in terms of pruning 

efficiency (see Figure 17(c) and Figure 18(c)). This failure is expected due to the 

nature of correlated tuples. 

 

Say we have two independently generated tuples X and Y, each with n correlated 

attributes attr-1, attr-2, …, attr-n.  

If  max(r(X.attr-1), …, r(X.attr-n)) > max(r(Y.attr-1), …, r(Y.attr-n)), 

then the following tends to hold as well: 

min(r(X.attr-1), …, r(X.attr-n)) > min(r(Y.attr-1), …, r(Y.attr-n)). 

This tendency hurts the pruning efficiency, which relies on conflicting attribute pairs 

to conclude that X and Y are tied and can be pruned. 

 

However, in terms of overall performance, the minmax scheme is only marginally 

inferior to the original STARS scheme when used with correlated data, especially on 

higher dimensional data (see Figure 14, Figure 15(c) and Figure 16(c)). There are two 

reasons for this result. Firstly, with correlated data, the skyline generated is generally 

smaller when compared to that with uniform or anti-correlated data. This leads to a 

lower frequency of skyline mending operations. Secondly, with correlated data, tuples 

in the skybuffer tends to concentrate in a few cells of the SkyGrid, which is used to 

model the skybuffer. This tendency reduces the effectiveness of the SkyGrid, resulting 

in more expensive skybuffer retrieval operations. As a result, the skyline mending 

operation takes up a smaller portion of the overall tuple update time, and any 

difference in the pruning efficiency of the arrangement structure would contribute less 

to the overall performance. 

 

Based on the results of these experiments, we conclude that the minmax scheme is 

successful, particularly when used on higher dimensional, uniform or anti-correlated 

data. On correlated data, it is marginally inferior to the original STARS scheme in 

terms of overall performance, especially on higher dimensional data. 
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6 Conclusion 

6.1 Summary 

In this project, we studied techniques for skyline computation on partially-ordered 

domains in an online streaming context. We used the STARS [9] approach as a 

starting point, identified its limitations and problems, and devised improvements and 

solutions to address them. 

 

To summarize this project, we have: 

(1) Introduced an extension algorithm to apply STARS technique to the standard 

definition of dominance in Definition 1, which works correctly with equal 

attribute values; 

(2) Designed the novel minmax mapping scheme, which considers all attributes 

instead of the arbitrarily chosen two. The minmax mapping scheme improves 

performance significantly, especially when used on high-dimensional uniform 

or anti-correlated data; 

(3) Discussed the possibility of pre-computing focused search as well as using the 

SkyGrid structure for the skyline; 

(4) Presented the challenges encountered during implementation, and our 

solutions for them; 

(5) Conducted extensive experiments to analyze STARS and evaluate our 

proposed techniques. 

6.2 Limitations and Future Work 

One limitation in our work is the inability to choose a scheme based on the statistical 

distribution of the data stream. Although the minmax scheme is generally better than 
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the STARS approach, it is outperformed sometimes as we see in Section 5.3 when 

correlated data is used. If the distribution of the incoming stream is known beforehand, 

it might be easier to address this limitation. Otherwise, it is possible to analyze a 

sample of the data stream before the actual skyline computation begins. 

 

Another limitation lies in the implementation of this project. In current 

implementation, all data resides in the main memory. One notable data structure is the 

geometric arrangement for the skyline. It requires an O(s2) space, which can grow out 

of bound when the size s of the skyline increases. Additionally, the buffer may 

become very large in certain real-life applications. Future work may consider the 

storage of some less frequently used data in secondary memory.  

 

Finally, the SkyGrid may deserve our attention in future work. It becomes less 

efficient when used on correlated data. 
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Appendix A: Notations Used in the Report 

We have tabulated in Table 4 a list of notations that are frequently used in this report. 

Some standard or widely used notations are not included. 

 

Notation Meaning 

DAG Directed acyclic graph, a directed graph without cycles. 

STARS Streaming Arrangement Skyline algorithm. 

r(v),  

or topological 

sorting order of 

v 

The integer indicating vertex v’s position in a specific topological sort of the 

DAG containing v. Sometimes, we also use v as an attribute value in a 

partially-ordered domain which corresponds to a vertex in the DAG that 

represents the domain. 

T.v The value of attribute v in tuple T. 

T.a The value of the first arbitrarily selected attribute in tuple T, used in the STARS 

technique. 

T.b The value of the second arbitrarily selected attribute in tuple T, used in the 

STARS technique. 

l.A Gradient of the line l in the Cartesian plane. 

l.B Negative of the y-intercept of the line l in the Cartesian plane. 

max(a1, …, an) The maximum value among ai, where i = 1, 2, …, n. 

min(a1, …, an) The minimum value among ai, where i = 1, 2, …, n. 

nD n-dimensional, where n∈N, the set of natural numbers. 

Table 4: Notations used in this report 
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Appendix B: Results of Experiment Sets I, II, III, IV 

Detailed results of experiment sets (as designed in Table 3) are tabulated in this 

appendix. 

 

Table 5, Table 6 and Table 7 contain raw results for 3D uniform, anti-correlated and 

correlated data respectively. 3D data tuples have three attributes numbered 0 through 

2, and an attribute selection is a pair of integers indicating the attribute combination 

selected. There are a total of three possible attribute selections, namely (0, 1), (0, 2) 

and (1, 2). 

 

Similarly Table 8, Table 9 and Table 10 contain raw results for 4D uniform, 

anti-correlated and correlated data respectively. 4D data tuples have four attributes 

numbered 0 through 3, and there are a total of six possible attribute selections, namely 

(0, 1), (0, 2), (0, 3), (1, 2), (1, 3) and (2, 3). 

 

Finally, results derived from comparing the performance of the minmax scheme and 

the best and worst pairs are presented in Table 11. Statistical indicators are given on 

the performance improvement. 
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Buffer Experiment            Set I           Set II           Set III           Set IV
size Attribute selection Perf.^ P.E.+ Perf. P.E. Perf. P.E. Perf. P.E.

(0, 1) 0.92 8.06% 1.36 14.08% 2.00 10.45% 0.87 8.68%
10K (0, 2) 0.82 5.62% 1.21 10.29% 1.93 10.11% 0.93 10.25%

(1, 2) 0.84 5.56% 1.22 10.05% 1.85 9.80% 0.92 10.18%
Minmax 0.85 6.27% 1.18 11.58% 1.77 9.60% 0.76 5.56%

(0, 1) 0.83 6.70% 0.94 10.70% 1.87 9.42% 0.76 6.37%
20K (0, 2) 0.76 4.21% 0.85 8.50% 1.77 8.56% 0.86 8.61%

(1, 2) 0.76 4.34% 0.84 8.00% 1.73 8.63% 0.90 8.44%
Minmax 0.76 5.01% 0.81 8.44% 1.62 8.25% 0.68 4.23%

(0, 1) 0.68 5.28% 0.70 8.80% 1.71 7.56% 0.74 5.39%
50K (0, 2) 0.64 3.52% 0.68 7.29% 1.65 7.57% 0.83 7.72%

(1, 2) 0.64 3.47% 0.66 7.38% 1.64 9.06% 0.83 7.23%
Minmax 0.65 4.69% 0.62 7.27% 1.50 7.08% 0.65 3.60%

(0, 1) 0.66 5.80% 0.57 9.29% 1.64 6.39% 0.77 6.50%
100K (0, 2) 0.62 2.75% 0.56 8.47% 1.58 6.12% 0.82 5.16%

(1, 2) 0.62 2.68% 0.54 8.49% 1.58 7.84% 0.80 4.71%
Minmax 0.62 4.46% 0.52 6.71% 1.45 5.67% 0.64 2.74%

(0, 1) 0.68 6.13% 0.62 8.33% 1.61 7.47% 0.66 4.83%
200K (0, 2) 0.64 3.14% 0.63 11.21% 1.52 6.30% 0.70 3.70%

(1, 2) 0.66 3.07% 0.61 9.15% 1.53 7.56% 0.70 3.49%
Minmax 0.64 4.28% 0.58 6.62% 1.41 4.90% 0.59 2.60%

(0, 1) 0.65 4.15% 0.61 6.26% 1.60 8.09% 0.56 4.54%
500K (0, 2) 0.63 2.82% 0.59 9.12% 1.54 7.26% 0.58 2.98%

(1, 2) 0.64 2.72% 0.58 5.78% 1.61 10.79% 0.58 3.00%
Minmax 0.64 3.36% 0.56 7.46% 1.46 4.52% 0.54 4.00%

(0, 1) 0.68 3.92% 0.55 5.46% 1.68 9.53% 0.61 2.73%
1000K (0, 2) 0.67 3.01% 0.55 7.32% 1.64 8.89% 0.62 1.75%

(1, 2) 0.67 2.78% 0.55 5.09% 1.77 13.36% 0.62 1.99%
Minmax 0.66 3.05% 0.54 3.68% 1.55 4.10% 0.58 2.32% 

Table 5: Raw results for 3D uniform data 

 

 

 

 

 

                                                        
^ Perf. = Performance (ms). 
+ P.E. = Pruning efficiency (%). 
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Buffer Experiment            Set I           Set II           Set III           Set IV
size Attribute selection Perf. P.E. Perf. P.E. Perf. P.E. Perf. P.E.

(0, 1) 0.87 9.30% 1.61 10.69% 2.08 10.86% 0.91 9.03%
10K (0, 2) 0.80 5.25% 1.64 11.75% 2.02 9.95% 0.97 10.34%

(1, 2) 0.76 5.42% 1.61 11.64% 1.96 9.84% 0.95 10.51%
Minmax 0.80 6.39% 1.49 11.21% 1.83 9.71% 0.78 5.65%

(0, 1) 0.78 7.63% 1.26 9.14% 1.92 9.62% 0.87 6.87%
20K (0, 2) 0.73 4.40% 1.22 8.71% 1.85 8.72% 0.96 8.98%

(1, 2) 0.70 4.43% 1.22 8.66% 1.81 8.40% 0.94 8.89%
Minmax 0.71 5.36% 1.17 9.48% 1.69 8.78% 0.74 4.30%

(0, 1) 0.82 5.50% 0.92 7.53% 1.69 7.71% 0.64 5.51%
50K (0, 2) 0.79 3.29% 0.90 7.02% 1.62 7.50% 0.67 5.81%

(1, 2) 0.78 3.48% 0.89 6.44% 1.58 7.03% 0.66 6.12%
Minmax 0.75 3.72% 0.83 6.69% 1.48 6.81% 0.54 2.61%

(0, 1) 0.79 5.21% 0.91 6.91% 1.63 6.26% 0.65 5.54%
100K (0, 2) 0.70 2.71% 0.88 5.88% 1.56 5.91% 0.70 6.45%

(1, 2) 0.72 3.01% 0.87 5.63% 1.56 6.35% 0.69 6.32%
Minmax 0.72 3.55% 0.82 5.71% 1.42 5.12% 0.54 2.14%

(0, 1) 0.77 4.57% 0.79 5.18% 1.60 5.79% 0.62 3.54%
200K (0, 2) 0.71 2.14% 0.79 4.96% 1.55 5.85% 0.66 3.74%

(1, 2) 0.74 2.28% 0.78 4.69% 1.58 6.98% 0.66 4.05%
Minmax 0.72 2.99% 0.73 4.04% 1.42 4.29% 0.56 1.51%

(0, 1) 0.76 3.25% 0.65 5.85% 1.56 7.32% 0.71 2.51%
500K (0, 2) 0.74 2.33% 0.65 4.42% 1.53 7.51% 0.74 3.11%

(1, 2) 0.72 2.40% 0.65 4.54% 1.56 9.19% 0.75 3.55%
Minmax 0.71 3.80% 0.62 5.20% 1.41 4.54% 0.65 1.50%

(0, 1) 0.70 4.52% 0.61 7.44% 1.65 10.05% 0.65 2.63%
1000K (0, 2) 0.68 1.70% 0.60 3.09% 1.61 8.36% 0.71 3.84%

(1, 2) 0.66 1.24% 0.59 4.89% 1.69 10.41% 0.71 4.29%
Minmax 0.64 6.59% 0.57 11.19% 1.47 3.85% 0.61 1.37% 

Table 6: Raw results for 3D anti-correlated data 
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Buffer Experiment            Set I           Set II           Set III           Set IV
size Attribute selection Perf. P.E. Perf. P.E. Perf. P.E. Perf. P.E.

(0, 1) 1.67 6.91% 1.23 32.48% 3.26 12.38% 1.06 12.98%
10K (0, 2) 1.60 6.85% 1.23 27.58% 3.23 12.24% 1.07 11.89%

(1, 2) 1.60 6.75% 1.21 21.87% 3.19 9.47% 1.07 11.04%
Minmax 1.63 8.86% 1.25 31.08% 3.23 12.36% 1.08 11.59%

(0, 1) 1.67 5.86% 1.18 22.22% 3.72 11.53% 1.07 18.97%
20K (0, 2) 1.65 6.66% 1.15 24.79% 3.84 11.03% 1.07 15.86%

(1, 2) 1.61 6.26% 1.16 23.62% 3.75 7.66% 1.06 12.31%
Minmax 1.65 8.54% 1.21 25.58% 3.83 11.52% 1.08 15.34%

(0, 1) 1.85 5.37% 1.10 21.74% 5.84 9.75% 1.08 17.96%
50K (0, 2) 1.88 5.15% 1.13 26.45% 5.84 8.83% 1.07 14.68%

(1, 2) 1.85 5.28% 1.14 24.21% 5.55 6.12% 1.07 9.96%
Minmax 1.94 8.94% 1.15 19.71% 6.03 11.14% 1.08 16.93%

(0, 1) 2.14 4.96% 1.20 22.61% 9.14 9.71% 1.04 12.92%
100K (0, 2) 2.18 4.97% 1.24 27.99% 8.92 8.39% 1.03 10.24%

(1, 2) 2.14 4.96% 1.27 26.03% 8.47 5.55% 1.03 8.06%
Minmax 2.29 9.00% 1.31 22.07% 9.64 13.43% 1.04 14.09%

(0, 1) 2.44 3.61% 1.32 19.03% 15.38 10.49% 1.12 11.52%
200K (0, 2) 2.50 3.81% 1.39 28.58% 14.86 8.45% 1.12 10.45%

(1, 2) 2.52 3.41% 1.44 26.97% 13.62 4.51% 1.13 8.72%
Minmax 2.77 8.28% 1.50 16.99% 16.69 13.69% 1.14 12.67%

(0, 1) 3.22 4.71% 1.59 17.90% 32.98 6.88% 1.17 20.74%
500K (0, 2) 3.43 7.08% 1.67 17.94% 32.58 6.01% 1.15 11.08%

(1, 2) 3.37 5.86% 1.81 11.11% 30.97 4.33% 1.14 5.94%
Minmax 3.90 10.30% 2.01 16.70% 39.33 12.42% 1.20 22.13%

(0, 1) 4.79 5.64% 1.48 9.47% 62.27 6.71% 1.17 1.50%
1000K (0, 2) 5.01 7.51% 1.59 6.64% 60.74 6.39% 1.17 5.06%

(1, 2) 4.98 6.35% 1.71 4.28% 57.81 4.65% 1.16 6.84%
Minmax 6.08 12.30% 1.73 4.93% 76.23 13.32% 1.21 11.92% 

Table 7: Raw results for 3D correlated data 

 



 xiv 

Buffer Experiment            Set I           Set II           Set III           Set IV
size Attribute selection Perf. P.E. Perf. P.E. Perf. P.E. Perf. P.E.

(0, 1) 8.18 12.75% 19.55 22.27% 19.41 12.20% 6.33 14.85%
(0, 2) 8.65 16.15% 18.70 21.88% 19.36 12.60% 6.39 14.85%
(0, 3) 7.88 10.65% 18.34 21.36% 19.32 12.58% 6.36 15.40%

10K (1, 2) 8.69 16.52% 18.38 21.63% 19.23 11.92% 6.29 14.55%
(1, 3) 7.76 10.75% 18.69 21.58% 19.14 11.88% 6.31 15.02%
(2, 3) 7.83 10.70% 18.30 21.90% 19.07 11.91% 6.25 14.74%

minmax 7.66 10.70% 13.42 18.37% 17.75 9.71% 5.30 6.25%
(0, 1) 8.51 10.71% 23.86 18.32% 18.56 10.44% 6.98 14.92%
(0, 2) 9.23 13.48% 22.92 17.88% 18.56 10.19% 6.83 12.68%
(0, 3) 8.14 8.49% 22.99 18.50% 18.50 10.49% 6.71 12.74%

20K (1, 2) 9.03 13.94% 22.64 17.59% 17.93 9.62% 6.73 12.35%
(1, 3) 7.85 8.84% 22.65 18.39% 18.41 9.75% 6.61 12.21%
(2, 3) 8.14 8.83% 22.69 18.63% 18.05 9.43% 6.61 12.46%

minmax 7.77 9.15% 15.33 15.62% 16.72 7.85% 5.50 5.94%
(0, 1) 8.50 6.92% 19.11 13.41% 17.14 6.87% 8.21 10.77%
(0, 2) 9.79 9.41% 17.81 11.98% 17.08 7.00% 7.97 9.24%
(0, 3) 8.07 5.22% 17.51 12.14% 17.05 6.89% 8.05 10.23%

50K (1, 2) 9.24 9.76% 18.26 12.06% 17.04 6.78% 7.52 9.24%
(1, 3) 7.67 5.87% 17.56 11.85% 16.72 6.54% 7.72 9.79%
(2, 3) 7.79 5.38% 17.10 11.47% 16.52 6.41% 7.74 9.93%

minmax 7.64 6.21% 12.18 10.76% 15.18 5.02% 6.08 4.69%
(0, 1) 8.60 5.24% 13.88 8.92% 17.39 6.39% 9.32 9.03%
(0, 2) 10.35 8.10% 13.02 8.41% 17.01 6.50% 9.06 8.19%
(0, 3) 8.33 4.65% 12.69 8.26% 17.04 6.56% 8.93 7.91%

100K (1, 2) 10.00 8.83% 12.93 8.17% 16.72 6.43% 8.85 8.03%
(1, 3) 7.87 5.22% 12.69 8.09% 16.70 6.29% 8.81 7.55%
(2, 3) 8.14 4.62% 12.11 7.77% 16.45 6.18% 8.71 7.95%

minmax 7.73 5.70% 9.42 7.04% 14.87 4.84% 6.66 4.18%
(0, 1) 8.29 4.74% 12.63 6.45% 16.35 5.42% 9.81 6.71%
(0, 2) 10.08 7.19% 11.41 5.16% 15.73 5.68% 9.41 6.00%
(0, 3) 7.78 3.95% 11.36 5.93% 15.30 5.01% 9.38 6.05%

200K (1, 2) 9.72 8.09% 11.18 5.29% 15.58 5.84% 9.59 6.09%
(1, 3) 7.46 4.71% 11.50 5.90% 15.49 5.37% 9.62 6.09%
(2, 3) 7.76 4.01% 11.39 5.76% 15.22 5.17% 9.49 6.19%

minmax 7.26 4.84% 8.51 5.24% 14.32 4.01% 6.58 3.30%
(0, 1) 8.04 2.74% 10.97 4.00% 15.85 3.90% 11.83 4.49%
(0, 2) 9.97 4.38% 9.35 3.05% 15.75 4.38% 12.50 4.63%
(0, 3) 7.92 2.19% 9.46 3.62% 15.09 4.13% 12.60 4.52%

500K (1, 2) 9.56 5.29% 9.31 3.01% 15.43 4.61% 11.66 4.60%
(1, 3) 7.39 2.91% 9.38 3.55% 15.22 4.77% 11.73 4.32%
(2, 3) 7.81 2.31% 9.34 3.57% 14.95 4.87% 13.23 4.67%

minmax 6.98 2.98% 7.55 3.49% 14.01 3.02% 8.02 2.50%
(0, 1) 8.14 2.23% 8.07 3.60% 15.36 3.14% 10.63 4.40%
(0, 2) 9.49 3.46% 7.45 2.42% 14.77 3.44% 10.05 3.10%
(0, 3) 8.18 1.93% 7.42 2.91% 14.95 3.14% 10.56 3.52%

1000K (1, 2) 9.24 4.75% 7.50 2.50% 15.06 3.79% 10.25 3.12%
(1, 3) 7.87 3.10% 7.23 2.77% 14.87 3.70% 10.44 3.42%
(2, 3) 7.83 1.99% 7.31 2.93% 14.85 4.27% 10.04 3.58%

minmax 7.13 2.41% 6.66 2.66% 13.88 2.11% 7.91 1.98% 

Table 8: Raw results for 4D uniform data 
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Buffer Experiment            Set I           Set II           Set III           Set IV
size Attribute selection Perf. P.E. Perf. P.E. Perf. P.E. Perf. P.E.

(0, 1) 10.66 11.67% 20.97 23.09% 19.64 12.75% 9.10 17.94%
(0, 2) 11.22 14.26% 20.17 21.54% 19.47 12.35% 9.03 17.45%
(0, 3) 10.18 9.45% 20.16 21.32% 19.33 12.36% 9.19 18.05%

10K (1, 2) 11.14 14.85% 20.25 22.55% 19.02 11.60% 8.81 16.33%
(1, 3) 9.97 9.87% 19.95 22.03% 19.08 11.74% 9.02 17.43%
(2, 3) 10.16 10.27% 20.00 20.98% 18.97 11.46% 9.11 17.68%

minmax 9.95 11.38% 14.42 18.10% 17.75 10.10% 7.54 9.02%
(0, 1) 9.61 7.99% 21.20 18.77% 18.55 10.12% 11.28 15.42%
(0, 2) 10.32 10.64% 19.95 17.15% 18.31 9.82% 11.95 17.07%
(0, 3) 9.21 6.40% 19.68 16.39% 18.25 9.56% 11.38 14.73%

20K (1, 2) 10.17 11.34% 19.79 18.17% 18.03 9.40% 11.33 14.97%
(1, 3) 8.89 6.85% 19.07 16.76% 18.11 9.10% 11.29 14.55%
(2, 3) 9.30 6.82% 19.12 16.06% 17.83 8.95% 11.16 13.97%

minmax 8.72 7.33% 13.29 14.39% 16.52 7.49% 8.93 8.11%
(0, 1) 9.27 5.22% 23.18 13.67% 16.98 7.00% 11.12 12.35%
(0, 2) 10.56 7.87% 20.82 11.28% 16.74 6.86% 11.37 12.57%
(0, 3) 8.98 4.28% 20.85 11.41% 16.57 6.26% 10.45 10.07%

50K (1, 2) 10.15 8.22% 20.27 12.15% 16.54 6.57% 10.66 10.98%
(1, 3) 8.32 4.83% 19.88 11.68% 16.24 6.10% 10.55 10.22%
(2, 3) 8.62 4.66% 19.00 11.12% 16.12 5.97% 10.37 10.01%

minmax 7.87 4.75% 13.37 10.11% 14.05 5.06% 8.25 6.30%
(0, 1) 8.46 3.84% 19.61 10.72% 16.39 6.32% 11.82 8.12%
(0, 2) 10.23 5.95% 15.64 7.73% 16.03 5.93% 11.93 7.91%
(0, 3) 8.10 3.20% 16.61 8.12% 15.94 5.92% 11.42 7.17%

100K (1, 2) 9.50 6.53% 15.86 8.27% 15.72 5.76% 11.50 7.41%
(1, 3) 7.75 3.75% 15.57 8.57% 15.68 5.65% 11.22 6.77%
(2, 3) 8.18 3.64% 14.33 8.18% 15.47 5.82% 11.21 7.00%

minmax 7.25 3.72% 10.92 8.11% 14.31 4.51% 8.20 3.80%
(0, 1) 8.10 2.78% 13.80 7.25% 16.05 5.53% 9.67 6.37%
(0, 2) 10.07 4.80% 11.74 5.10% 15.68 5.58% 9.86 6.40%
(0, 3) 7.91 2.14% 13.76 5.03% 15.43 5.02% 9.47 5.60%

200K (1, 2) 9.30 4.85% 11.53 5.46% 15.46 5.15% 9.83 6.11%
(1, 3) 7.69 2.58% 11.56 5.03% 15.23 4.79% 9.38 5.58%
(2, 3) 7.72 2.41% 10.81 4.91% 14.96 4.88% 9.31 5.53%

minmax 7.06 2.79% 8.85 5.41% 14.09 3.71% 6.28 2.46%
(0, 1) 8.42 2.26% 12.74 4.79% 15.52 4.27% 8.73 4.07%
(0, 2) 9.71 3.49% 10.82 3.12% 15.29 4.34% 8.71 4.31%
(0, 3) 7.83 1.62% 11.53 3.37% 15.13 4.08% 8.78 4.03%

500K (1, 2) 9.05 3.65% 10.58 3.30% 15.08 4.26% 8.67 4.24%
(1, 3) 7.24 2.05% 11.03 3.45% 14.94 3.96% 8.69 4.03%
(2, 3) 7.56 1.81% 10.44 3.48% 14.70 4.60% 8.68 4.03%

minmax 6.81 2.31% 8.77 3.68% 13.78 2.81% 5.87 1.29%
(0, 1) 7.65 1.60% 10.07 3.71% 16.37 4.00% 9.02 3.17%
(0, 2) 8.61 2.64% 8.88 2.43% 15.18 4.02% 8.87 2.99%
(0, 3) 7.62 1.04% 9.03 2.32% 15.18 3.88% 8.80 2.60%

1000K (1, 2) 8.59 2.88% 8.69 2.62% 15.11 3.67% 8.90 2.87%
(1, 3) 7.24 1.38% 8.89 2.42% 14.87 3.62% 8.81 2.60%
(2, 3) 7.40 1.20% 8.64 2.40% 14.71 4.08% 8.67 2.66%

minmax 6.67 1.72% 7.98 2.70% 13.85 2.38% 6.31 1.02% 

Table 9: Raw results for 4D anti-correlated data 
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Buffer Experiment            Set I           Set II           Set III           Set IV
size Attribute selection Perf. P.E. Perf. P.E. Perf. P.E. Perf. P.E.

(0, 1) 29.65 7.60% 24.68 16.47% 48.14 11.09% 18.66 9.95%
(0, 2) 29.81 6.98% 24.47 14.86% 47.47 11.47% 18.60 10.08%
(0, 3) 29.67 6.55% 24.34 17.01% 48.06 11.11% 18.68 10.41%

10K (1, 2) 29.60 7.56% 24.41 14.70% 47.18 10.15% 18.62 10.57%
(1, 3) 29.53 7.96% 24.44 17.01% 47.99 9.56% 18.63 10.57%
(2, 3) 29.74 6.67% 24.34 17.76% 48.23 9.24% 18.62 10.74%

minmax 29.62 7.65% 24.55 17.58% 48.06 11.43% 18.66 10.26%
(0, 1) 29.28 7.63% 23.55 15.31% 46.10 10.75% 18.53 10.33%
(0, 2) 30.15 6.65% 23.52 14.14% 47.22 11.15% 18.45 9.55%
(0, 3) 29.37 6.24% 23.18 15.74% 46.22 10.90% 18.35 10.57%

20K (1, 2) 29.27 7.35% 23.59 14.07% 47.33 8.85% 18.42 9.72%
(1, 3) 29.67 8.01% 23.60 15.41% 46.25 8.94% 18.35 10.55%
(2, 3) 29.33 6.31% 23.51 16.20% 46.86 8.11% 18.38 11.13%

minmax 29.33 8.08% 23.46 18.45% 46.26 10.00% 18.34 9.83%
(0, 1) 28.57 7.92% 22.27 14.60% 47.70 9.41% 17.93 11.72%
(0, 2) 28.66 6.27% 22.36 12.91% 47.81 10.46% 17.86 10.86%
(0, 3) 28.39 5.59% 22.30 13.95% 48.62 10.37% 17.92 11.58%

50K (1, 2) 28.41 6.43% 22.16 12.46% 48.67 7.05% 17.86 11.05%
(1, 3) 28.82 7.01% 21.66 12.54% 48.58 7.94% 17.95 11.53%
(2, 3) 28.46 5.26% 22.23 14.37% 47.19 7.22% 17.92 12.31%

minmax 28.60 8.61% 22.44 17.52% 47.90 9.20% 17.85 11.62%
(0, 1) 28.71 7.36% 22.78 15.01% 48.61 8.63% 17.89 10.73%
(0, 2) 28.75 6.21% 22.59 13.29% 48.86 9.00% 17.91 10.08%
(0, 3) 28.62 5.67% 22.67 14.41% 49.02 9.68% 17.95 11.24%

100K (1, 2) 29.03 7.17% 22.54 11.84% 49.18 6.05% 18.00 10.85%
(1, 3) 28.82 8.34% 22.59 12.70% 49.70 7.50% 18.03 11.87%
(2, 3) 28.65 4.82% 22.63 14.51% 48.98 5.84% 18.01 12.48%

minmax 28.77 8.37% 22.93 19.29% 49.50 7.98% 17.98 12.63%
(0, 1) 28.45 5.90% 21.63 15.51% 54.35 7.23% 17.09 10.87%
(0, 2) 28.79 5.80% 21.58 13.24% 55.09 8.53% 17.10 10.10%
(0, 3) 28.68 4.48% 21.64 14.73% 55.90 9.64% 17.16 11.55%

200K (1, 2) 29.04 9.33% 21.54 11.40% 54.66 5.43% 17.10 9.48%
(1, 3) 28.79 7.39% 21.54 12.31% 53.96 6.51% 17.15 10.22%
(2, 3) 28.42 3.83% 21.78 14.52% 53.33 4.60% 17.10 12.55%

minmax 29.13 7.07% 23.01 19.35% 55.56 7.80% 17.13 14.18%
(0, 1) 29.51 5.74% 22.01 16.53% 71.09 8.24% 17.01 12.43%
(0, 2) 29.32 6.43% 21.71 11.35% 69.64 7.58% 17.04 9.18%
(0, 3) 28.88 5.31% 21.84 15.41% 71.28 10.53% 17.31 11.04%

500K (1, 2) 30.01 9.94% 21.69 9.38% 67.22 4.46% 17.05 7.59%
(1, 3) 30.06 8.82% 21.77 13.08% 69.73 6.80% 17.07 10.34%
(2, 3) 28.74 5.01% 21.64 15.55% 68.07 5.73% 17.05 12.28%

minmax 29.54 7.57% 23.81 22.10% 72.58 8.37% 17.02 14.14%
(0, 1) 31.23 7.74% 23.77 14.28% 99.10 6.00% 16.75 8.08%
(0, 2) 31.07 6.24% 22.74 8.08% 99.47 6.58% 16.74 7.84%
(0, 3) 30.92 5.50% 23.31 11.52% 101.61 8.53% 16.84 9.67%

1000K (1, 2) 32.66 9.50% 23.50 6.74% 97.76 3.34% 16.79 8.26%
(1, 3) 32.68 9.47% 23.86 11.45% 97.43 4.57% 16.74 10.07%
(2, 3) 31.07 4.80% 23.72 13.64% 95.05 4.06% 16.97 10.63%

minmax 32.60 10.61% 27.63 23.83% 103.04 7.19% 16.80 13.11% 

Table 10: Raw results for 4D correlated data 



 xvii  

 

 

 

 

 

(a) Performance improvement of minmax against worst pair 

Distribution               Uniform           Anti-correlated             Correlated

           Dimension
Improve

3D 4D 3D 4D 3D 4D

Average 10.73% 22.97% 11.48% 24.91% -5.02% -0.57%
Maximum 24.44% 39.38% 22.92% 44.31% 2.40% 2.72%
3rd quartile 13.27% 31.23% 13.10% 31.25% -0.88% 0.92%
Median 10.38% 25.09% 9.83% 26.46% -2.86% 0.47%
1st quartile 6.79% 13.97% 8.42% 15.47% -6.23% -0.32%
Minimum 1.54% 8.55% 4.62% 9.62% -22.42% -15.80% 

 

(b) Performance improvement of minmax against best pair 

Distribution               Uniform           Anti-correlated             Correlated

           Dimension
Improve

3D 4D 3D 4D 3D 4D

Average 4.91% 13.89% 6.26% 14.82% -10.08% -3.06%
Maximum 16.88% 32.29% 16.92% 32.55% -0.93% 0.06%
3rd quartile 7.49% 22.54% 8.51% 24.56% -2.33% -0.34%
Median 4.62% 9.27% 6.52% 10.52% -5.24% -1.36%
1st quartile 1.74% 6.00% 3.74% 6.39% -14.58% -3.75%
Minimum -3.66% 0.39% -5.26% 0.20% -31.86% -21.50% 

Table 11: Performance improvement of minmax against best and worst pairs 
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Appendix C: Program Listing 

The program source code is organized by Java packages. We list here a directory of 

source code files, together with their descriptions. 

 

(default package) 

♦ Stars.java     contains main class, an entry point to STARS 

(datastruct)  

♦ Dag.java     implements directed acyclic graph 

♦ Dimensionality.java   handles data dimensionality 

♦ IntList.java     a list structure for holding intergers 

♦ SkyBuffer.java    implements skybuffer 

♦ SkyGrid.java    implements SkyGrid 

♦ Skyline.java     implements skyline 

♦ SkylineMaintenance.java  skyline computation framework 

♦ Tuple.java     data structure for tuple 

♦ TupleList.java    a list structure for holding tuples 

♦ ValueList.java    a list structure for holding attribute values 

(geometry) 

♦ Arrangement.java   implements geometric arrangment 

♦ Face.java     data structure for face in arrangment 

♦ HalfEdge.java    data structure for half edge in arrangment 

♦ Line.java     data structure for line in Cartesian plane 

♦ LineList.java    a list structure for holding lines 

♦ Vertex.java     data structure for vertex in arrangment 

(generator) 

♦ DagGenerator.java   a generator of attribute domain 

♦ StreamGenerator.java   a generator of tuple stream 


