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Abstract

Recently there is much research interest in skytiomputation. In this project, we
focus on skyline query over partially-ordered atite domains in an online streaming
context. We study an existing work, identify praobke and limitations of it, and
realize techniques to address them. In particularintroduce an extension algorithm
to adapt the existing work for a more general damae definition that can work
correctly without making assumptions about thalattes. In addition, we develop a
new scheme to map tuples into lines in the Carteplane, which considers all
attributes instead of the arbitrarily chosen twbeThew mapping scheme improves
pruning efficiency of the geometric arrangemenhaly, we conduct experiments to

analyze the existing work and evaluate our proposeuhiques.
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1 Introduction

Recently, skyline queries have been under mucharelsanterest. A skyline query
returns a set of tuples (the so called “skylinégttare considered dominant among all
available data tuples. Let us first review someinitgfns [5] for ease of further

discussion.

Definition 1. A tuple X dominatesa tupleY iff X is better than or equal Yin every
attribute, and is better in at least one attribUiteo tuples areied if neither of them

dominates the other.

Definition 2. The skyline of a set of data tuples consists of all tuples #ra not

dominated by any other tuples in the set. A skylupe is said to be dominant.

Clearly, the skyline is highly sought by users heseaof its dominant nature [5]. It is
especially valuable in the presence of a large anotidata, in extracting relevant

information that might interest users.

Using the common example in the literature, conside scenario where a tourist is
looking for a hotel. Suppose the tourist preferstay at a cheap hotel that is close to
the city. A hotelX is considered to dominate another hotdland only if:

(1) X.price< Y.price; and

(2) X.distance< Y.distance; and

(3) at least one of the two relations in (1) andigastrict.
The skyline of hotels consists of all hotels that @ot dominated by any other, which

are desired by the tourist.

While much work focuses on skyline queries withaligtordered attribute domains



[5][6][8], some deals with partially-ordered domsiimstead [2][9]. Partially-ordered
domains have wider applicability as in the représtgons of hierarchies, preferences
and interval data [2]. Attribute values on a pdsttardered domain may be
comparable or incomparable, and their relationccanemonly represented as directed
acyclic graphs (DAG). Each attribute value is mapjmea vertex, and a directed edge

is used to indicate the relation between two cosadparvalues whose relation cannot
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Figure 1: A sample DAG representing a partially-ordered dioma

be inferred by transitivity [9].

For example, irFigure 1, there are five possible values in a partiallyevedl domain
(a b, c, d ande). Among those which are comparable, for examgpls, better thare,
andc is better thard, as indicated by the directed edges connecting.thes also
better thard, which can be inferred by the transitive propentyl therefore a directed
edge froma tod is not required. If two values are incomparabkather is better than
the other & andb, d ande). Additionally, if two values are said to be equhky are
meant to be represented by the same vertex. Usimgdtion, dominance and skyline
are well defined inDefinition 1 and Definition 2 for tuples with partially-ordered

attribute domains.

Skyline queries may also take place in an onlinefttine environment. In an online
environment, there is a stream of incoming datdegifo the system. The skyline is
continuously updated upon the arrival of new tuples an offline environment,
however, the data is less dynamic and skylinesaassvered on demand instead of

continuously computed [9].



In this project, we investigate efficient algorittmto compute skylines on
partially-ordered domains in an online streamindadeontext. We examine the
state-of-the-art algorithm Streaming ArrangemenyliBk (STARS) [9], identify its
problems and limitations, and design solutions ddress them. We have made the

following major contribution:

(1) Extended STARS to work with the standard definitioh dominance as
introduced inDefinition 1

(2) Identified the limitation of STARS in using a geame arrangement for the
skyline, and introduced a novel scheme “minmax” ublize it more
efficiently;

(3) Conducted extensive experiments to analyze and ammBTARS and our

proposed techniques.

The rest of this report is organized as followsSkction 2we review related work,
with an emphasis on STARS. 8ection 3ve analyze the design adopted by STARS,
identify its problems and limitations, and devissgible solutions to address them. In
Section 4we address any implementation issues whil&éttion 5 we showcase

experimental evaluations. Finalyection 6concludes the report.



2 Related Work

A number of algorithms have been proposed to ansiwgine queries. While earlier
algorithms do not utilize any index structure, mofsthe recent ones use some index
structure (e.g. R-tree is utilized in [5] and [8hd ZBtree in [6]). It is generally
agreed that non-index-based algorithms are inféadhe index-based ones [2], due

to the capability of effective pruning by the indgxuctures.

The above works of NN [5], ZBtree [6] and BBS [&all exclusively with totally
ordered domains. There are also some algorithms dha able to work on
partially-ordered domains (e.g. SDC [2] and STARS§.[As expected, the latter is
more complex than the former, as the latter maststiorm partially-ordered domains

in a suitable way in order to utilize some indexisture for effective pruning.

In SDC [2], each value in a partially-ordered domain is mapped to anruske
fi(v)UN x N, whereN denotes the set of natural numbers, such thigi/jfcontains
fi(v’), thenv dominates/’. But the inverse is not true, thus there may kefpositives
in the skylines computed based on the transfornoedatch, which must be checked.
R-tree [2] is then used as an index structure ertrdmsformed domains to exploit the

pruning potential.

In STARS [9], each valuein a partially-ordered domain is mapped to itseorgv) in

a specific topological sort [7] of the DAG that repents the domain.

Definition 3. A topological sortof a DAG is a linear ordering of all the vertiaaghe
DAG such that for any directed edge, the vertexrefiestarts is always listed before
the vertex where it ends. We denote the integeicatihg vertexv's position in a

specific topological sort br(v).



According toDefinition 3 there could be more than one valid topological o a
DAG. However, for the purpose of STARS, any spedifipological sort suffices [9].
Additionally, by the definition of a topological kpif r(v) > r(v’), thenv cannot be
better tharv’ (or equivalentlyy cannot dominatg’). Similarly, its inverse is not true.
In this case, the actual and more expensive dorognenmparison must be invoked to
determine the dominance relation. The geometriangement [9] is then used in

STARS on the transformed domains.

As our project focuses on skyline computation ortigldy-ordered domains in an
online streaming data context, the approach by SSARmMore appropriate. Although
the SDC approach is efficient in an offline enviment on partially-ordered domains,
it suffers from the increase in data dimensiongisch attribute value is mapped to
an interval represented by two integers, effecyivdbubling each dimension), in
addition to the reduced performance in maintainamgl querying the buffer in a
streaming context [9]. Therefore, for the rest o tsection, we review the STARS

algorithm which this project is based on.

2.1 Overview of Skyline Computation in STARS

In STARS [9], a buffer of fixed size is maintained. sliding window model is
assumed, which means a new incoming tuple is ddrtto the buffer, while the
oldest tuple is removed or expires from the bufférwas already full. The skyline of
the streaming data is computed based only on tineerdubuffer. Following each

incoming tuple, the skyline is updated to refléxa thanges in the buffer accordingly.

Furthermore, older tuples that are dominated byenemes can never be promoted to
the skyline because newer ones expire only aferabnes. Therefore, these older
tuples are irrelevant for the skyline computati@mly the relevant part of the buffer

(the so called “skybuffer”) needs to be considered.



Algorithm Skyline computation framework

Input: skybufferSB skylineS S SB incoming tuplan, outgoing tupleout

=

if in not dominated bgthen
2. Insertin in Sand remove any dominated tuples fr§m
endif
Insertin in SBand remove any dominated tuples fr6®
if outis inSthen
Removeoutfrom S

Retrieve tuples iBBdominated byut,

S A S

Insert retrieved tuples that are not dominate8into S
endif

8. Removeoutfrom SB

Figure 2: Algorithm of skyline computation framework

An overview of the skyline computation framewor&rfr STARS [9] is reproduced in
Figure 2 The framework is invoked for every incoming tupie a stream. It is
abstract and independent of the underlying indexcgires. However, it reveals that
retrieving tuples in the skybuffer that are domémlby a query tupfe(line 3 and 6),
and answering if a query tuple is dominated by dkgine (line 1 and 7) are two
major operations that are performed every time ¢benputation framework is
invoked. To address them, STARS introduces a Skly&ructure for the skybuffer
and geometric arrangement structure for the skykvi@ch are capable of pruning
irrelevant tuples during queries, and thus allowthg two otherwise expensive

operations to be executed more efficiently.

1 A query tupleQ is a tuple involved in a query issued to a datacatire, such as the skybuffer or skyline. A set of
tuples satisfying certain relations@ or a result related Q, is expected to be returned.



This project is based on the same frameworkigure 2 with modifications mainly

in the sub-operations of the framework.

2.2 Skybuffer Organization in STARS

Skybuffer uses a SkyGrid as its underlying indexdtire. As discussed iBection
2.1, the main query it needs to support is to rethmndet of tuples in skybuffer that

are dominated by a query tuple.

Each dimension of a data tuple is mapped to a dimerof the SkyGrid, forming a
multi-dimensional grid. Values in a dimension areuped, with each group (which
may consist of one or more values) mapped to a diugk the corresponding
dimension of the grid. Grouping controls grid grimily without which the solution

does not scale because the number of grid celleases rapidly with the size of

domains.

We will use the figure from [9] to illustrate theky&srid, which is reproduced in
Figure 3 In this example, the data is 2-dimensional, atsd domain on each
dimension is represented by the DAGHIgure 3(a) Given a desired grid granularity,
grouping of values is done using a partitioning ristic as inFigure 3(a) The

SkyGrid based on such a grouping is showRigure 3(b)

(a) Domain DAG (b) SkyGrid

4_
gh f dec b a

° ° g,h

Figure 3: Value grouping and focused search in SkyGrid



The partition heuristic aims to reduce the numbkrSkyGrid cells returned by
focused search. Focused search is the pruning iigpabovided by the SkyGrid,
which finds relevant cells that can possibly be tated by the query céllwhere the
query tuple would have belonged to. Rigure 3(b) the query cell is marked by a
cross (x), and the candidate cells returned bydedwsearch are marked by dots ().
The actual and more expensive dominance companseds to be invoked only for
tuples in candidate cells found by focused seaktilother SkyGrid cells are ignored,

as they contain no tuple which can be dominatethéyjuery tuple.
2.3 Skyline Organization in STARS

For the skyline, each tuple is mapped to aVimer(a) - x —r(b) in the Cartesian plane,
wherea, b are two attributes of the tuple. Recall that tlsahonr(v) refers to the
topological sorting order of as introduced iDefinition 3 The two attributea andb
are selected arbitrarily but statically before sikglcomputation starts. This means

once a selection is determined, it remains boundlfduples.

The skyline is then organized as a geometric aenauegt of the mapped lines in the
Cartesian plane [9]. As discussedSection 2.1the main query it needs to support is

to answer whether the any skyline tuple dominatgseay tuple.

STARS claims a query tupl& can be dominated by a skyline tuglgonly if the
lines mapped from them intersect on the positivié dfathe x-axis’. It follows from
the reasoning that if the-coordinate of the intersecting point is negatitres two
tuples are tied. Using basic algebra,tfmordinate of the intersecting point is

_1(Tyb) ~r(Tsh)
Ty (To-d) —r(Tsa)

2 By saying a celK can possibly dominate another ¢&llwe mean it is possible for some tupleXito dominate
some tuples ify. We callX the query cell, anf a candidate cell foxX.

3 As we will see irSection 3.1this claim is only true given the assumptiondh [vhich ignores the case of equal
attribute values in dominance comparison.



If x < 0, then either
r(To.b) >r(Tsb) andr(Te.a) <r(Ts.a),
or r(To.b) <r(Tsb) andr(Tq.a) >r(Ts.a),
which implies either
Tg does not dominafés andTs does not dominatég
or Ts does not dominatéy andTq does not dominatés

In either case, the two tuples are tied and caoriveed.

Therefore, the geometric arrangement only needsdie the parts of lines on the
positive half of thex-axis, and only the lines that intersected by thery line needs

to be further evaluated. Additionally, the queryregressive, returning immediately
if a positive result is encountered (i.e. a skylingle dominates the query tuple). This

progressive process can be demonstrated by thelbnvinFigure 4

anymore

return false

intersecting line

retrieve next intersecting
line and its tupléls

Ts dominate
query tuple?

return true

Figure 4: Flowchart for skyline arrangement query

Again, we will use the figure from [9] to illusteathe geometric arrangement, which
is reproduced irrigure 5 In this example, the skyline consists of thregds Ty, T»
andTs which are mapped 1, I> andl; respectively. The query tuple, is mapped to

lo and is represented by the dotted lin€igure 5.



D : X
g query line

Figure 5: Geometric arrangement for the skyline

Starting from they-axis, the query progressively encounters linesrggicted by the
query linelg, namelyls andl,, in that order. Sinck, encounters; first, STARS first
checks whethefs; dominatesTo by invoking the actual dominance comparison. i no
it continues and checks whethigrdominatesTo and so onl; is pruned and no actual
dominance comparison is needed, because it doéstardect withg on positive half

of thex-axis.
To ensure efficient operations of the geometriarmgement, STARS makes use of the

data structureloubly-connected-edge-li$DCEL) [1], which allows the retrieval of

lines intersected by a query line@gs) time, wheres is the size of the skyline.

10



3 Design

Our design is based on the STARS [9] approachdotred inSection 2 We have
examined this approach, and identified some probland limitations with it. In the
following subsections, we discuss our proposedtsmis:
(1) An extension algorithm which allows STARS to workrrectly with the
standard definition of dominance introducediefinition 1
(2) A novel “minmax” mapping scheme for the geometrimagement used in the
skyline, which has better performance;

(3) Other minor optimizations.

3.1 Extension Algorithm to Query the Skyline

Sarkas et al [9] ignores the case of equal ateilmalues in order to simplify the

discussion. With this assumption, their definitafrdominance can be simplified as:
“Atuple X dominates a tupl¥ iff X is better thary in every attribute.”

Comparing this with the standard definition in therature as stated iDefinition 1,

the case of equal attribute values are eliminated.

Although this assumption seems trivial, direct aggtlon of STARS to the standard
definition of dominance invalidates the pruning tbe skyline by the geometric
arrangement. Recall that in STARS, the geometriangement only stores the parts
of lines mapped from skyline tuples on the positiadf of thex-axis. A query tuple
To can be dominated by a skyline tuplg only if the lines mapped from them
intersect on the positive half of tlxeaxis. Unfortunately, this is only valid given the

assumption in [9], where the case of equal atteivadues is ignored.

The STARS approach reasons the validity of onlyckimg lines intersecting on the

positive half of thex-axis by proving lines intersecting on the negathadf are

11



irrelevant (se&ection 2.3 However, the relation of two lines that do nutersect on
the negative half of theaxis can have three disjoint scenarios:

(1) They intersect on the positive half of thaxis;

(2) They intersect exactly on tlyeaxis (i.e. samg-intercept);

(3) They are parallel (i.e. same gradient).
The STARS approach only addres&enario (1) which is sufficient under their
assumption, as the other two scenarios can berdestaf the case of equal attribute

values is not considered.

Let us now consider the case of equal attributaeslEach tuple is mapped to a line
y =r(a) - x —r(b), wherea, b are two selected attributes of the tuple. Forasiplith
equal value in attribute, they map to parallel lines; for tuples with equalue in
attribute b, they map to lines with sameintercept. ByDefinition 1, they are still
possible to dominate each other. Therefore, we haveonsider the other two

scenarios if we want to apply STARS to the standifthition.

Falsely pruned tuples iBcenario (2)s trivial to recover. Since the lines intersent o
the y-axis, we just need to extend the geometric armawege to store the parts of the
lines on the non-negative half of tkexis, as opposed to only the positive half in the

STARS approach.

However,Scenario (3needs some modifications to the original querypiadlgm. The
original query is unable to retrieve any parallaks. Therefore, a second auxiliary
query is required to retrieve all lines parallelthe@ original query lindg. Note that

doing two queries instead of one does not chargeftitiency class of the algorithm.

The problem now lies in choosing a suitable aumiliguery. Apparently the auxiliary
query linelp must have a different gradient lasin order to intersect lines parallel to
lo. Furthermore, its gradient has to be larger, mby different. A query tupldg can

be dominated by a skyline tuplg when their line representations are parallel, anly

12



r(Tsb) <r(Tq.b), i.e. only by the parallel lines above the quierg IQ4. In order forla
to intersect with all lines parallel to and abdygela must have a gradient larger than

lo, and have the sanyentercept aso.

As illustrated inFigure 6 the skyline consists of four tupl@s which map to four
parallel linesl; respectively, where= 1, 2, 3, 4. The query tuple, maps to the line
lo. Only T3 andT,4 can possibly dominaf&,, because their linds andl, are abovéy.
T, andT, can be pruned immediately because of their nelib&er nor equal values
in attributeb. An auxiliary query linda with a larger gradient and the saymtercept

as the original query linkyy would suffice.

- |a> auxiliary query line
s
Ya

la
-~ lg: original query line

Figure 6: Auxiliary query line

Furthermore, in the process of an auxiliary quany non-parallel lines are irrelevant
and must be discarded. Therefore, we Wamb intersect as few non-parallel lines as
possible, which implies its gradient should be mslkas possible. If the gradient is
represented by integer, we could kgt gradient tor(Tg.@) + 1, wherer(To.a) is the

gradient oflq.

4 FromDefinition 3 a smaller topological sorting order implies agibe better value. In additiogintercept of a
line is +(b), and thus a better value (with a smati@)) corresponds to a higher line.

13



Based on our analysis, we now suggest an exteragorithm for the skyline
arrangement query, shown kgure 7. In line 1 and 4, th&uery calls invoke the
guery function of the skyline arrangement in thigioal STARS approach. In essence,
the firstQuerycall (line 1) is the original query, making usetloé original query line;
while the secon@uerycall (line 4) is the auxiliary query, making udetlee auxiliary
guery line discussed earlier. If the original questurns false, it could be a mistake.
In this case, the auxiliary query is issued, tryiagdentify and check any incorrectly

pruned skyline tuple that may still be able to doaté the query tuple.

Algorithm Extension to skyline arrangement query

Input: skylines, query linel mapped from the query tuple

Output: whethes dominates the query tuple (true or false)

1. if Query§, |) then [* original query */
2. return true;
else
3. Add 1 to the gradient &f
4. return Querysg, 1); [* auxiliary query */
endif

Figure 7: Extension algorithm of skyline arrangement query

3.2 The Minmax Mapping Scheme

Another observation of the skyline computation feavork in Figure 2 is that the
so-called “skyline mending” operation (line 7) i®ry expensive. The mending
operation identifies all tuples in the skybuffeatlare exclusively dominated by the
expiring tuple from the skyline (i.e. not dominateg any other tuple in the skyline),
which are then promoted to the skyline. For eagtietun the skybuffer that is

dominated by the expiring tuple from the skylineneeds a query to the skyline to

14



determine the exclusiveness. Therefore, the operdtiat checks whether a query
tuple is dominated by the skyline is invoked repdht in a single skyline mending

operation, which makes it very expensive

Therefore, improve the pruning efficiency of theogeetric arrangement is crucial in
improving the overall performance. Currently, thrarpng capability of the geometric
arrangement is provided by ignoring lines that db intersect with the query line.
However, how the mapping from tuples to lines affepruning efficiency is not

discussed in the STARS approach [9].

In the STARS approach, a tuple is mapped to ayline(a) - x —r(b), wherea, b are
two arbitrarily and statically selected attributefsthe tuple (se&ection 2.8 There
are two problems associated with this mapping sehemdata with more than two

dimensions.

Firstly, it fails to specify how to select attrilest There could be a significant
performance gap between the best and worst paieletted attribut&sThe arbitrary
and static selection scheme ignores other infoonatavailable, such as the
characteristics of the attribute domains. If we emake of this information to make a
more informed selection, we may overcome such @peance gap between the best
and worst pair. Unfortunately, while there are sdamemnds associated with certain
parameters of the attribute domains, we fail td finclear cut between best and worst

pairs in other cases.

Secondly, this approach prunes tuples based ontaolf their attributes. In higher
dimensional data tuples, there exists other ate®uwvhose values are simply
disregarded during the pruning process. This hbhggruning efficiency, as values of

the other non-selected attributes can possiblygnihmore tuples, if they were also

5 See the performance analysis of major STARS opermihSection 5.1Figure 11
5 There is indeed a significant performance gap@alheon higher dimensional uniform or anti-coatld data,
as we will see irsection 5.3Figure 16(a)(b)
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considered during the prune. A mapping schemedasiders all of the attributes is
conceivably better because it utilizes more avélabformation. We expect such a
scheme to perform even better as the data dimeagiorncreases, as in higher
dimensional data, more information is ignored ie BTARS approach. Also, in such
a scheme, we do not have to devise an attributestiem algorithm, as all attributes

are considered.

For reasons stated above, we define a new mappiage “minmax” that makes use
of all attributes. Am-dimensional tupleX with attributesattr-1, attr-2, ..., attr-n, is
mapped to a ling =A- x - B, where

A = maxf(X.attr-1), r(X.attr-2), ..., r(X.attr-n))
and B = min((X.attr-1), r(X.attr-2), ..., r(X.attr-n)).

The maximal and minimal topological sorting ordefsttribute values for each tuple

are computed only once on tuple creation, as shdwgure 8

Algorithm Minmax mapping scheme

Input: tuplet

Output: the maximal and minimal topological sortorger pair fnax_t min_9.

1. Setmax_tto <o, andmin_tto +o;

2. foreach attributeattr in t

4, if r(attr) > max_tthen Setmax_tto r(attr) endif;

5 if r(attr) <min_tthen Setmin_tto r(attr) endif;
endforeach

6. return (max_tmin_9J

Figure 8: Algorithm of minmax mapping scheme

This scheme considers all of the attributes, btititygoes not invalidate the pruning
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capability of the geometric arrangement. Before preve its correctneds we

introduce two lemmas on which our proof is based.

Let Ix andly be the lines mapped fromdimensional tupleX andY respectively,
where each tuple hasattributesattr-1, attr-2, ..., attr-n. Also letl.A be the gradient

andl.B be the negative of theintercept of the liné.

Lemma 1. If Ix.A is greater (or smaller) thanA, then there exists at least one pair of
corresponding attributes WandY, sayX.attr-k andY.attr-k, that satisfies the relation

r(X.attr-k) is greater (or smaller) thaf\.attr-k).

Proof. From the mapping scheme, we have
Ix.A =r(X.attr-i) so thatr (X.attr-i) > r(X.attr-k), wherek # i,
and Iv.A =r(Y.attr-j) so thatr(Y.attr-j) > r(Y.attr-k), wherek # .

Given thatlx.A is greater (or smaller) thaR.A, so r(X.attr-i) is also greater (or

smaller) thamr(Y.attr-j). Now we have two cases.

Case 11 =|. There is a corresponding piattr-k andY.attr-k, wherek =i =j, that

follows the relatiorr (X.attr-k) is greater (or smaller) thaf\.attr-k).

Case 2:i #]. We have to separate the discussion of the greatgrsmaller than
relations. In the greater than relation, there éemesponding paX.attr-i andY.attr-i,
that followsr(X.attr-i) > r(Y.attr-j) > r(Y.attr-i). In the smaller than relation, there is a
corresponding pairX.attr-j and Y.attr-j, that follows r(X.attr-j) < r(X.attr-i) <

r(Y.attr-j).

In either case, there exists at least one paipoksponding attributes that satisfy the

" We first ignore the case of equal attribute valen the original STARS approach. Later, we shuat the
extension algorithm introduced 8ection 3.1s still applicable to the minmax scheme.
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relation.Q.E.D.

Lemma 2. If 1x.B is greater (or smaller) thdn.B, then there is at least one pair of
corresponding attributes frodd and Y, say X.attr-k and Y.attr-k, that satisfies the

relationr(X.attr-k) is greater (or smaller) thax\.attr-k).

We do not include its proof here, because it islaimto the proof of Lemma B is

the minimum which is symmetric #the maximum ir.emma 1

Now, we claim that if two line$c andly intersect on the negative half of thexis,
they can be pruned, i.e. there is no need to intbkeactual but more expensive

dominance comparison operation.

Proof. Using basic algebra, thecoordinate of the intersecting point of two lirlgs
andlyis
_IxB-1,.B
I A=A

If they intersect on the negative half of thaxis, then we have < 0, which implies
either

[x.B > 1y.B andlx.A <Iy.A,
or Ix.B <1v.B andlx.A > |y.A.

By Lemma landLemma 2it is equivalent to either
Ji,j: r(Xattr-i) >r(Y.attr-i) and r(X.attr-j) <r(Y.attr-j),
or i, j: r(Xattr-i) <r(Y.attr-i) and r(X.attr-j) >r(Y.attr-j).

In either case, there exist at least two pairsoofesponding attributes fro andY

that makeX andY tied. They can never dominate each other; thesefibre actual

dominance comparison can be avoided.D.
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Let us also consider the effect of equal attribudues on the minmax mapping
scheme. As discussed Bection 3.1 Scenario (2)is trivial and we only need to
validate Scenario (3) Fortunately, the extension algorithm suggeste&ention 3.1

can still be applied to the minmax mapping scheme.

Likewise, to retrieve parallel lines, we require amxiliary query in the extension
algorithm. The auxiliary query link in Figure 6 only intersects with lines above the
original query linelg, for examplels andls. Only tuples mapped to these lines are
possible to dominate the query tuple. Tuples mappéides belowg, for exampld,
andl,, are impossible to dominate the query tuple. I3&y mapped from the skyline
tuple T4, andlg mapped from the query tuple. We then havé.B > 1o B, becausé

is the negative of-intercept. ByLemma 2 there exists & such thatr(T;.attr-k) >
r(To.attr-k), which implies T; can never dominatdq. Therefore, the extension

algorithm is still applicable.

3.3 Other Optimizations

3.3.1 SkyGridfor the Skyline

Referring toFigure 2in Section 2.1the skyline includes an operation that retrieves
tuples which are dominated by a query tuple (lingi2 a similar fashion as the
skybuffer doe$ (line 3 and 6). Generally, as the buffer sizeéases, so does the size
of the skyline. The skyline may also become laigehe presence of anti-correlated
data than in the case of uniform or correlated .dafiéhout a proper index structure
(for example, the SkyGrid), the skyline retrievadecation is expected to be more
expensive than the skybuffer retrieval operationve® that the SkyGrid is an
effective index structure for the skybufteit is natural to speculate whether it is

possible to port it for the skyline as well.

8 We name the two operations “skyline retrieval” dsklybuffer retrieval” respectively. S@able 2in Section 5
® See the performance analysis of major STARS opermihSection 5.1Figure 11.

19



However, performance analysis 8ection 5.1also reveals that the skyline retrieval
operation occurs with very low frequency when coragawith the skybuffer retrieval
operation (se€igure 13. Therefore, we expect any improvement on skyletgeval
operation would only bring a marginal benefit tce tbverall performance. The
improvement would be outweighed by the overheadired to maintain a SkyGrid

structure for the skyline.

Therefore, we do not see using a SkyGrid strudimreéhe skyline is crucial, and we

do not support using it.

3.3.2 Focused Search Pre-computation

Focused search retrieves possible candidates fiwmn skybuffer that may be
dominated by a query tuple. Only the retrieved cdatds are subjected to the more
expensive dominance comparison operation, whilerotbples are pruned by the
method. We notice that for a given mapping fromadéimensionality to a SkyGrid,
candidate cells found by focused search in the caidbe determined independent of
any data tuple present in the grid. Thus in th@meessing stage we can do a focused
search for every cell (or “query cell’, where a gutuple would have belonged to),

pre-computing and storing their candidate cells.

To store the pre-computed candidate cells, we aesgparate grid. It would have the
same structure as the SkyGrid, except that instdadtoring tuples, indices of
candidate cells are stored. When a query is issmstead of doing an on-the-fly
focused search for the query cell, the candidatedimectly retrieved from the new

grid.

For each incoming tuple, we can expect the comioutdtamework inFigure 2from

Section 2.1to save no better than a constant time. The sawiogld be more

significant in higher dimensional data, as the tinemded to do a focused search
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increases with data dimensionality. However, thasirsg in time does not come
without a price. AnO(n*) space overhead and preprocessing time is needetief
new grid, wheren is the grid granularity and is the dimensionality, because each of
then? cells store©(n?) candidates. As dimensionality increases, theag®pverhead
increases exponentially, making the pre-computatiboandidate cells for all query
cells infeasible. For example, in 4-dimensionakdaith n = 20, the space overhead

and preprocessing time is on the scale 6f262.56 x 16°.

Given the large space overhead and preprocessmegneeded, and the relative small
portion of time spent by focused sedfghve do not support the pre-computation of

focused search.

19 Focused search is a part of the skybuffer rettieparation as defined ifable 2from Section 5Skybuffer
retrieval itself is not an expensive operation\ddent fromSection 5.1Figure 11
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4 Implementation

Our project is implemented based on the originaARS technique [9], with
modifications suggested iBection 3 The implementation is done in Java, with the
help of a free external library JGraphT 0.7.3 [4hich is used for implementing
DAGSs). The STARS technique in [9] only sketchesneagal outline on the algorithm.
To build an actual efficient framework, many impkemmation details cannot be
overlooked. In the following subsections, we disctise challenges encountered in

the implementation of the STARS and our proposelrigues.

4.1 Transitive Closure of DAG

The transitive closure of a directed graph withertices is given by an x n matrix,
which stores a Boolean value in iis ) entry indicating whether a path frorth
vertex toj-th vertex exists. The existence of such a patb mplies that the value
represented by theth vertex is better than that of théh. For example, the transitive
closure matrix of the DAG ifigure 9(a)is shown inFigure 9(b) This matrix can be

computed by Warshall’s algorithm [7] &(n®) time, wheren is the number of vertices

in the DAG.
(a) DAG (b) Transitive closure matrix
e 0 f e d C b a

11| 1] 1| o] 0Qa

110 1| ol of Ob

° 0 0| 1| of o] of dc

1|10| 0] of of od

0|0| ol o] of oe

e e o|lo| ol of of of

Figure 9: Transitive closure of a DAG
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Without a pre-computed transitive closure, domimamomparison between two
tuples is extremely expensive because of the coatpleof checking graph

connectivity on-the-fly. The benefit of the tramsit closure outweighs the one-time
overhead of cubic time requirement. The transitlesure must be pre-computed in

order to answer skyline queries with any reasonsizigd domain.

4.2 SkyGrid Implementation

The SkyGrid is a multi-dimensional grid structuréhwariable dimensionality and
granularity. Although most modern programming laages do support
multi-dimensional arrays, it remains difficult torgestruct such a grid directly. Instead,
in our implementation, the SkyGrid is mapped tona-dimensional auxiliary array.
Each row in the grid is mapped to the array suceelys as illustrated irFigure 1Q
Accessing a cell in the grid thus requires a mettvoohdex into the auxiliary array,
which is computed based on the indices, dimensignahd granularity of the grid.
An Abstract Data Type is used to hide array acckegails and to create a virtual

SkyGrid with variable dimensionality and granubgarit

[ 7 7

/9 710/ 11,

0|1 2

s |4l s <—> [0[1[2[3[4[5[6[7[8[9[10/1] e e e
internal representation

6|7 | 8

virtual SkyGrid

Figure 10: Mapping of SkyGrid to 1D array

4.3 Skybuffer as a FIFO Queue

Recall that skybuffer uses the SkyGrid index stiteeto allow efficient pruning when
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answering queries. But we also have to model thbusker as a first-in-first-out
(FIFO) queue in order to keep track of the ordertted tuples coming into the
skybuffer. When a new tuple comes in, and the buifas already full, the oldest
tuple expires and will be removed from both thefdruénd skybuffer (if it resides in
the latter as well). A FIFO queue allows retrieghthe oldest tuple at the head of the
gueue from the skybuffer in constant time, whicll sé compared against the oldest
tuple in the full buffer. If they match, they areetsame tuple which is expiring.
Removing the expiring tuple at the head of the guean also be done in constant

time.

In our implementation, a FIFO queue is used in tagldito the SkyGrid to model the
skybuffer. While the former allows efficient engeeand dequeue operations, the
latter allows efficient pruning for a given quer. memory overhead 00(s) is
required, where is the size of the skybuffer. But given the relatsmaller size of the
skybuffer as compared to the actual buffer, we eixfige additional linear memory

requirement is reasonable with any modern hardware.

4.4 Skyline Arrangement as a Hash Table

A hash table is used in the geometric arrangematat structure to keep track of all
lines present in the structure. Each class of idainiines (i.e. lines with same
gradient and-intercept, mapped from different tuples) are starea list, which is in
turn stored in the hash table. For each list, @mg line is actually involved in the
arrangement. This reduces duplication of identiceds, simplifies the arrangement,
and improves query time. Using a hash table fatdg an amortized constant time

access to a specific list as required by tupletamdand removal operations.
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5 Experiments

This section showcases our experimental evaluatmssipport our design proposed
in Section 3 While Section 5.1analyzes and identifies potential room for
improvements in the STARS technique [9], subseqseitsections compare our

suggested design with the original STARS design.

Before going into the experiments, we would likentvoduce the notations used in [9]
to specify input forms. Recall that an attributer@din can be modeled by a DAG. A
DAG can be characterized by parametersh c, f), which are defined iDefinition 4

andTable 1]9]. We will refer to a DAG and the domain it repeats by its parameters,

for example, (500, 8, 0.3, tree).

Definition 4. In a directed acyclic graph, a vertex without amgoming edge is a
source Thedepthor depth levebf a vertex is the length of the longest path framy

source to this vertex.

Parameter | Description

m Number of vertices in the DAG.

h Height of the DAG.

It is the number of depth levels of all verticeghie DAG.

c Inter-connectivity ratio.

A vertex has outgoing edges directecctof the vertices on the next
depth level, where 0 < 1.

f Tree or wall structure.

In a tree structure, each depth level has twicmasy vertices as th
previous depth level has; while in a wall strucfugach depth leve
has the same number of vertices.

— @

Table 1: Parameters of a DAG
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We also name four major operations of the STARSriggie inTable 2to ease

further discussion.

Operation Description

Tuple update A complete run of the skyline compaoitatiframework ag

outlined inSection 2.-andFigure 2

Skyline mending Identify tuples in the skybuffeattare exclusively dominated

by the expiring tuple, and promote them into thdiak.

Skyline retrieval Retrieve all tuples from the skgl that are dominated by |a

query tuple.

Skybuffer retrieval | Retrieve all tuples from theyliffer that are dominated by|a

query tuple.

Table 2: Major operations in STARS

All experiments are conducted on Solaris 10, inaJ8erver Virtual Machine (VM)

version 1.5. A heap size of 3.5GB is allocatedlier Java VM.

5.1 Analysis of STARS

Experiments on 2D, 3D and 4D data are conducteath8tic data on domains (500, 8,
0.3, tree) is used, and each tuple in the streangeiserated uniformly and
independently. The average execution time for m&bARS operations is shown in

Figure 11 Note that the scales on tx@xis are logarithmic.

By comparing the experiment results on 2D dat&igure 11(a) 3D data inFigure
11(b)and 4D data ifrigure 11(c) we observe the sharp increase in execution time f
all operations with respect to data dimensionalityaddition, skyline mending is the

most expensive operation across all dimensionsiaf. d
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Figure 11: Performance analysis of major STARS operations
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It also reveals that the SkyGrid is an efficienidr structure to retrieve the set of
tuples dominated by a query tuple, as evident énstinall skybuffer retrieval time. In
addition, as the buffer increases, the skybufferienal time is fairly stable and

remains small.

The skyline retrieval operation does the same jokthe skyline, as the skybuffer
retrieval operation does on the skybuffer. Howevle skyline lacks an efficient
index structure such as the SkyGrid; therefore, skgline retrieval operation is
expected to be more expensive than the skybuffeeval operation. Fortunately, due
to the smaller size of the skyline with respecthe skybuffer, the skyline retrieval
operation still gives acceptable performance, aafjgcin comparison with the

skyline mending operation.

On the other hand, the skyline mending operatiowvels/ expensive, and grows
rapidly particularly in higher dimensional data.drskyline mending operation, there
are repeated queries of the skyline in order tavansf tuples in the skybuffer are
exclusively dominated by the expiring tuple frome tlskyline. The repeated
invocations to query the skyline attribute to thepensive nature of the skyline

mending operation.

Now we have identified two operations that haveeptél room for improvement: the
skyline mending and skyline retrieval operatiomsotder to see if they are relevant to
the overall performance, we must examine the frequef such operations as well.
Figure 12andFigure 13shows that as buffer size increases, the freqesmdiskyline
mending and retrieval operations decrease. As thiferb size increases, the
probability of an expiring tuple to affect the sky decreases, resulting in a
decreased frequency of skyline mending operatioraddition, when the buffer size
increases, the skyline becomes more saturatedtingsin a decreased probability for

an incoming tuple to affect the skyline. This ingglia decreased frequency of skyline
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retrieval operation.

Frequency percentag
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Frequency percentages of skyline mending
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Figure 12: Frequency percentages of skyline mending operation
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Figure 13: Frequency percentages of skyline retrieval opamati
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Another observation is that the two identified @tiems are more frequent on higher
dimensional data. This is also expected, as the afizhe skyline is generally larger
on higher dimensional data, and thus there is lagnigrobability that an incoming or

expiring tuple affects the skyline.

Given the expensiveness of the skyline mending atjper, and its non-negligible
frequencies especially on higher dimensional data,justified to improve it in order
to improve the overall performariéeNote that even though the frequency is low in
certain cases, and the overall performance woultkde affected, it is still worth to
improve the skyline mending operation, especiaflytime-critical systems where

every tuple update must be accomplished in a gpdqgikeriod of time.

On the other hand, the skyline retrieval operat®omuch cheaper than the skyline
mending operation. Although their frequencies afwtences are at a similar level,
any improvement to the skyline retrieval operatiwould only be marginal to the
overall performance. If we were using the SkyGnod the skyline, its improvement

would be outweighed by the overhead required tontaai such a grid structure.

5.2 Correctness of the Extension Algorithm

While we have explained the correctness of thensxba algorithm for the original

STARS mapping scheme i8ection 3.1 and for the minmax mapping scheme in
Section 3.2our experimental results have also shown sugdpoiits correctness. For

the extension algorithm on the original STARS magmcheme, we compare it with
a brute force approach on small buffers. Resultsvsthat the skylines generated by
both methods are identical. For the minmax mapptigeme, we compare it with the
STARS mapping scheme. Again, results confirm tlegt ¢enerated skylines are

identical.

11 We have improved it by using the minmax schemiatasduced inSection 3.2

30



5.3 Effects of the Minmax Mapping Scheme

We have conducted experiments comparing the minamak the STARS arbitrary
selection scheme on 3D and 4D dataFor the STARS scheme, we have run
experiments on all possible selections of the katté pairs, and recorded

performances of the worst and best pairs.

We have synthesized domains of various parametdiable 3 We have also fed each
set of experiments streams of different statistidadtribution, namely uniform,
correlated and anti-correlated tuples [3][5]. Thedition of an anti-correlated tuple
is not clear when there are more than two dimessidm our experiments, we
randomly choose two dimensions and make them antelated [5]. Additionally,

within each set of experiments, we vary the busfee from 10K to 1000K.

Dimension Set | Set Il Set I Set IV

(254, 7, 0.3, tree) (127, 7, 0.2, tree) (100, 10, @all) | (510, 8, 0.3, tree)i

| (189, 6, 0.6, tree) (27,7, 0.2, treg) (100, 1, @all) | (510, 8, 0.3, tree)i

3D (180, 20, 0.3, wall)| (124, 5,0.2, tree) | (100, 10, 0.4, wall) (510, 8, 0.3, tree)!

4D (90, 4, 0.2, tree) | (124,5,0.2,tree)| (100, 10, 0.8, wall) (510, 8, 0.3, tree)

randomized different heights different inter- | same parameters
parameters connectivity ratios

Rationale

Table 3: Domains used in experiments to evaluate the mirsnhgme

For each experiment, average performdhger tuple update using minmax scheme
is compared with the best and worst performingspafrattributes using the STARS
approach. The performance of the minmax schemettantbest pair are normalized
against that of the worst pair. All worst pairs édkieir performance normalized to 1

or 100%, serving as one standard unit. A sumffian§ all experiments comparing the

12 For 2D data, all mappings are consistent, becenese are only two attributes in a tuple.
13 performance refers to the measure of the exectiti@nrequired for a certain operation.
14 The detailed results for each experiment can beddn Appendix B: Results of Experiment Sets |, II,IM1,
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performance of minmax scheme to the worst andgeébrming pairs is presented in

Figure 14(a)andFigure 14(b)respectively.
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Figure 14: Summary of minmax versus worst and best performpaics

Results are also averaged across all sets of expets, grouped by data

dimensionality, statistical distribution and buff@ee, as shown ifigure 15for 3D
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data and irFigure 16for 4D data.
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Figure 15: Comparison of average performance on 3D data
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Figure 16: Comparison of average performance on 4D data
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One immediate observation from the results is themax scheme performs better in
higher dimensional data for all statistical distitibns (seeFigure 14 and compare

Figure 15 with Figure 16. This is expected, as in higher dimensional d#ie,

original STARS scheme ignores more attributes, Wwitculd be otherwise useful in
pruning irrelevant tuples. For example, on 3D dataut of 3 (or 33%) attributes are
disregarded, while on 4D data 2 out of 4 (or 50%)bautes are disregarded. Also, the
skyline mending operation, which utlizes the mixmacheme, occurs more

frequently on higher dimensional data, as evideRigure 12

In addition to performance, we have also recordedpruning efficiency of each
experiment. Results are aggregated, normalizedagachged in a similar fashion as
performance. The average pruning efficielfcygrouped by data dimensionality,
statistical distribution and buffer size, is presehnin Figure 17 for 3D data and in

Figure 18for 4D data.

From the results ifrigure 17(a)(b)andFigure 18(a)(b),we observe that on uniform
and anti-correlated data, the minmax scheme géyeiaes better pruning efficiency
than the original STARS technique. Consequentlg mhinmax scheme not only
overcomes the performance gap between the bestwarsl pairs, but also gives a
lead over the best pair, as evidenFigure 15(a)(b)andFigure 16(a)(b) Moreover,

on anti-correlated data, the minmax scheme achiavsightly better performance
(seeFigure 19, as the skyline tends to be larger on anti-categl data, which

increases the frequency of the skyline mendingaijuer.

Also note that inFigure 17(a)(b) there are some irregularities in the pruning
efficiency with 3D data when the buffer is larg@@& and 1000K). This irregularity
could be caused by insufficient sample, as theuiaqy of skyline mending

operations is low on 3D data when the buffer igéaised-igure 12.

15 1t is the portion of skyline tuples that requital dominance comparison (i.e. portion of thdiskytuples
that are not pruned). A smaller value indicatesebgiruning efficiency.
18 The detailed results for each experiment can beddn Appendix B: Results of Experiment Sets |, II,I1,
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Figure 17: Comparison of average pruning efficiency on 3Cadat
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(a) 4D uniform data average
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On the other hand, on correlated data, the minrohrrse fails in terms of pruning
efficiency (seeFigure 17(c)andFigure 18(c). This failure is expected due to the

nature of correlated tuples.

Say we have two independently generated tuflesd Y, each withn correlated
attributesattr-1, attr-2, ..., attr-n.
If max((X.attr-1), ..., r(X.attr-n)) > max¢(Y.attr-1), ..., r(Y.attr-n)),
then the following tends to hold as well:
min(r(X.attr-1), ...,r(X.attr-n)) > min(¢(Y.attr-1), ..., r(Y.attr-n)).
This tendency hurts the pruning efficiency, whielies on conflicting attribute pairs

to conclude thaX andY are tied and can be pruned.

However, in terms of overall performance, the mirnsaheme is only marginally
inferior to the original STARS scheme when usechwibrrelated data, especially on
higher dimensional data (sEgure 14 Figure 15(c)andFigure 16(c). There are two
reasons for this result. Firstly, with correlateatad the skyline generated is generally
smaller when compared to that with uniform or aatirelated data. This leads to a
lower frequency of skyline mending operations. $eity with correlated data, tuples
in the skybuffer tends to concentrate in a fewscefl the SkyGrid, which is used to
model the skybuffer. This tendency reduces theceffeness of the SkyGrid, resulting
in more expensive skybuffer retrieval operations. &result, the skyline mending
operation takes up a smaller portion of the ovetafile update time, and any
difference in the pruning efficiency of the arrangt structure would contribute less

to the overall performance.

Based on the results of these experiments, we wdadhat the minmax scheme is
successful, particularly when used on higher dinograé, uniform or anti-correlated
data. On correlated data, it is marginally inferiorthe original STARS scheme in

terms of overall performance, especially on highierensional data.
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6 Conclusion

6.1 Summary

In this project, we studied techniques for skylc@mputation on partially-ordered
domains in an online streaming context. We usedSMARS [9] approach as a
starting point, identified its limitations and pteims, and devised improvements and

solutions to address them.

To summarize this project, we have:

(1) Introduced an extension algorithm to apply STARSeque to the standard
definition of dominance irDefinition 1, which works correctly with equal
attribute values;

(2) Designed the novel minmax mapping scheme, whiclsiders all attributes
instead of the arbitrarily chosen two. The minmaapping scheme improves
performance significantly, especially when usechgi-dimensional uniform
or anti-correlated data;

(3) Discussed the possibility of pre-computing focusedrch as well as using the
SkyGrid structure for the skyline;

(4) Presented the challenges encountered during implatnen, and our
solutions for them;

(5) Conducted extensive experiments to analyze STAR& ewaluate our

proposed techniques.

6.2 Limitations and Future Work

One limitation in our work is the inability to che® a scheme based on the statistical

distribution of the data stream. Although the mimnsaheme is generally better than
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the STARS approach, it is outperformed sometimewa@see inSection 5.3when
correlated data is used. If the distribution of ithmoming stream is known beforehand,
it might be easier to address this limitation. @thse, it is possible to analyze a

sample of the data stream before the actual skgbngputation begins.

Another limitation lies in the implementation of igh project. In current
implementation, all data resides in the main memOne notable data structure is the
geometric arrangement for the skyline. It requae®©(s?) space, which can grow out
of bound when the size of the skyline increases. Additionally, the buffery
become very large in certain real-life applicatioRsiture work may consider the

storage of some less frequently used data in secpmidemory.

Finally, the SkyGrid may deserve our attention utufe work. It becomes less

efficient when used on correlated data.
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Appendix A: Notations Used in the Report

We have tabulated ifable 4a list of notations that are frequently used is teport.

Some standard or widely used notations are natdied.

Notation Meaning
DAG Directed acyclic graph, a directed graph withogcles.
STARS Streaming Arrangement Skyline algorithm.

r(v),
or topological

sorting order of

The integer indicating verteXs position in a specific topological sort of t
DAG containingv. Sometimes, we also use as an attribute value in

partially-ordered domain which corresponds to atexerin the DAG that

ne

a

Y represents the domain.

TV The value of attribute in tupleT.

Ta The value of the first arbitrarily selected atttibin tupleT, used in the STARY
technique.

T.b The value of the second arbitrarily selected attgbin tupleT, used in thg
STARS technique.

LA Gradient of the lin¢in the Cartesian plane.

1.B Negative of theg-intercept of the ling in the Cartesian plane.

max@y, ..., an)

The maximum value amorsg, wherei =1, 2, ...,n.

min(ay, ..., a,)

The minimum value amonrgy, wherei = 1, 2, ...,n.

nD

n-dimensional, wheralJN, the set of natural numbers.

Table 4: Notations used in this report



Appendix B: Results of Experiment Sets I, 1, 1lI, 1V

Detailed results of experiment sets (as designedlalsle 3 are tabulated in this

appendix.

Table 5 Table 6and Table 7contain raw results for 3D uniform, anti-correthiend

correlated data respectively. 3D data tuples hiakeetattributes numbered 0 through
2, and an attribute selection is a pair of integedscating the attribute combination
selected. There are a total of three possiblebattiselections, namely (0, 1), (O, 2)

and (1, 2).

Similarly Table 8 Table 9 and Table 10 contain raw results for 4D uniform,
anti-correlated and correlated data respectivddy.ddta tuples have four attributes
numbered 0 through 3, and there are a total ghessible attribute selections, namely

0, 1), (0, 2), (0,3), (1, 2), (1, 3) and (2, 3).

Finally, results derived from comparing the perfarmce of the minmax scheme and
the best and worst pairs are presentetainle 11 Statistical indicators are given on

the performance improvement.

(The rest of this page is intentionally left blank.



Buffer Experiment Set | Set | Set Il Set IV
size | Attribute selectionl Perf] P.E.+4 Perf P.E Perdl. P.E Perf. P.E.
©,1) 0.92] 8.06% 1.3¢6 14.08% 2.00 10.45% 0|87 8.p8%
10K ©, 2) 0.82] 5.62% 1.21 10.29% 1.93 10.11% 0193 10.p5%
1,2 0.84] 556% 1.22 10.09% 1.85 9.80% 0|92 10.18%
Minmax 0.85| 6.27% 1.18 11.58% 1.77 9.6D% 0|76 5.56%
0,1 0.83] 6.70% 0.94 10.7d% 1.87 9.4P% 0|76 6.B7%
20K ©, 2 0.76] 4.21% 0.8% 8.50% 1.77 8.5p% 086 8.61%
1,2 0.76] 4.34% 0.84 8.00% 1.3 8.6B% 0[90 8.44%
Minmax 0.76] 5.01% 0.81 8.44% 1.62 8.2p% 0/68 4.23%
©,1) 0.68] 5.28% 0.70 8.80% 1.71 7.5p% 0|74 5.839%
50K ©, 2) 0.64] 352% 0.68 7.29% 1.65 7.5/% 0|83 7.12%
1,2 0.64] 3.47% 0.66 7.38% 1.64 9.0p% 0|83 7.23%
Minmax 0.65| 4.69% 062 7.27% 1.50 7.08% 0j65 3.60%
©,1) 0.66] 5.80%9% 0.5 9.29% 1.64 6.3p% ol77 6.50%
100K ©, 2 0.62] 2.75% 0.56 8.47% 1.%8 6.1p% 082 5.16%
1,2 0.62] 2.68% 0.54 8.49% 1.%8 7.8p% 0[80 4.Y1%
Minmax 0.62| 4.46% 052 6.71 145 5.6f% 064 2.74%
0, 1) 0.68] 6.13% 0.62 8.33% 1.61 7.4 % 0|66 4.83%
200K ©, 2 0.64) 3.14% 0.683 11.21% 1.52 6.30% 0|70 3.Y0%
1,2 0.66] 3.07% 0.61 9.15% 1.%3 7.5p% 070 3.49%
Minmax 0.64f 4.28% 058 6.62M0 141 4.90% 0/59 2.60%
©,1) 0.65| 4.15% 0.6 6.26% 1.60 8.0p% 056 4.54%
500K ©, 2) 0.63] 2.82% 0.5 9.12% 1.%4 7.2p% 058 2.98%
1,2 0.64] 272% 05 5.78% 1.61 10.7p% 0|58 3.p0%
Minmax 0.64] 3.36% 056 7.46P6 146 4.5p% 0j54 4.00%
©,1) 0.68] 3.92%  0.5% 5.46% 1.68 9.5B% ol6l 2.Y3%
1000K ©, 2 0.67] 3.01% 0.5% 7.32% 1.64 8.8p% 0l62 1.Y5%
1,2 0.67] 2.78%  0.5% 5.09% 1.77 13.36% 0|62 1.p9%
Minmax 0.66] 3.05% 054 3.68% 1.5 4.1p% 0j58 2.32%

Table 5: Raw results for 3D uniform data

" Perf. = Performance (ms).
* P.E. = Pruning efficiency (%).
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.P3%
B4%
.p1%

b5%
B7%
D8%
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b1%
B1%

J2%

1%

b4%
15%
B2%
| 4%
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(4%

.p5%

b1%

$1%
J1%
$5%
.$50%

Buffer Experiment Set | Set | Set Il Set IV
size | Attribute selection Perf P.E Perf P.H. Perf. P.H. exf. P.E.
©,1) 0.87] 9.30%9% 1.61 10.69% 2.08 10.86% 091 9
10K ©, 2) 0.80] 5.25% 1.64 11.79% 202 9.95% 0|97 10
1,2 0.76] 5.42% 1.61 11.64% 1.96 9.81% 0|95 10
Minmax 0.80] 6.39% 1.49 11.21% 1.83  9.71% 0|78 5.
0,1 0.78] 7.63% 1.26 9.14% 1.92 9.6Pp% ol87 6.
20K ©, 2 0.73] 4.40% 1.22 8.71% 1%5 8.7R% 0[96 8.
1,2 0.70| 4.43% 1.22 8.66% 1.81 8.4D% 094 8.
Minmax 0.71] 5.36% 1.1 9.48M% 1.49 8.7% 0j74 4.
©,1) 0.82] 5509 0.92 7.53% 1.69 7.71% ol64 5.
50K ©, 2) 0.79] 3.29%  0.90 7.02% 1.62 7.5DP% ol67 5.
1,2 0.78] 3.48% 0.89 6.44% 1.%8 7.0B% ol66 6
Minmax 0.75| 3.72% 0.88 6.69% 148 6.8l% 0j54 2.4
©,1) 0.79] 5.21% 0.91 6.91% 1.63 6.2p% ol65 5.
100K ©, 2 0.70] 2.71% 0.8 5.88% 1.56 5.91% 0|70 6.
1,2 0.72] 3.01% 0.8 5.63% 1.%6 6.3p% 069 6.
Minmax 0.72] 355% 0.8 5.71p% 142 5.1P% 0j54 2.
0,1 0.77] 457% 0.7 5.18% 1.60 5.7p% ol62 3.
200K ©, 2 0.71 214% 0.7 4.96% 1.%5 5.8p% ole6 3.
1,2 0.74] 2.28% 0.7 4.69% 1.%8 6.9B% ole6 4
Minmax 0.72] 2.99% 0.78 4.04% 142 4.2p% 056 1.1
©,1) 0.76] 3.25%  0.6% 5.85% 1.%56 7.3R% of71 2
500K ©, 2) 0.74) 2.33% 0.6% 4.42% 1.%3 7.50% of74 3
1,2 0.72] 2.40%9%  0.6% 4.54% 1.56 9.1p% of75 3
Minmax 0.71] 3.80% 0.62 5.20P6 141 4.58% 05 1.
©,1) 0.70] 4.52% 0.61 7.44% 1.65 10.06% 0|5 2
1000K ©, 2 0.68] 1.70% 0.6 3.09% 1.61 8.3p% of71 3
1,2 0.66] 1.24% 0.59 4.89% 1.69 10.41% ol71 4
Minmax 0.64] 6.59% 057 11.19% 1.47 3.8p% o1 1

.p3%
.$4%
P9%

B7%

Table 6: Raw results for 3D anti-correlated data
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Buffer Experiment Set | Set | Set Il Set IV
size | Attribute selection Perf P.E Perf P.H. Perf. P.H. exf. P.E.
©,1) 1.67] 6.91% 123 32.48% 3.26 12.38% 1]06 12.98%
10K ©, 2) 1.60] 6.85% 1.28 27.58% 3.23 12.24% 1]07 11.89%
1,2 1.60] 6.75% 1.21 21.871% 319 9.47/% 1107 11.p4%
Minmax 1.63| 8.86% 1.25 31.08% 3.23 12.3t6% 1108 11.p9%
0,1 1.67] 5.86% 1.18 22.22% 3.72 11.53% 1107 18.P7%
20K ©, 2 1.65] 6.66% 1.1%5 24.79% 3.84 11.03% 1]07 15.86%
1,2 1.61] 6.26% 1.1¢ 23.63% 3.5 7.66% 1106 12.B1%
Minmax 1.65| 8.54% 1.2]1 25.58% 3.83 11.5P% 1|08 15.B4%
©,1) 1.85| 537% 1.10 21.74% 584 9.76% 1|08 17.p6%
50K ©, 2) 1.88] 5.15% 1.1 26.45% 584 8.88% 1|07 14.p8%
1,2 1.85| 5.28% 1.14 24.21% 555 6.1p% 1|07 9.p6%
Minmax 1.94] 8.94% 1.15 19.71% 6.03 11.14% 1|08 16.p3%
©,1) 2.14] 496% 1.20 22.61% 9.14 9.71% 1104 12.p2%
100K ©, 2 2.18] 497% 1.24 27.99% 8.92 8.3v% 1|03 10.p4%
1,2 2.14] 496% 1.21 26.03% 8.47 5.56% 1|03 8.p6%
Minmax 2.29] 9.00% 1.31 22.071% 9.64 13.48% 1104 14.p9%
0,1 244 361% 1.32 19.03% 15.88 10.49% 112 11552%
200K ©, 2 250] 3.81% 1.39 2858% 14.86 8.45% 1]12 1045%
1,2 252 3.41% 144 26971% 13.62 4.51% 1J13  8.J12%
Minmax 277 8.28% 150 16.99% 16.69 13.649% 114 1267%
©,1) 322 471% 159 1790% 3298 6.88% 117 20J74%
500K ©, 2) 3.43] 7.08% 1.6 17.94% 3268 6.01% 1J15 11.08%
1,2 3.37] 5.86% 1.81 11.11% 30.p7 4.33% 1j14 5.p4%
Minmax 3.90| 10.30% 201 16.70% 39.83 12.42% 120 22[13%
©,1) 479] 564% 1.4 9.47% 62.27 6.7l% 1117 1.p0%
1000K ©, 2 5.0} 751% 15 6.64% 60.74 6.30% 1117 5.p6%
1,2 498 6.35% 1.7 428% 57.81 4.6p% 1116 6.B4%
Minmax 6.08| 12.30% 1.7 493% 76.23 13.32% 121 11.92%

Table 7: Raw results for 3D correlated data
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Buffer Experiment Set | Set I Set Il Set IV
size | Attribute selection Perf P.E| Perf] P.H. Perf. P.H. erf. P.E.
©,1) 8.18| 12.75% 19.5p 22.21% 19.41 12.20% g4.33 14{85%
©, 2) 8.65| 16.15% 18.7p 21.88% 19.86 12.60% 4.39 14(85%
©, 3) 7.88] 10.65% 18.3f 21.36% 19.82 12.98% g4.36 15{40%
10K 1,2 8.69| 16.52% 18.3B 21.63% 19.p3 11.92% 4.29 14{55%
@1, 3) 7.76] 10.75% 18.6p 21.58% 19.14 11.88% 4.31 15{02%
2, 3) 7.83] 10.70% 18.3p 21.90% 19.p7 11.91% q.25 14{74%
minmax 7.66| 10.70% 13.4p 18.31% 175 9.71% 530 6J25%
0,1 8.51|] 10.71% 23.8p 18.32% 18.p6 10.44% 4.98 14{92%
©, 2) 9.23] 13.48% 229p 17.88% 18.p6 10.19% g4.83 12(68%
©, 3) 8.14] 8.49% 2299 18.50% 18.50 10.49% q.71 12]74%
20K 1,2 9.03] 13.94% 226 1759% 17.p3 9.2% q.73 12J35%
1, 3) 7.85] 8.84% 22.6p 18.39% 18.41 9.715% 661 12f21%
(2,3) 8.14] 8.83% 22.6p 18.63% 18.05 9.43% 661 12/{46%
minmax 777 9.15% 15.3B 15.63% 16.f2 7.85% 550 5]94%
©,1) 8.50] 6.92% 19.1] 13.41% 17.14 6.87% 821 10[77%
©, 2) 9.79] 9.41% 1781 11.94% 17.08 7.00% 7197 9.p4%
©, 3) 8.07] 5.22% 1751 12.14% 17.05 6.8§9% 805 10]23%
50K 1,2 9.24] 9.76% 18.2¢ 12.06% 17.04 6.718% 7152 9.p4%
@1, 3) 7.67] 5.87% 17.5¢ 11.84% 16.y2 6.94% 7172  9J19%
2, 3) 7.79] 5.38% 17.19 11.44% 16.52 6.41% 7174 9.93%
minmax 764 6.21% 12.1B 10.76% 15.18 5.02% q.08 4)69%
©,1) 8.60] 5.24% 13.88 8.94% 17.39 6.39% 9132 9.p3%
©, 2) 10.35] 8.10% 13.0p 841% 1701 6.90% 906 8.[19%
©, 3) 8.33] 4.65% 12.69 8.2% 17.04 6.596% 8193 7.p1%
100K 1,2 10.00, 8.83% 12.9B 8.11% 16.J2 6.43% 885 8.03%
1, 3) 7.87] 5.22% 12.69 8.09% 16.J0 6.29% 8181 7.b5%
(2,3) 8.14] 4.62% 12.1] 7.71% 16.45 6.18% 871 7.p5%
minmax 7.73] 5.70%  9.4p 7.04% 14.87 4.84% 6|66 4.18%
©,1) 8.29] 4.74% 12.6B 6.49% 16.835 5.42% 9181 6./1%
©, 2) 10.08] 7.19% 11.4)L 5.1% 15.J3 5.48% 941 6.p0%
©, 3) 7.78] 3.95% 11.3¢ 593% 1530 5.01% 9138 6.p5%
200K 1,2 9.72 8.09% 11.18 529% 15%8 5.84% 959 6.p9%
@1, 3) 7.46] 4.71% 11.59 590% 1549 537% 962 6.p9%
2, 3) 7.76] 4.01% 11.3p 57d% 15.22 517% 9149 6.19%
minmax 7.26] 4.84%  8.5] 524% 14.32 4.01% 6|58 3.B0%
©,1) 8.04] 2.74% 10.9Y 400% 1585 3.90% 1183 4.49%
©, 2) 9.97] 4.38%  9.3p 3.09% 15.15 4.38% 12|50 4.63%
©, 3) 7921 2.19%  9.4¢ 3.62% 1509 4.18% 12|60 4.p2%
500K 1,2 9.56 5.29% 9.3] 3.0 1543 4.6[1% 1166 4.60%
1, 3) 7.39] 2.91%  9.38 359% 15.22 4.77/% 1173 4.32%
(2, 3) 781 231% 9.34 3576 1495 4.87/% 13|23 4.p67%
minmax 6.98] 2.98% 7.5p 3.49% 14.01 3.02% 8102 2.p0%
©,1) 8.14] 2.23% 8.0 3.60% 15.36 3.14% 10|63 4.A40%
©, 2) 9.49] 3.46% 7.4% 242% 1477 3.44% 10/05 3.10%
©, 3) 8.18] 1.93% 7.42 291% 1495 3.1p% 10|56 3.p2%
1000K] 1,2 9.24 4.75%  7.50 250% 15.06 3.79% 10|25 3..12%
@1, 3) 7.87] 3.10% 7.23 2771 14.87 3.70% 10/44 3.42%
(2, 3) 7.83] 1.99% 7.31 293% 14.85 4.2/% 10[04 3.p8%
minmax 713 2.41%  6.6p 264% 13.88 2.11% 7191  1.p8%

Table 8: Raw results for 4D uniform data
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Buffer Experiment Set | Set I Set Il Set IV
size | Attribute selection Perf P.E| Perf] P.H. Perf. P.H. erf. P.E.
©,1) 10.66/ 11.67% 20.9f 23.09% 1964 12.75% 9.10 17|94%
©, 2) 11.22] 14.26% 20.1y 21.54% 1947 12.35% 9.03 17|45%
©, 3) 10.18] 9.45% 20.1p 21.32% 19.B3 12.36% 9.19 18{05%
10K 1,2 11.14] 14.85% 20.2p 22.5%% 19.02 11.60% 8.81 16|33%
@1, 3) 9.97] 9.87% 19.9p 22.03% 19.98 11.74% 9.02 17)43%
2, 3) 10.16/ 10.27% 20.0p 20.98% 18.p7 11.46% 9.11 17|68%
minmax 995 11.38% 14.4p 18.10% 175 10.10% 1.54 9|02%
0,1 9.61] 7.99% 21.290 18.74% 18.55 10.12% 11.28 15|42%
©, 2) 10.32| 10.64% 19.9p 17.1%% 181 9.82% 11.95 17[07%
©, 3) 9.21] 6.40% 19.68 16.39% 18.p5 9.96% 11.38 14{73%
20K 1,2 10.17] 11.34% 19.7p 18.17% 18,03 9.40% 11.33 14{97%
1, 3) 8.89] 6.85% 19.0f 16.76% 18.11 9.10% 11.29 14/55%
(2,3) 9.30] 6.82% 19.1p 16.06% 17.83 8.95% 1116 13[97%
minmax 8.72] 7.33% 13.2p 14.39% 16.p2 7.49% 893 8l11%
©,1) 9.27] 5.22% 23.18 13.64% 16.p8 7.00% 1112 12{35%
©, 2) 10.56|] 7.87% 20.8p 11.28% 16./4 6.96% 11.37 12|57%
©, 3) 8.98] 4.28% 20.8p 11.41% 16.57 6.26% 10.45 10/07%
50K 1,2 10.15] 8.22% 20.2F 12.1%% 16.p4 6.37% 14.66 10[98%
@1, 3) 8.32| 4.83% 19.88 11.64% 16.p4 6.10% 10.55 10{22%
2, 3) 8.62] 4.66% 19.0p 11.14% 16.12 5.97% 10.37 10/01%
minmax 787 4.75% 13.3f 10.11% 14.p5 5.06% 825 630%
©,1) 8.46] 3.84% 19.6] 10.74% 16.839 6.32% 1182 8[12%
©, 2) 10.23] 5.95% 15.6f 7.73% 16.p3 593% 1193 7)91%
©, 3) 8.10] 3.20% 16.6] 8.14% 1594 592% 1142 7Tp07%
100K 1,2 9.50( 6.53% 15.8p 8.21% 15.2 576% 1150 7.41%
1, 3) 7.75] 3.75% 15.57 857M% 1568 5.65% 1122 6[7%
(2,3) 8.18] 3.64% 14.3B 8.18% 1547 5.82% 1121 7.00%
minmax 7.25 3.72% 10.9p 8.11% 1481 4.91% 820 3.B0%
©,1) 8.10] 2.78% 13.8p 7.29% 16.05 5.53% 967 6.87%
©, 2) 10.07] 4.80% 11.74 5.10% 15.68 5.98% 986 6.40%
©, 3) 791 2.14% 13.7¢ 5.03% 1543 5.02% 947 5.60%
200K 1,2 9.30 4.85% 11.58 5.4% 1546 5.15% 9183 6.11%
@1, 3) 7.69] 258% 11.5¢ 5.03% 15.23 4.79% 9138 5.p8%
2, 3) 7.72] 2.41% 10.8]L 491% 14.96 4.88% 9131 5.p3%
minmax 7.06] 2.79%  8.8p 541% 14.09 3.71% 6|28 2.46%
©,1) 8.42] 2.26% 12.7#4# 4.79% 1552 4.21% 873 4.p7%
©, 2) 9.71] 3.49% 10.8p 3.14% 1529 4.34% 871 4.B1%
©, 3) 7.83] 1.62% 11.58 3.31% 15.13 4.08% 8178 4.p3%
500K 1,2 9.05( 3.65% 10.58 3.30% 15.08 4.26% 8167 4.p4%
1, 3) 7.24] 2.05% 11.08 3.49% 14.94 3.96% 8169 4.p3%
(2, 3) 756 1.81% 10.44# 3.48% 14.70 4.60% 8168 4.p3%
minmax 6.81] 2.31% 8.7} 3.68% 13.Y8 2.81% 5187 1.p9%
©,1) 7.65] 1.60% 10.0y 3.71% 16.37 4.00% 9102 3.L7%
©, 2) 8.61| 2.64% 8.8 243% 15.18 4.0R% 8|87 2.D9%
©, 3) 7.62] 1.04% 9.0 2.32% 15.18 3.88% 8|80 2.60%
1000K] 1,2 859 288% 8.6 2624% 1511 3.6[/% 8|90 2.87%
@1, 3) 7.24] 1.38% 8.8 242% 14.87 3.6R% 8|81 2.60%
(2, 3) 7.40] 1.20% 8.6 240% 14.71 4.0B% 8|67 2.66%
minmax 6.67 1.72% 7.9 2.70% 13.85 2.38% 6131 1.p2%

Table 9: Raw results for 4D anti-correlated data
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Buffer Experiment Set | Set I Set Il Set IV
size | Attribute selection Perf P.E| Perf] P.H. Perf. P.H. erf. P.E.
©,1) 29.65] 7.60% 24.6B 16.491% 48.14 11.09% 14.66 9|95%
©, 2) 29.81] 6.98% 24.4F 14.86% 47.47 11.47% 14.60 10j08%
©, 3) 29.67] 6.55% 24.3¢p 17.01% 48.p6 11.11% 1§.68 10}41%
10K 1,2 29.60 7.56% 24.4)L 14.70% 47.18 10.15% 1§.62 10|57%
@1, 3) 2953 7.96% 24.4p 17.01% 47.p9 9.96% 14.63 10|57%
2, 3) 29.74, 6.67% 243 17.7§% 48.p3 9.244% 14.62 10{74%
minmax 29.62] 7.65% 245p 17.58% 486 11.43% 18.66 10126%
0,1 29.28] 7.63% 23.5p 15.31% 46.10 10.15% 1§.53 10|33%
©, 2) 30.15] 6.65% 23.5p 14.14% 47.p2 11.15% 1§4.45 9|55%
©, 3) 29.37] 6.24% 23.1B 15.74% 46.p2 10.90% 14.35 10}57%
20K 1,2 29.27] 7.35% 23.5p 14.01% 47.83 8.85% 1442 9]72%
1, 3) 29.67] 8.01% 23.6p 1541% 46.p5 8.94% 14.35 10{55%
(2,3) 29.33] 6.31% 2351 16.20% 46.86 8.11% 14.38 11{13%
minmax 29.33] 8.08% 23.4p 18.4%% 46.p6 10.00% 18.34 9|83%
©,1) 2857 7.92% 22.2F 14.6Q% 47.f0 941% 1493 11{72%
©, 2) 28.66] 6.27% 22.3p 12.91% 47.81 10.46% 11.86 10|86%
©, 3) 28.39] 559% 223D 13.94% 48.p2 10.37% 11.92 11|58%
50K 1,2 2841 6.43% 22.1p 12.4% 48.p7 7.05% 14.86 11{05%
@1, 3) 28.82 7.01% 21.6p 1254% 488 7.94% 1495 11{53%
2, 3) 28.46] 5.26% 22.2B 14371% 47.19 7.42% 14.92 12(31%
minmax 28.60f 8.61% 22.44 17.52% 47p0 9.20% 14.85 11|62%
©,1) 28.71] 7.36% 22.7B 15.01% 48.p1 8.43% 14.89 10{73%
©, 2) 28.75] 6.21% 225p 13.29% 48.86 9.00% 14.91 10{08%
©, 3) 28.62| 5.67% 22.6f 14.41% 49.p2 9.48% 14.95 11{24%
100K 1,2 29.03] 7.17% 2254 11.84% 49.18 6.05% 14.00 10{85%
1, 3) 28.82 8.34% 225p 12.7% 49.f0 7.30% 14.03 11{87%
(2,3) 28.65] 4.82% 22.6B 1451% 48.p8 5.84% 14.01 12{48%
minmax 28770 837% 2298 19.29% 49p0 7.98% 14.98 12|63%
©,1) 28.45 590% 21.6B 1551% 54B5 7.43% 14.09 10{87%
©, 2) 28.79] 5.80% 21.5B 13.24% 55.p9 8.833% 14.10 10{10%
©, 3) 28.68] 4.48% 21.6fp 14.73% 55.p0 9.44% 14.16 11{55%
200K 1,2 29.04] 9.33% 2150 11.4Q0% 546 543% 14.10 9}48%
@1, 3) 28.79] 7.39% 21.5p 1231% 53.p6 6.91% 14.15 10{22%
2, 3) 28.42| 3.83% 21.7B 1453% 5383 440% 14.10 12(55%
minmax 29.13] 7.07% 23.0L 19.3%% 55p6 7.80% 17.13 14/18%
©,1) 2951 5.74% 22.0L 1653% 71.p9 8.24% 14.01 12{43%
©, 2) 29.32 6.43% 21.70L 11.33% 69.p4 7.948% 14.04 9J]18%
©, 3) 28.88] 5.31% 21.8¢ 15.41% 71.p8 10.33% 11.31 11j04%
500K 1,2 30.01f 9.94% 21.6p 9.3§% 67.P2 4.46% 17405 7/59%
1, 3) 30.06] 8.82% 21.7f 13.08% 69.f3 6.80% 14.07 10{34%
(2, 3) 28.74] 5.01% 21.6f¢ 1554% 68.p7 5713% 14.05 12{28%
minmax 2954 757% 23.81 22.10% 72p8 8.37% 14.02 14|14%
©,1) 31.23] 7.74% 23.7f 14.28% 99.10 6.00% 14.75 8J08%
©, 2) 31.07] 6.24% 22.74 8.08% 99.47 6.98% 14.74 7)84%
©, 3) 30.92] 550% 23.3L 11.53% 101p1 8.33% 14.84 9|67%
1000K] 1,2 32.66 9.50% 23.5p 6.74% 97.y6 3.34% 1479 8]26%
@1, 3) 3268 9.47% 23.8p 11.494% 97.43 4837% 14.74 10{07%
(2, 3) 31.07] 4.80% 23.7p 13.64% 95.p5 4.06% 14.97 10(63%
minmax 32.60, 10.61% 27.68 23.83% 103j04 7.19% 16.80 1311%

Table 10: Raw results for 4D correlated data
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(a) Performance improvement of minmax against woast

Distribution Uniform Anti-correlated Correlated
mension 3 4D 3D 4D 3D 4D

Improve

Average 10.73% 22.97% 11.48% 24.91% -5.02% -0.57
Maximum 24.44% 39.38% 22.92% 44,319 2.409 2.729
3rd quartile 13.27% 31.23% 13.10% 31.25% -0.88%0 0.92
Median 10.38% 25.09% 9.83% 26.469 -2.86% 0.479
1st quartile 6.79% 13.97% 8.42% 15.47% -6.23% -0.32
Minimum 1.54% 8.55% 4.62% 9.62% -22.42% -15.80

(b) Performance improvement of minmax against past

Distribution Uniform Anti-correlated Correlated
mensiod — 3p 4D 3D 4D 3D 4D

Improve

Average 4.91% 13.89% 6.26% 14.82% -10.08p% -3.06
Maximum 16.88% 32.29% 16.92% 32.559 -0.93% 0.069
3rd quartile 7.49% 22.54% 8.51% 24.56% -2.33% -0.34
Median 4.62% 9.27% 6.52% 10.529 -5.24% -1.364
1st quartile 1.74% 6.00% 3.74% 6.39% -14.58%%0 -3.75
Minimum -3.66% 0.39% -5.26% 0.20% -31.86% -21.50

Table 11: Performance improvement of minmax against bestaordt pairs
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Appendix C: Program Listing

The program source code is organized by Java paskdye list here a directory of

source code files, together with their descriptions

(default package)

¢ Stars.java contains main class, an entry oi&TARS
(datastruct)

¢ Dag.java implements directed acyclic graph

¢ Dimensionality.java handles data dimensionality

¢ IntList.java a list structure for holding ingers

¢+ SkyBuffer.java implements skybuffer

¢ SkyGrid.java implements SkyGrid

¢ Skyline.java implements skyline

¢ SkylineMaintenance.java skyline computation fraragw

¢ Tuple.java data structure for tuple

¢ TupleList.java a list structure for holding tapl

¢ Valuelist.java a list structure for holding ditrte values
(geometry)

¢ Arrangement.java implements geometric arrangment

¢ Face.java data structure for face in arrangment
¢+ HalfEdge.java data structure for half edge mnamgment
¢ Line.java data structure for line in Cartegiene
¢ LineList.java a list structure for holding lines

¢ \ertex.java data structure for vertex in arraegt
(generator)

¢ DagGenerator.java a generator of attribute domain

¢ StreamGenerator.java a generator of tuple stream
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