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Definitions

• A tuple X dominates Y iff for a set 
of relevant attributes A:

– (1) X is better than or equal to Y in 
every attribute in A; and

– (2) X is better than Y in at least one 
attribute in A.

• The skyline consists of:

–all tuples not dominated by any other 
tuple.
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Hotel example

• Tourist looking for a hotel
– Cheap

– Close to the city

• Relevant attributes
– Price

– Distance

• A hotel X dominates Y iff:
– (1) X.price ≤ Y.price; and

– (2) X.distance ≤ Y.distance; and

– (3) at least one of (1) and (2) is strict.
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Hotel example

Hotel Price ($) Distance to 
city (km)

A 200 3

B 150 2

C 200 2

D 250 1

E 100 7

F 100 5

G 150 5

H 250 4
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Data domain

• Total-order

– A linear ordering of every value

– E.g., price, grade

• Partial-order

– Lack a total linear ordering

– Values can be comparable and incomparable

– Good for hierarchies, preferences, intervals

– E.g., user prefers yellow to red and blue to red, 
but there is no preference between yellow and 
blue.
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Query context

• Offline

–For disk-resident data (relatively static)

–Answer query on demand

• Online

–For streaming data (fast-changing)

– Infeasible to answer the query from 
scratch

–Maintain a skyline continuously
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Problem settings

• Data domain: partially-ordered
• Query context: streaming

– Count-based sliding window model
– Maintain a buffer of size N
– New tuple inserted into buffer
– Oldest tuple deleted from buffer

• Baseline: Streaming Arrangment Skyline 
(STARS)

• Contributions
– STARS+

– SkyGrid
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Domain representation

• Directed acyclic graph (DAG)

• Vertex – values

• Edge – relationship

–a dominates d

–d dominates g

–d, e incomparable
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Domain transformation

• Values → topological sorting orders

• A topological sort of a DAG is:

– A linear ordering of all the vertices

– For any directed edge, source vertex is always listed 
before the destination vertex

– Denote vertex v’s position by r(v)

• If r(v) ≥ r(v’), v cannot dominate v’

– Inverse is not true

• Example: a, b, c, …, h

– r(c) > r(a)

– c does not dominate a
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SkyBuffer

• Discard irrelevant tuples from buffer

• Given t’ and t, if:
– (1) t’ is younger than t, and

– (2) t’ dominates t.

• t can never get promoted to the 
skyline

• t is irrelevant

• SkyBuffer: the relevant part of the 
buffer
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Skyline maintenance
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Buffer organization

• Main query: to find tuples dominated by a 
query tuple

• Multi-dimensional grid

• Value grouping for scalability

• Focused search
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Skyline organization

• Main query: to check whether any tuple 
dominates a query tuple

• Each tuple mapped to a line
y = r(a) ∙ x – r(b),

where a, b are two arbitrarily attributes

• Skyline: a geometric arrangement

– Only need to check lines intersecting with the 
query line on the positive half of the x-axis

– Doubly-Connected-Edge-List (DCEL)
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Progressive query of skyline tuples

Y

X

lQ: query tuple

l1

l3 l2

l1, l2, l3: skyline tuples
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STARS+

• An improved STARS

• Drawbacks of STARS

–Expensive exclusive dominance 
checking

–Sparse buffer grid

– Inefficient geometric arrangement

• Arbitrary tuple-line mapping

• Unknown pruning power

• Quadratic space complexity



20

Exclusive dominance checking

• Required for every tuple in the buffer 
dominated by an expiring skyline 
tuple

• Each checking requires a query to 
skyline

• Many such queries in a single update 
when a skyline tuple expires
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Dominating Tuple optimization

• Eager approach
–When a tuple comes in, find all 

dominating skyline tuples

• Lazy approach
–Defer computation until needed

• Semi-eager approach
–Only remember one dominating tuple

–Virtually no extra computation

– “Dominating Tuple” optimization
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Complexity analysis

• Time complexity for a given buffer tuple

• s: size of the skyline.

• Assume independent attribute values.

• Assume exclusive dominance checking is 
required for every expiring skyline.

Lazy Eager Semi-eager

Exclusive 
dominance 
checking

O(s) O(1) O(ln(s))

Pre-
computation 
overhead

O(1) O(s) O(1)
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Sparse buffer grid

• Most of the tuples in the buffer are 
irrelevant

• Only SkyBuffer affects skyline

• The buffer grid is very sparse
–Assume independent attribute values

–SkyBuffer size: O(lndN)

–Density: ρ= O(lndN/gd)

–E.g., ρ = 0.022
when N = 105, d = 4, g = 30

–Most of the cells are empty

d: # of dimensions
g: # of buckets/dim
N: buffer size
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Empty Cell optimization

• Maintain d − 1 additional structures (index 
grids)
– Keep track of # of tuples in the grid regions. 
– Each index grid Ci (1 ≤ i ≤ d−1) is i-

dimensional
– Ci maintains # of tuples in the regions 

identified by first i dimentions

• During Focused search
– Candidate cells are examined by enumerating 

the cell coordinates
– Early termination of the enumeration if an 

empty region is detected
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Problems in geometric arrangement

• d > 2 is common in real life

• Arbitrary attribute selection in line 
mapping
–Performance gap can exceed 20%

–No heuristic to optimize this selection

• Only utilize two attributes for 
mapping
– Intuitively, using more attributes is 

likely to provide better pruning power
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Minmax optimization

• Consider a d-tuple t = (a1, … , ad)

• Minmax maps t to the line
y = C ∙ x − D, where
C = max(r(t.a1), … , r(t.ad)),
D = min(r(t.a1), … , r(t.ad))

• Proven correctness for pruning lines

• An intuitively better heuristic

– Utilize all attributes

– Two extreme values may help prune more
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Why geometric arrangement

• Pruning ratio

–Assume independent attribute values

–Suppose no “progressiveness”

–Proven to be less than ½

• Space complexity

–Quadratic space O(s2)
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SkyGrid

• Eliminate geometric arrangement

• SkyGrid: everything in one place

– Both SkyBuffer and skyline in the same grid

– Distinguish skyline with a status bit

– Utilize two sets of index grids for Empty Cell 
optimization

• Allows focused search

– On the other direction
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Benefits of SkyGrid

• Potentially higher pruning ratio

• No extra space required for skyline

–Except for the linear requirement of 
status bit

• Simplified skyline maintenance

–No manipulation of geometric 
arrangment (O(s))

–Only update a status bit (O(1))
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Amortized update time

• STARS-Best, STARS-worst, STARS+, SkyGrid

• With two orthogonal optimizations in all (DT/EC)
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Space requirement

• Buffer size = 100K

• SkyGrid uses the least memory
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Conclusion

• Two new approaches for streaming 
data on partially-ordered domains

–STARS+

–SkyGrid

• Both outperforms STARS

• The surprising result: SkyGrid, being 
the simplest, is the best approach.
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Questions?
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