
Efficient Skyline Maintenance
for Streaming Data

with Partially-Ordered Domains

Yuan Fang

Institute for Infocomm Research

Chee-Yong Chan

National University of Singapore

DASFAA10 @ Tsukuba, Japan

2 April 2010

2

Outline

• Introduction

• STARS

• STARS+

• SkyGrid

• Experiments

• Conclusion

3

Outline

• Introduction

–Concept

–Problem settings

• STARS

• STARS+

• SkyGrid

• Experiments

• Conclusion

4

Definitions

• A tuple X dominates Y iff for a set
of relevant attributes A:

– (1) X is better than or equal to Y in
every attribute in A; and

– (2) X is better than Y in at least one
attribute in A.

• The skyline consists of:

–all tuples not dominated by any other
tuple.

5

Hotel example

• Tourist looking for a hotel
– Cheap

– Close to the city

• Relevant attributes
– Price

– Distance

• A hotel X dominates Y iff:
– (1) X.price ≤ Y.price; and

– (2) X.distance ≤ Y.distance; and

– (3) at least one of (1) and (2) is strict.

6

Hotel example

Hotel Price ($) Distance to
city (km)

A 200 3

B 150 2

C 200 2

D 250 1

E 100 7

F 100 5

G 150 5

H 250 4

Price

Distance

0 1 2 3 4 5 6 7

250

200

150

100

50

·A

·B

·C

·E

·D

·F

·G

·H

7

Data domain

• Total-order

– A linear ordering of every value

– E.g., price, grade

• Partial-order

– Lack a total linear ordering

– Values can be comparable and incomparable

– Good for hierarchies, preferences, intervals

– E.g., user prefers yellow to red and blue to red,
but there is no preference between yellow and
blue.

8

Query context

• Offline

–For disk-resident data (relatively static)

–Answer query on demand

• Online

–For streaming data (fast-changing)

– Infeasible to answer the query from
scratch

–Maintain a skyline continuously

9

Problem settings

• Data domain: partially-ordered
• Query context: streaming

– Count-based sliding window model
– Maintain a buffer of size N
– New tuple inserted into buffer
– Oldest tuple deleted from buffer

• Baseline: Streaming Arrangment Skyline
(STARS)

• Contributions
– STARS+

– SkyGrid

10

Outline

• Introduction

• STARS

• STARS+

• SkyGrid

• Experiments

• Conclusion

11

Domain representation

• Directed acyclic graph (DAG)

• Vertex – values

• Edge – relationship

–a dominates d

–d dominates g

–d, e incomparable

12

Domain transformation

• Values → topological sorting orders

• A topological sort of a DAG is:

– A linear ordering of all the vertices

– For any directed edge, source vertex is always listed
before the destination vertex

– Denote vertex v’s position by r(v)

• If r(v) ≥ r(v’), v cannot dominate v’

– Inverse is not true

• Example: a, b, c, …, h

– r(c) > r(a)

– c does not dominate a

13

SkyBuffer

• Discard irrelevant tuples from buffer

• Given t’ and t, if:
– (1) t’ is younger than t, and

– (2) t’ dominates t.

• t can never get promoted to the
skyline

• t is irrelevant

• SkyBuffer: the relevant part of the
buffer

14

Skyline maintenance

15

Buffer organization

• Main query: to find tuples dominated by a
query tuple

• Multi-dimensional grid

• Value grouping for scalability

• Focused search

16

Skyline organization

• Main query: to check whether any tuple
dominates a query tuple

• Each tuple mapped to a line
y = r(a) ∙ x – r(b),

where a, b are two arbitrarily attributes

• Skyline: a geometric arrangement

– Only need to check lines intersecting with the
query line on the positive half of the x-axis

– Doubly-Connected-Edge-List (DCEL)

17

Progressive query of skyline tuples

Y

X

lQ: query tuple

l1

l3 l2

l1, l2, l3: skyline tuples

18

Outline

• Introduction

• STARS

• STARS+

– Dominating Tuple

– Empty Cell

– Minmax

• SkyGrid

• Experiments

• Conclusion

19

STARS+

• An improved STARS

• Drawbacks of STARS

–Expensive exclusive dominance
checking

–Sparse buffer grid

– Inefficient geometric arrangement

• Arbitrary tuple-line mapping

• Unknown pruning power

• Quadratic space complexity

20

Exclusive dominance checking

• Required for every tuple in the buffer
dominated by an expiring skyline
tuple

• Each checking requires a query to
skyline

• Many such queries in a single update
when a skyline tuple expires

21

Dominating Tuple optimization

• Eager approach
–When a tuple comes in, find all

dominating skyline tuples

• Lazy approach
–Defer computation until needed

• Semi-eager approach
–Only remember one dominating tuple

–Virtually no extra computation

– “Dominating Tuple” optimization

22

Complexity analysis

• Time complexity for a given buffer tuple

• s: size of the skyline.

• Assume independent attribute values.

• Assume exclusive dominance checking is
required for every expiring skyline.

Lazy Eager Semi-eager

Exclusive
dominance
checking

O(s) O(1) O(ln(s))

Pre-
computation
overhead

O(1) O(s) O(1)

23

Sparse buffer grid

• Most of the tuples in the buffer are
irrelevant

• Only SkyBuffer affects skyline

• The buffer grid is very sparse
–Assume independent attribute values

–SkyBuffer size: O(lndN)

–Density: ρ= O(lndN/gd)

–E.g., ρ = 0.022
when N = 105, d = 4, g = 30

–Most of the cells are empty

d: # of dimensions
g: # of buckets/dim
N: buffer size

24

Empty Cell optimization

• Maintain d − 1 additional structures (index
grids)
– Keep track of # of tuples in the grid regions.
– Each index grid Ci (1 ≤ i ≤ d−1) is i-

dimensional
– Ci maintains # of tuples in the regions

identified by first i dimentions

• During Focused search
– Candidate cells are examined by enumerating

the cell coordinates
– Early termination of the enumeration if an

empty region is detected

25

Problems in geometric arrangement

• d > 2 is common in real life

• Arbitrary attribute selection in line
mapping
–Performance gap can exceed 20%

–No heuristic to optimize this selection

• Only utilize two attributes for
mapping
– Intuitively, using more attributes is

likely to provide better pruning power

26

Minmax optimization

• Consider a d-tuple t = (a1, … , ad)

• Minmax maps t to the line
y = C ∙ x − D, where
C = max(r(t.a1), … , r(t.ad)),
D = min(r(t.a1), … , r(t.ad))

• Proven correctness for pruning lines

• An intuitively better heuristic

– Utilize all attributes

– Two extreme values may help prune more

27

Outline

• Introduction

• STARS

• STARS+

• SkyGrid

• Experiments

• Conclusion

28

Why geometric arrangement

• Pruning ratio

–Assume independent attribute values

–Suppose no “progressiveness”

–Proven to be less than ½

• Space complexity

–Quadratic space O(s2)

29

SkyGrid

• Eliminate geometric arrangement

• SkyGrid: everything in one place

– Both SkyBuffer and skyline in the same grid

– Distinguish skyline with a status bit

– Utilize two sets of index grids for Empty Cell
optimization

• Allows focused search

– On the other direction

30

Benefits of SkyGrid

• Potentially higher pruning ratio

• No extra space required for skyline

–Except for the linear requirement of
status bit

• Simplified skyline maintenance

–No manipulation of geometric
arrangment (O(s))

–Only update a status bit (O(1))

31

Outline

• Introduction

• STARS

• STARS+

• SkyGrid

• Experiments

• Conclusion

33

Amortized update time

• STARS-Best, STARS-worst, STARS+, SkyGrid

• With two orthogonal optimizations in all (DT/EC)

34

Space requirement

• Buffer size = 100K

• SkyGrid uses the least memory

35

Outline

• Introduction

• STARS

• STARS+

• SkyGrid

• Experiments

• Conclusion

36

Conclusion

• Two new approaches for streaming
data on partially-ordered domains

–STARS+

–SkyGrid

• Both outperforms STARS

• The surprising result: SkyGrid, being
the simplest, is the best approach.

37

Questions?

38

References
1. S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In ICDE,

pages 421–430, 2001.

2. C.-Y. Chan, P.-K. Eng, and K.-L. Tan. Stratified computation of skylines
with partially-ordered domains. In SIGMOD, pages 203–214, 2005.

3. C.-Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang.
Finding k-dominant skylines in high dimensional space. In SIGMOD, pages
503–514, 2006.

4. Y. Fang, C.-Y. Chan. Efficient Skyline Maintenance for Streaming Data with
Partially-Ordered Domains. In DASFAA, pages 322-336, 2010.

5. D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: an
online algorithm for skyline queries. In VLDB, pages 275–286, 2002.

6. K. C. Lee, B. Zheng, H. Li, and W.-C. Lee. Approaching the skyline in Z
order. In VLDB, pages 279–290, 2007.

7. X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the sky: Efficient skyline
computation over sliding windows. In ICDE, pages 502–513, 2005.

8. D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive
algorithm for skyline queries. In SIGMOD, pages 467–478, 2003.

9. D. Sacharidis, S. Papadopoulos, and D. Papadias. Topologically-sorted
skyline for partially-ordered domains. In ICDE, 2009.

10.N. Sarkas, G. Das, N. Koudas, and A. K. Tung. Categorical skylines for
streaming data. In SIGMOD, pages 239–250, 2008.

11.K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive skyline
computation. In VLDB, pages 301–310, 2001.

12.Y. Tao and D. Papadias. Maintaining sliding window skylines on data
streams. IEEE TKDE, 18(3):377–391, 2006.

