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ABSTRACT
Searching for people information on the Web is a common practice
in life. However, it is time consuming to search for such informa-
tion manually. In this paper, we aim to develop an automatic peo-
ple information search system, named ARISE-PIE. To build such a
system, we tackle two major technical challenges: data harvesting
and data integration. For data harvesting, we study how to lever-
age search engine to help crawl the relevant Web pages for a tar-
get entity; then we propose a novel learning to query model that
can automatically select a set of “best” queries to maximize collec-
tive utility (e.g., precision or recall). For data integration, we study
how to leverage flexible forms of constraints as weak supervision to
achieve collective information extraction from a target entity’s Web
page corpus; then we propose a novel conditional probabilistic for-
mulation to model constraints and an efficient realization to enable
the inference with constraints. We evaluate our data harvesting and
data integration solutions on the real-world data sets, and show that
they both achieve better performance than the state-of-the-art base-
lines. We also evaluate our system on a benchmark data set and
with a user study, in which we both show promising results.

CCS Concepts
•Information systems → Web crawling; Data extraction and
integration; Data mining;

1. INTRODUCTION
Searching for people information from the Web is a common

practice in our daily life. For example, Bing shows that people
searches account for about 10 percent of all searches on Bing1.
However, searching for people information is a time-consuming
task, because: 1) the information of interest often scatters across
many different pages on the Web, such that users have to find a

1http://www.bing.com/blogs/site_blogs/b/search/archive/2013/03/
21/satorii.aspx
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good way to search and sift through many Web pages for the rel-
evant information; 2) the information of interest is often unstruc-
tured, such that users have to spend enormous effort to read through
the content of many Web pages. Being able to automatically search,
extract and integrate the information of interest from the Web for a
person query is very useful. In addition to supporting ad-hoc peo-
ple search by the individual users, it can also enable many down-
stream applications for business; e.g., in the field of talent acquisi-
tion, some example applications are

• Talent verification. Given a talent candidate for hiring, we
can first search, extract and integrate her information of in-
terest, such as PUBLICATIONS, AWARDS and SOCIAL AC-
COUNTS; then we can use the found information to complete
and verify the curriculum vitae submitted by the talent can-
didate. In this way, we can minimize the talent hiring cost by
screening the candidates.

• Talent management. Once we manage to compile a talent
database with integrated information, we can then index and
rank the talents according to their skills, as well as their levels
of position matching. In this way, we can maximize the talent
hiring success rate by finding the most relevant candidates.

Technical challenges. As we discussed earlier, manual searching
of people information mainly suffers from two disadvantages: 1)
manual Web search is tedious and may be ineffective; 2) manual
Web extraction and integration is difficult. As a result, to automate
the people information search, extraction and integration process,
we need to answer two fundamental questions:

• (Data Harvesting) How to effectively search for Web pages
w.r.t. an entity (e.g., “Jiawei Han” from UIUC) and an as-
pect (e.g., RESEARCH)?

• (Data Integration) How to accurately extract the information
about multiple aspects of an entity from various Web pages?

For data harvesting, we study how to leverage search engine to
help crawling the relevant information. Crawling Web pages with
certain relevant information is generally known as focused crawl-
ing [5]. Traditional focused crawling relies on the hyperlinks on the
Web, and largely overlooks the search engine which has indexed
the Web by content keywords. We can use the search engine to fast
pinpoint the relevant information on the Web. Ideally, we can com-
bine search engine and hyperlink traversal to search for relevant
Web pages, but in this study we only focus on using search engine
to find the relevant Web pages, as it is hardly studied. Then the
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Figure 1: The user interface of ARISE-PIE, by components.

question becomes how to automatically find a set of “best” queries
w.r.t. a budget (e.g., number of search engine API calls).

For data integration, we study how to leverage flexible forms
of constraints to help extract information for multiple aspects of
an entity in a Web page corpus. Extracting multiple fields of in-
formation from the text in a collective manner is generally known
as collective extraction [3]. Traditional collective extraction mod-
els the interdependence among multiple extractions as “features”
and relies on sufficient labeled data to train the weights for these
features. In practice, labeled data is limited, thus a viable way
is to model the interdependence as “constraints”, and use them
as “labeled features” to weakly supervise unlabeled data for semi-
supervised learning. Then the question becomes how to formulate
flexible forms of “constraints”, and then efficiently realize them in
inference with the unlabeled data.

Data havesting solution. For data harvesting, our insights are
three-fold. First, to select the best query, we must quantify what
is considered a good query, by estimating the utility of each can-
didate query. Since the ultimate purpose of a query is to retrieve
relevant pages from the Web, the utility of a query should reflect
how well it can accomplish this purpose, such as the precision and
recall (or some combination of them) of the retrieved pages w.r.t.
the target entity and aspect. The utility should be inferred without
actually firing any candidate query. Second, an entity does not ex-
ist in isolation. There are often a large number of peer entities in
the same domain (i.e., other researchers), which can reveal useful
insights of the domain. Thus, it is necessary to be domain aware:
leveraging the domain of an entity to bootstrap at the beginning
when little about the target entity is known, as well as to enhance
learning during the entire querying process. Third, a query does
not exist in isolation. Multiple queries are needed to gather more
target pages. That is, there exist a context of past queries that were
already fired for the target entity. Given the time, bandwidth and
sometimes financial costs to query through a commercial search en-
gine, it is imperative to become context aware: accounting for the
context of past queries to eliminate redundancy between queries.

To solve data harvesting, we propose a novel Learning to Query
(L2Q) model [6], which is able to: 1) estimate a query’s utility by
probabilistic precision and recall; 2) leverage the domain aware-
ness to adapt queries for different entities; 3) leverage the context
awareness to select queries for maximizing collective utility.

Data integration solution. For data integration, our insights are
two-fold. First, constraints are often conditional (thus having flex-
ible forms) and probabilistic. A constraint is commonly expressed
as an if-then statement; e.g., if two text snippets are both BIOGRA-

PHY of a researcher, then they are similar. The if -part describes
the condition. Some constraint’s condition depends on only obser-
vation x’s (i.e., text content), thus we call it an x-type constraint.
Other constraint’s condition depends on hidden variable y’s (i.e.,
aspect assignments), thus we call it a y-type constraint (an exam-
ple is the BIOGRAPHY constraint). Besides, a constraint is prob-
abilistic; e.g., the BIOGRAPHY of a researcher may vary in differ-
ent Websites. Second, constraints can be used as weak supervi-
sion on the unlabeled data for semi-supervised learning [4, 8, 9],
but y-type constraints often make this learning difficult due to its
inference complication. E.g., a brute-force evaluation of the BI-
OGRAPHY constraint checks the aspect assignments of every two
text snippets. This creates a complete graph over the unlabeled text
snippets, which is hard for inference. But since the constraint is
conditional, we only care about those text snippets that are truly
“relevant”; if we can guess which snippets are BIOGRAPHY, then
we can save a lot of effort by selectively evaluating them.

To solve data integration, we propose a novel Conditional Proba-
bilistic Formulation (CPF) [15], which is able to: 1) model flexible
forms of constraints with explicit notions of constraint condition
and probability; 2) use constraints to weakly supervise the unla-
beled data for building a “general” (instead of logic-based [10])
semi-supervised extractor; 3) achieve efficient inference by selec-
tively evaluating the relevant instances from the corpus.

ARISE-PIE system. Based on our innovation on data harvest-
ing and data integration technologies, we develop a system named
ARISE2 People information Integration Engine (ARISE-PIE)3, par-
ticularly for the researcher domain. As shown in Fig. 1, our system
takes a person entity query (e.g., person name “Jiawei Han” and
some optional information “University of Illinois”) as input. It out-
puts the integrated information according to some predefined as-
pects, such as CONTACT, PUBLICATIONS and so on. To harvest
the information about the queried entity, we leverage search engine
(e.g., Google) and use learning to query to iteratively construct a
set of queries to find the relevant Web pages for each aspect. As
the collected Web pages are generally unstructured, we then try to
extract and integrate the aspect information from the Web pages
for the queried entity. Specifically, we use the conditional proba-
bilistic formulation to model the inter-dependencies among multi-
ple extractions within the queried entity’s Web page corpus as con-
straints, and then do semi-supervised collective extraction. In addi-
tion to the unstructured Web pages, we also leverage structured data

2It stands for “Augmented Reality Information Search Engine”.
3System demo is available at https://vimeo.com/82167291.
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Figure 2: The system architecture of ARISE-PIE.

sources, such as different people listing services (including DBLP,
Freebase, LinkedIn, etc.), to extract the entity information.

Our ARISE-PIE system is novel in terms of being able to: 1) au-
tomatically harvest Web pages w.r.t. a queried entity and a queried
aspect through search engines, thus it can find more information
from more diverse sources; 2) collectively extract and integrate the
information from the unstructured Web page corpus in a more ef-
fective (by enforcing collective extraction through flexible forms
of constraints) and more practical (by leveraging unlabeled data for
semi-supervised learning and selective evaluation for efficient in-
ference) manner. Comparatively, some popular academic search
systems, such as ArnetMiner (aminer.org), DBLife (dblife.cs.wisc.
edu) and Microsoft Academic Search (academic.research.microsoft.
com), tend to extract information from limited information sources
(e.g., publisher databases, researcher homepages) instead of the
general Web. Some other commercial systems, such as Intelius
(intelius.com), Spokeo (spokeo.com) and ZoomInfo (zoominfo.com)
also tend to largely rely on the offline census records and extract in-
formation from limited online sources.

2. OVERVIEW OF OUR SYSTEM
In this section, we introduce the system functionalities and the

architecture design of our ARISE-PIE system.

2.1 System Functionality
Users can freely access our system to search for researchers of

interest, and our system can automatically integrate the found Web
information for the queried researchers on the fly. As a running ex-
ample, suppose we aim to search for the information about Jiawei
Han from University of Illinois. Then, we can enter “Jiawei Han”
in the first query box and optionally “University of Illinois” in the
second query box, as shown in Box 1 of Figure 1. Once receiv-
ing the query, our system starts to harvest the Web data. Then, it
automatically extracts and integrates the information. Finally, it re-
turns the results in an entity profile page, which consists of several
components (highlighted as boxes in Figure 1) as follows.

Profile Snapshot (Box 2). It presents the portrait and some short-
content aspects such as current EMPLOYMENT and CONTACT. This
gives a brief overview of the queried entity.

Profile Details (Box 3). It gives more details EMPLOYMENT,
EDUCATION, AWARDS and academic activities such as TEACHING
and PUBLICATIONS. We organize the information in tables.

Event Timeline (Box 4). It organizes the time-sensitive events
such as graduation, employment change, award winning, publica-
tion and so on. We organize them in a reversed chronological order.

Information Source (Box 5). It lists the sources where we ex-

tracted information, thus allowing users to track back. We organize
the sources in a descending order of the extraction confidences.

Progress Tracker (Box 6). It keeps track of the data harvesting
and integration progress. The aspects that have information ex-
tracted will appear with ticks in the tracker.

Error Reporter (Box 7). It allows users to report errors of the
integration results by simply clicking a button.

2.2 Architecture Design
We illustrate the architecture of ARISE-PIE in Figure 2. The sys-

tem begins with the user’s query input to the Web-based interface
in step A. The query is then forwarded to the system API to process
in step B. After the processing is completed, the system API returns
the results in step C. The core of our system is in step B. It follows
a general workflow of data harvesting and integration in Figure 2:

• Data Collection (Box 1): harvest Web data for the query;

• Information Extraction (Box 2, Box 4): extract information
from the collected data. As will be discussed soon, we de-
sign a two-level extraction framework with coarse-grained
extraction (Box 2) and fine-grained extraction (Box 4);

• Information Aggregation (Box 3, Box 5): aggregate the ex-
tracted information by 1) Entity Resolution (Box 3) to dis-
ambiguate the information to the right entities; 2) Content
Aggregation (Box 5) to merge multiple pieces of content.

A Two-level Extraction Framework. For efficiency considera-
tion, we decompose the extraction task into coarse-grained extrac-
tion and fine-grained extraction. For coarse-grained extraction, the
idea is to fast locate the relevant information in the page. It is done
by parsing a page into a set of text snippets, and then assigning a
aspect label to each snippet. For fine-grained extraction, the idea
is to further extract the “sub-aspect” (i.e., different data fields of an
aspect) from the text snippets for display. For example, we extract
the job title and start-end dates for EMPLOYMENT in Box 5 of Fig-
ure 1. This two-level extraction avoids trying to extract fine-grained
aspect information from irrelevant snippets.

Interleaving between Extraction and Aggregation. In general,
we have the option to do aggregation after all the extractions are
done, but in this system we choose to interleave between them.
Specifically, we do entity resolution right after the coarse-grained
extraction and before the fine-grained extraction. This is because in
our system, we try to return one single entity who is most relevant
to the query and also possesses the most information on the Web.
This is similar to Google’s “I’m feeling lucky” function, which tries
to quickly navigate the user to the results. If the results happen
to mismatch the user’s intention, then the user needs to improve



(a) Example pages (Y is RESEARCH)

Content Y (pi)
p1 He conducts research on data mining & db. 1
p2 He writes papers in data mining & db research. 1
p3 His studies data mining & info network. 1
p4 He also studies info network at U Illinois. 1
p5 Visit him at Siebel Center, U Illinois. 0
p6 He was a professor in Simon Fraser U. 0

(b) Example queries

Query Retrievable pages
q1: data mining research p1 : 1, p2 : 1, p3 : 1
q2: db research p1 : 1, p2 : 1
q3: info network p3 : 1, p4 : 1
q4: u illinois p4 : 1, p5 : 1, p6 : 0
q5: simon fraser u p6 : 1

(c) Reinforcement graph

Figure 3: Running illustration for “Jiawei Han”.

the query with more specific information for another search. As a
result, we do not bother doing fine-extraction on the other entities’
results, and thus we do entity resolution in advance.

3. DATA HARVESTING BY L2Q
We aim to build a model that can automatically discover and it-

eratively select a set of queries, such that we can fire these queries
in a search engine to find as many relevant Web pages as possible
w.r.t. an entity e ∈ E and an aspect Y ∈ Y . As a result, we have to
estimate the utility of each single query, based on how many rele-
vant Web pages it can retrieve and what are the previous queries.

3.1 Utility Estimation
To estimate the utility of a single query about how many relevant

Web pages it can retrieve, we hinge upon the intuition of mutual
reinforcement between pages and queries. In general, a “useful”
page p for the target aspect Y contains useful queries for Y , and
a useful query q can retrieve useful pages for Y . Denote U(∗) as
a utility function. Then, for a page p and a query q, high U(p)
implies high U(q) if p contains q, and vice versa.

Given the ultimate goal to harvest Web pages, we measure two
complementary forms of utility: precision and recall of the re-
trieved pages w.r.t. Y . Denote a universe of pages as P . These
pages correspond to a universe of candidate queries Q (e.g., all
the n-grams in P ). Let Ω denote a mapping from each of the fol-
lowing notions to a set of pages in the domain, i.e., Ω(∗) ⊆ P .
Specifically, we have Ω(Y ) as the pages relevant to the target as-
pect Y ; Ω(q) are the pages that can be retrieved by query q; Ω(p)
is the page p itself, i.e., Ω(p) = {p}. Consider a running exam-
ple in Fig. 3(a)–(b). For Y as RESEARCH, suppose there are six
pages p1, . . . , p6 in total. p1, . . . , p4 are relevant, i.e., Ω(Y ) =
{p1, . . . , p4}. Besides, as an example, query q2 retrieves Ω(q2) =
{p1, p2}. Given Ω(v), ∀v ∈ P ∪Q, we can compute v’s precision
P(v) or recallR(v) w.r.t. Y by probability:

P(v) , P (ω ∈ Ω(Y )|ω ∈ Ω(v)), (1)

R(v) , P (ω ∈ Ω(v)|ω ∈ Ω(Y )), (2)

where ω is a random page from Ω(∗).
We can model the mutual reinforcement between pages and queries

by a graph G = (V,E), as shown in Fig. 3(c). The vertex set
V = P ∪ Q, and the edge set E is described by an adjacency
matrix W , such that Wpq = Wqp = 1 if and only if page p can
be retrieved by query q, and Wpq = Wqp = 0 otherwise. A useful
page (say p1) can induce useful queries (q1 and q2 which are neigh-

(a) Example templates

Query Template

q1: data mining research t1: 〈topic〉 research
q2: db research t1: 〈topic〉 research
q3: info network t2: 〈topic〉
q4: u illinois t3: 〈institute〉
q5: simon fraser u t3: 〈institute〉

(b) Reinforcement graph

Figure 4: Running illustration extended with templates.

bors of p1), and a useful query (e.g., q2) can retrieve useful pages
(p1 and p2 which are neighbors of q2). More quantitatively, U(q)
can be expressed in terms of U(p), where p is a neighboring page
of q, and vice versa. Denote the neighbor set of v on the graph by
N(v), e.g.,N(p1) = {q1, q2}. Then, after some derivation (details
are in [6]), we can show that: 1) the precision of a query q is the
average precision of the pages that q can retrieve, weighted by q’s
probability of retrieving each page, i.e.,

P(q) =
∑
p∈N(q)

Wpq∑
p′∈N(q)Wp′q

P(p); (3)

2) the recall of a query q is the sum of weighted recalls of the pages
that q can retrieve, such that each page only contributes a part of its
recall according to its probability of being retrieved by q, i.e.,

R(q) =
∑
p∈N(q)

Wpq∑
q′∈N(p)Wpq′

R(p). (4)

Similarly, we can express P(p) and R(p) in terms of P(q) and
R(q) respectively. In fact, we can unify the reinforcement between
queries and pages as: ∀v ∈ V ,

U(v) = F ({U(v′)|v′ ∈ N(v)}), (5)

where F is an aggregation function over the neighbors’ utilities
{U(v′)|v′ ∈ N(v)}, which can be either precision or recall.

In training, we have some labeled Web pages, for which we know
their empirical precision and recall. Denote P̂(p) = Y (p) and
R̂(p) = Y (p)/

∑
p′∈P Y (p′) if a page p is labeled. For a page v

that is unlabled, we set P̂(v) = R̂(v) = 0. Then, we propagate the
known utilities P̂(p) or R̂(p) to other unknown queries and pages:

U(v) = (1− α)F ({U(v′)|v′ ∈ N(v)}) + α Û(v), (6)

where α ∈ (0, 1) is the regularization parameter, and Û(v) is the
utility regularization for v representing either P̂(v) or R̂(v).

3.2 Domain-awareness
Different entities often require different queries. For example,

data mining is a useful query for Jiawei, but not for Marc Snir,
who is a professor working on parallel computing. In train-
ing, we cannot see all the possible entities, thus directly learning
useful queries from the training entities is not enough. To address
such entity variations, we observe that queries for different enti-
ties often match similar abstractions. For example, we can see both
data mining and parallel computing represent research top-
ics. We name such query abstractions templates. A template is a
sequence of units t = (u1, u2, . . . , u`), where each unit ui is ei-
ther a word w ∈ W or a type c ∈ C. A type c can be regular
expressions or some predefined categories from knowledge bases.
Consequently, we can learn the usefulness of templates, and apply
it to the new entities in the same domain.

We estimate the utilities of templates through the reinforcement
between templates and queries. Consider a template universe T ,
which can be enumerated from queries with a given set of types.



Based on the running example in Fig. 3, we obtain T = {t1, t2, t3}
in Fig. 4(a). Furthermore, we can extend the reinforcement graph
G = (V,E) with templates, such that V = P ∪ Q ∪ T and E
now also captures the reinforcement between Q and T , as shown
in Fig. 4(b). Denote Ω(t) as the set of pages that can be indirectly
“retrieved” by template t through any of its abstracted queries. For
instance, through q1 and q2, t1 can retrieve Ω(t1) = {p1, p2, p3}.
Then, we can estimate the utilities of t, P(t) andR(t) based on the
mutual reinforcement betweenQ and T . As each query is now con-
nected to both pages and templates, we denote its page neighbors
by NP (q) and template neighbors by NT (q). Finally, we have

P(t) =
∑
q∈N(t)

Wqt∑
q′∈N(t)Wq′t

P(q) (7)

R(t) =
∑
q∈N(t)

Wqt∑
t′∈NT (q)Wqt′

R(q) (8)

Similarly, we can express P(q) and R(q) in terms of P(t) and
R(t) respectively. As P(q) and R(q) can be expressed in terms
of P(p) andR(p), we can combine both expressions by taking the
average of them as the final utility for q.

In training, now with templates we can construct a domain graph
of pages-queries-templates, and estimate the utility of each tem-
plate by propagating the known page utilities on the domain graph
according to Eq.6. Later in testing we can propagate the template
utilities back to the candidate queries.

3.3 Context-awareness
In testing, we look for a series of queries together to find as many

relevant Web pages for an entity and an aspect, therefore we need
to consider the redundancy among the queries. Denote the queries
that were fired before iteration-i as Φ , {q(0), q(1), . . . , q(i− 1)}.
Denote the Web pages collected in training as PD, and the Web
pages collected by Φ in testing as PE . We can extract candidate
queries from PE and construct an entity graph of pages-queries-
templates. Due to the query redundancy, we choose a query q∗ from
a candidate set QE to maximize a collective utility UE(Φ ∪ {q})
based on PE and PD:

q∗ = arg maxq∈QE UE(Φ ∪ {q}|PE, PD). (9)

Parallel to the probabilistic utilities of one query (Eq. 1–2), we de-
fine below the collective utilities of a set of queries probabilisti-
cally, where Ω(Q) ≡

⋃
q∈Q Ω(q).

PE(Φ ∪ {q}) , P (ω ∈ Ω(Y ) | ω ∈ Ω(Φ ∪ {q})), (10)

RE(Φ ∪ {q}) , P (ω ∈ Ω(Φ ∪ {q}) | ω ∈ Ω(Y )). (11)

Our intuition to estimate the collective recall is that, the pages
retrieved by Φ ∪ {q} equal the pages retrieved by Φ and the pages
retrieved by q, but subtracting their overlap. In other words, after
some derivations (details are in [6]), we should be able to derive

RE(Φ ∪ {q}) = RE(Φ) +RE(q)−∆(Φ, q), (12)

where ∆(Φ, q) is the recall overlap between q and Φ. We can also
derive the estimation of ∆(Φ, q) as

∆(Φ, q) = R(Ỹ )
E (q) · RE(Φ), (13)

whereR(Ỹ )
E (q) is the recall estimated on the entity graph, given the

known page utilities R̂(Ỹ )
E (p) = Ỹ (p)/

∑
p′∈PE

Ỹ (p′), ∀p ∈ PE

with Ỹ (p) = 1 iff Y (p) = 1 and p ∈ PE . Note that,RE(Φ) can be
recursively computed by decomposing Φ = {q(0), q(1), . . . , q(i− 1)}
into q(i− 1) and q(i− 1)’s context queries q(0), . . . , q(i− 2). Thus, we
only need to determine the base case—RE(q(0)), recall of the ini-
tial seed query q(0). As we have not gathered any page for the

Table 1: Example constraints for the researcher domain.

ID Constraint statement Prob.
RC1 If a snippet is EDUCATION, then it has no course/bio words 66%
RC2 If two snippets are BIOGRAPHY, then they are similar 71%
RC3 If two snippets are EMPLOYMENT and BIOGRAPHY, then

they share organizations
61%

target entity in the beginning, there is no reliable way to estimate
RE(q(0)). Thus, we treat it as a parameter r0 ∈ (0, 1) to tune.

Our intuition to estimate the collective precision is as follows: to
optimize collective precision, Φ and q should collectively retrieve
as many relevant pages, but at the same time as few total pages (re-
gardless of page relevance); thus we should be able to decompose
collective precision into two components, one as the collective re-
call with regards to Y by Φ and q, and the other as the collective
recall regardless of Y by Φ and q. Formally, after some derivations
(details are in [6]), we derive

PE(Φ ∪ {q}) = RE(Φ∪{q})
R(Y ∗)
E

(Φ∪{q})
, (14)

whereRE(Φ∪{q}) is the collective recall w.r.t. Y , whileR(Y ∗)
E (Φ∪

{q}) is the collective recall estimated on the entity graph, given the
known page utilities R̂(Y ∗)

E (p) = Y ∗(p)/
∑
p′∈PE

Y ∗(p′), ∀p ∈
PE with Y ∗(p) = 1 for any page p.

4. DATA INTEGRATION BY CPF
As our task is to extract information about an entity, we expect to

see many different kinds of constraints within each aspect of the en-
tity (e.g., constraintsRC1 andRC2 in Table 1) and across different
aspects of the entity (e.g., constraint RC3). Being able to leverage
such constraints is critical for ensuring the data integration accu-
racy. In this section, we summarize our CPF model to formulate
constraints and further incorporate them as weak supervision with
unlabeled data for semi-supervised learning.

4.1 Conditional Probabilistic Constraints
As can be seen from Table 1, the constraints are often conditional

and probabilistic. Thus our first problem to tackle is to properly for-
mulate the constraints, with explicit notions of constraint condition
and constraint probability. Specifically, we define a constraint con-
dition function g as a binary feature function g : X d1 × Yd2 →
{0, 1}, where d1, d2 ∈ N ∪ {0}. g returns one if the constraint is
applicable to an instance x ∈ Rd1 and its labels y ∈ Rd2 , or zero
otherwise. As a result, an x-type constraint is a constraint having
its constraint condition g with d1 ∈ N, d2 = 0; whereas a y-type
constraint is a constraint having its condition g with d1 ∈ N∪{0},
d2 ∈ N. To define the constraint probability, we first introduce a
constraint satisfiability function f . f is a binary feature function
f : X d ×Yd → {0, 1}, d ∈ N, which returns one if a constraint is
satisfied on the instance x and its labels y, or zero otherwise. Thus
a constraint probability is the probability of a constraint being sat-
isfied when its condition is true, i.e., Pr(f(x,y) = 1|g(x,y) = 1).
Finally, we propose a conditional probabilistic formulation (CPF)
to unify x-type and y-type constraints.

DEFINITION 1 (CPF). A constraint c is expressed as a triple
(g(x,y), f(x,y), η) with P (f(x,y) = 1|g(x,y) = 1) = η,
where η ∈ [0, 1] is the empirical conditional probability of c.

4.2 Weak Supervision with Constraints
We aim to train a model for collective extraction among mul-

tiple Web pages of a person entity w.r.t. multiple aspects. To



formalize the problem, we often have a small set of labeled data
DL = {(X(i)

L , Y
(i)
L )|i = 1, ..., nL}, where each (X

(i)
L , Y

(i)
L ) =

{(x(i)
k , y

(i)
k )|k = 1, ..., ni} is a Web page with multiple labeled

text snippets. Each x(i)
k ∈ X is a text snippet; y(i)

k ∈ Y is the snip-
pet’s label. Besides, we can also have a set of unlabeled dataDU =

{X(i)
U |i = 1, ..., nU}, with each X(i)

U = {x(i)
k |k = 1, ..., ni}.

Denote a set of CPF constraints as C = {c1, ..., cnC}. In train-
ing, we aim to output a multi-class classifier q(Y |X;C) trained
from DL, DU and C, where X is a set of observations. Denote a
set of test data as DT = {(X(t)

T , Y
(t)
T )|i = 1, ..., nT }, with each

(X
(t)
T , Y

(t)
T ) = {(x(t)

k , y
(t)
k )|k = 1, ..., nt}. In testing, we classify

each X(t)
T ∈ DT by Y ← arg max

Y ∈Ynt
q(Y |X(t)

T ;C), and compare

with the corresponding ground truth Y (t)
T for evaluation.

We use Conditional Random Fields (CRF) [7] to model the la-
beled data. We design a set of features hi(x,y) to characterize
the dependencies among x and y. For notation simplicity, we de-
note hi(X,Y ) =

∑
k hi(xk,yk) as summing over all the possible

(xk,yk) from (X,Y ). By stacking the hi(X,Y )’s into a vector
h(X,Y ), CRF tries to find a θ that maximizes

Pθ(Y |X) = 1
Zθ(X)

exp{θ · h(X,Y )}, (15)

where Zθ(X) =
∑
Y exp{θ · h(X,Y )} is a normalization term.

In general, given (XL, YL), we can train the CRF model θ by opti-
mizing the negative log-likelihood:

Lθ = − 1
nL

∑nL
i=1 logPθ(Y

(i)
L |X

(i)
L ) + γ

2
‖θ‖22, (16)

where ‖ · ‖2 is a `2-norm and γ ≥ 0 is a regularization parameter.
We use constraints as weak supervision to incorporate the unla-

beled data. We first estimate the probability for a constraint c as

P (fc(x,y) = 1|gc(x,y) = 1) =
Eq [fc(XU ,YU )]

Eq [gc(XU ,YU )]
,

where Eq[fc(XU , YU )] is the expected number of instances with
c being satisfied, Eq[gc(XU , YU )] is the expected number of in-
stances with c being applicable. Given nC constraints and each of
them having an empirical probability ηc ∈ [0, 1], we denote η =
[η1, ..., ηnC ]. We also denote g(X,Y ) = [g1(X,Y ), ..., gnC (X,Y )]
and f(X,Y ) = [f1(X,Y ), ..., fnC (X,Y )]. Thus, by making each
P (fc(x,y) = 1|gc(x,y) = 1) equal to its ηc, we have

Eq[f(X,Y )] = η ◦ Eq[g(X,Y )], (17)

where ◦ is the element-wise product. For simplicity, we let ζ(X,Y ) =
f(X,Y )− η ◦ g(X,Y ); then Eq[ζ(X,Y )] = 0.

Finally, we try to find a target distribution q(Y |X;C) that ap-
proximates Pθ(Y |X) on the labeled data (through minimizing the
KL-divergence between q and Pθ) and matches the constraints on
the unlabeled data (through satisfying Eq. 17) at the same time:

minθ,q∈∆ Lθ +
α1

nU

∑nU

i=1
KL(q(Y |X(i);C)||Pθ(Y |X(i)))

+ α2
2nU

∑nU
i=1 ‖Eq[ζ(X(i), Y )]‖22,

(18)
where ∆ is a simplex s.t.

∑
Y q(Y |X;C) = 1.

4.3 Efficient Inference with Constraints
Optimizing Eq. 18 is hard due to the complication of y-type con-

straints. Take RC2 as an example. As we do not know which pair
of text snippets are BIOGRAPHY for the unlabeled data, we have to
evaluate every pair of hidden variables, resulting in a complete (or
at least densely connected) graph over the hidden variables. Infer-
ence with an over densely connected graph is hard, thus a efficient

inference design is needed. Our intuition is that, actually we do
not have to evaluate all the pairs of hidden variables, since we only
care about those pairs that are truly BIOGRAPHY. If we can guess
which text snippets are likely to be BIOGRAPHY, then we can fo-
cus on a much simpler graph. Formally, for a y-type constraint c,
we estimate whether an instance xj and its labels yj are relevant
to c by Pr(gc(xj ,yj) = 1). Denote yc as the preferred labels for
c, such that gc(xj ,yj = yc) = 1; e.g., the preferred labels for
RC2 are BIOGRAPHY’s. Then, we estimate Pr(gc(xj ,yj) = 1) by
Pθ(yj = yc|X), or Pθ(ycj |X) for short. Denote εc as the selec-
tion threshold for c. Finally, we can introduce a selection indicator
δ(logPθ(y

c
j |X) ≥ εc) for each y-type constraint c as

ζ∗c =

{
δ(logPθ(y

c
j |X) ≥ εc)ζc(xj ,yj), if c is y-type;

ζc(xj ,yj), otherwise.
(19)

Thus, instead of ζ, we use ζ∗ = [ζ∗1 , ..., ζ
∗
nC ] in Eq. 18 for a new

objective function with selective evaluation.
We automatically learn the selection thresholds εc’s for differ-

ent constraints. Our intuition is that, if the labeled data and the
unlabeled data follow the same distribution, then the percentage
of relevant instances for a constraint c over the unlabeled data is
close to that over the labeled data. Denote mc as the number of
instances for constraint c on unlabeled data (X,Y ); i.e., mc =
|{(xj ,yj)|xj ∈ Xd,yj ∈ Y d}|. Denote πc as the percentage of
relevant instances over all the mc instances. We can estimate πc as

πc = 1
mc

∑mc
j=1 δ(logPθ(y

c
j |X) ≥ εc)g(xj ,y

c
j).

Denote π̃c ∈ [0, 1] as the empirical percentage of relevant instances
over all the labeled data. Then, we define a meta-constraint for
constraint c as: πc = π̃c. For each unlabeled page X(i)

U ∈ DU , we
estimate one π(i)

c . Denote ε = [ε1, ..., εnC ] with each εc ≤ 0. In
all, we derive a new objective function as

minθ,q∈∆,
ε<0

Lθ + α1
nU

∑nu
i=1 KL(q(Y |X(i);C)||Pθ(Y |X(i)))

+ α2
2nU

∑nU
i=1 ‖Eq[ζ

∗(X(i), Y )]‖22

+ α3
2nU

∑nU
i=1

∑
c∈Cy [mc(π

(i)
c − π̃c)]2,

(20)
where α3 ≥ 0 is a trade-off parameter. Eq. 20 is our ultimate
objective function. We leave the details of its optimization in [15].

5. EVALUATION

5.1 Evaluation for Data Harvesting
Data set. For repeatable results, we conduct experiments over a
corpus collected from the Web in advance, and all queries will re-
trieve pages from this corpus only. We prepared corpora for the
researcher domain. In total, we have 996 researchers randomly
chosen from DBLP’s most prolific authors4. For each entity, we
attempted to collect 50 pages from the Web to construct the cor-
pora. To retrieve pages from the corpora, we used a language model
with Dirichlet smoothing [14] as the search engine. For each query,
pages in the corpus are ranked and the top 5 are returned.

Evaluation methodology. We randomly reserved half of the enti-
ties as “domain entities” for training, and the remaining as “target
entities” for testing. Target entities were further divided into two
equal splits, one for parameter validation, and the other for testing.
We repeated the split randomly for 10 times.

4http://dblp.uni-trier.de/statistics/prolific1.html
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Figure 5: Using L2Q for data harvesting.

On the testing set, we evaluate the retrieved pages in terms of
their actual precision, recall and F-score for every target entity and
aspect. We then normalize the results against an ideal solution for
fair comparison across different entities We design the ideal solu-
tion as selecting queries that maximize the product of their actual
coverage and precision, which can be obtained by feeding each can-
didate query to the search engine. Given multiple target entities and
test splits, we report the average results over all entities and splits.
We further average the results across aspects, omitting the detailed
performance for every aspect due to space constraint.

Performance. We compare our approaches L2QP (L2Q for Pre-
cision), L2QR (L2Q for Recall), and their combination L2QBAL
(L2Q for F-score, where we choose queries based on their geomet-
ric mean of L2QP collective utility and L2QR collective utility)
with four independent baselines: 1) Language Model (LM), based
on the language feedback model [13]; 2) Adaptive Querying (AQ),
based on the adaptive query selection policy [12]; 3) Harvest Rate
(HR), based on the harvest rate heuristic [11]; 4) Manual Querying
(MQ), based on human designed queries. The first three baselines
are algorithmic methods adapted from related problems, since there
is no previous work on our exact setting. The fourth baseline is a
manual approach based on a user study.

In Fig. 5, we vary the number of queries, and report the results
on precision, recall and F1. In terms of precision, L2QP achieves
the best performance, surpassing not only the baselines, but also
L2QR, since L2QP is designed to optimize precision. On average,
L2QP beats the best algorithmic baselines by 28%, and the manual
baseline by 14%. In terms of recall, L2QR likewise outperforms all
the other methods, as it is designed to optimize recall. On average,
L2QR beats the best algorithmic baseline by 11%, and the manual
baseline by 14%. In terms of F-score, L2QBAL outperforms L2QP
and L2QR; it is also consistently better than all the baselines for
various number of queries. On average, it beats the best algorithmic
baseline by 16%, and the manual baseline by 10%.

5.2 Evaluation for Data Integration
Data set. We prepared a corpus for the researcher domain, with in
total 1,003 researchers. For each researcher, we collected a set of
Web pages. For each page, we further parse it into a set of text snip-
pets. In total, we got 3,002 pages and 48.2K snippets. We labeled5

the text snippets of 100 entities as labeled training data, and the
snippets of another 103 entities as test data. We leave the other 800
entities as unlabeled training data. There are 11 entity aspects used
as the labels. We used the constraints in Table 1. These constraints

5The labeling was done by two human judges, who achieved an
agreement of 84% for the researcher domain.
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Figure 6: Using CPF for data integration.

were designed with two guidelines: first, as none of the existing
work supports y-type constraints, we only focus on experimenting
with y-type constraints; second, we consider y-type constraints as
up to second order (i.e., involving two hidden variables in one con-
straint), which are the most common data dependencies.

Evaluation methodology. As our task is classification, we use the
F1 score to evaluate the performance on each class. Generally, there
are two kinds of classes (i.e., labels): one is constraint relevant
where the class is used by at least one constraint from Table 1 in the
data set, the other is constraint irrelevant where the class is never
used by any constraint. For example, in Table 1, the constraint rele-
vant classes are EDUCATION, BIOGRAPHY and EMPLOYMENT; the
constraint irrelevant classes are AWARDS, RESEARCH and so on. As
we are more interested in the performance change on the constraint
relevant classes, we combine all the constraint irrelevant classes as
one big class Others in evaluation and define its performance as the
average F1 score of all its constituting constraint irrelevant classes.
Finally, given the F1 score of each constraint relevant class and the
F1 score of Others, we define their average as a model’s overall F1
score. We run experiments for five times and report the average of
a model’s overall F1 scores for comparison.

Performance. We compare our CPF model with the following
baselines: 1) CRF [7], which is the basic structured classifier with-
out constraint; 2) GSNI [1], CODL [4] and GE/PR [2], which are
the existing constraint formulations that can work with non-logic
structured classifiers. Note that as none of these baselines supports
y-type constraints, we adapted them to use the constraints.

In Fig. 6(a), we evaluate the usefulness of y-type constraints
RC1, RC2 and RC3. As we can see, all the constraints improve
the performance. In Fig. 6(b), we compare CPF with the baselines
as training data amount changes from 20% to 100% for each entity.
As we can see, CPF is generally better than the baselines. When
using 100% data for each entity, CPF achieves 9.1%-24.2% rela-
tive F1 improvement over the baselines. All the improvements are
significant, with t-test p ≤ 0.05. In Fig. 6(c), we evaluate our ef-
ficient inference with y-type constraints. When using all the three
constraints, CPF is 19.0× faster than the baselines.

5.3 Evaluation for ARISE-PIE System
We conduct system evaluations in order to measure: 1) the ab-

solute performance on a benchmark data set; 2) the relative perfor-
mance compared with human using Google to find information by
themselves through a user study.

Benchmark data. We create a benchmark data set with 30 re-
searchers in computer science. These researchers are picked to en-
sure the diversity in research fields, geographical regions and career
stages. For each researcher, we collect and label at most 60 web
pages from Google and the structured data from several people list-
ing services. We use this data set to measure the macro average
precision, recall and F1 across different attributes and different re-
searchers, as the system’s absolute performance.



Table 2: The system evaluation results. Some notations’ meanings:
“P”=Precision, “R”=Recall, “Rel.”=Relative).

Absolute Scores Relative Scores
Attributes P R F1 Rel. P Rel. R Rel. F1

Contact 0.52 0.53 0.52 0.92 0.92 0.92
Birthday 0.79 0.79 0.79 0.83 0.83 0.83

Nationality 0.84 0.88 0.84 1.11 1.11 1.11
Award 0.55 0.56 0.51 0.50 0.50 0.50

Employment 0.63 0.41 0.50 0.89 0.78 0.82
Education 0.63 0.64 0.62 0.89 0.89 0.89

Course 0.55 0.63 0.53 0.44 0.44 0.44
Publication 0.77 0.76 0.73 1.41 1.21 1.24

Social accounts 0.81 0.81 0.81 1.26 1.26 1.26
Book 0.73 0.88 0.73 1.67 1.67 1.67

Homepage 0.54 0.50 0.51 1.10 1.22 1.16
Average 0.68 0.70 0.67 0.93 0.90 0.91

User study. We design a user study to let six participants use
Google to answer questions about the researchers in the benchmark
data set. For each participant, we sample 18 questions from a big
question pool we compiled. Each question covers one different re-
searcher, and it has to be answered within five minutes to control
the experiment time. The participants can freely use Google with as
many different queries as they like, and they can read all the search
results regardless of the formats (e.g., HTMLs, PDFs, etc.). For
comparison, we also use our system to answer these questions. For
each question, we allow at most three queries to try our system. We
measure the relative precision, recall and F1 by dividing our results
with the human results. The larger a score is, the better.

Performance. We summarize the results in Table 2. On the bench-
mark data set, our system can achieve a 0.67 absolute F1. In ad-
dition to the inevitable prediction errors from the system, there are
several possible reasons to cause the performance deficiency. First,
in the evaluation, we only collect 10 pages from Google. This may
miss some information. Second, our system only processes HTML
pages, but not other data formats (e.g., PDF résumés).

On the user study, our system can achieve a 0.91 relative F1 com-
pared with the human results. This has two implications. First, our
performance is lower than that of human results, which is expected
since human can read more types of data, and their exactions are
highly accurate. In some sense, they are an upper bound for us.
Second, our performance is close to human results, but we are fully
automatic once the queries are given.

6. CONCLUSION
In this paper, we study the problem of how to automatically

search and integrate people information on the Web. We solve two
major technical challenges: 1) data harvesting, which aims to au-
tomatically crawl relevant Web pages for a target entity through
search engine. We propose a novel L2Q model to find a set of best
queries to maximize some collective utility in terms of the crawled
pages; 2) data integration, which aims to collectively extract the
target entity’s information from the crawled pages with the help
of constraints. We propose a novel CPF model to formulate flex-
ible forms of constraints and develop an efficient semi-supervised
model by selectively evaluating the constraints on unlabeled data.
Based on our two innovations on data harvesting and integration,
we develop a people search system ARISE-PIE for the research
domain. We evaluate our L2Q and CPF models on the real-world
data sets. In data harvesting, L2Q achieves 16% and 11% rela-
tive F-score improvement than the best algorithmic baseline and
the manual baseline respectively. In data integration, CPF achieves

9.1% relative F-score improvement and 19.0× speedup than the
best baselines. We also evaluate our ARISE-PIE system with a
benchmark data set and a user study. We achieve 0.67 absolute F-
score and 0.91 relative F-score compared with the manual results.

In the future, we plan to exploit more types of data such as PDF
and social media. We also plan to improve our extraction accuracy
by leveraging more structured sources to generate labeled data.
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