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Abstract
Molecular representation learning plays a crucial role in advancing
applications such as drug discovery and material design. Existing
work leverages 2D and 3D modalities of molecular information for
pre-training, aiming to capture comprehensive structural and geo-
metric insights. However, these methods require paired 2D and 3D
molecular data to train the model effectively and prevent it from col-
lapsing into a single modality, posing limitations in scenarios where
a certain modality is unavailable or computationally expensive to
generate. To overcome this limitation, we propose FlexMol, a flexi-
ble molecule pre-training framework that learns unified molecular
representations while supporting single-modality input. Specifi-
cally, inspired by the unified structure in vision-language models,
our approach employs separate models for 2D and 3D molecular
data, leverages parameter sharing to improve computational effi-
ciency, and utilizes a decoder to generate features for the missing
modality. This enables a multistage continuous learning process
where both modalities contribute collaboratively during training,
while ensuring robustness when only one modality is available
during inference. Extensive experiments demonstrate that FlexMol
achieves superior performance across a wide range of molecular
property prediction tasks, and we also empirically demonstrate its
effectiveness with incomplete data. Our code and data are available
at https://github.com/tewiSong/FlexMol.
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1 Introduction
Molecular representation learning has become a cornerstone for
applications in drug discovery [10, 22], material science [4], and
other scientific domains [9]. A central challenge in this field is how
to effectively leverage both 2D molecular graphs and 3D geometric
conformations. These two modalities offer complementary infor-
mation: 2D graphs capture the chemical connectivity [6, 18, 42],
while 3D geometries provide spatial and electronic details essential
for understanding molecular interactions [31, 35, 43].
Limitations of PriorWork. To learn from both 2D and 3Dmolecu-
lar data, current methods can be broadly divided into two categories,
which are illustrated in Figure 1(a) and (b), respectively.

The first category involves separate 2D and 3D outputs, such as
GraphMVP [17] and MoleculeSDE [15], where distinct models are
trained independently on each modality. This approach allows each
model to specialize, often improving accuracy for tasks relying
on modality-specific features. When downstream tasks require
cross-modality prediction, these models typically rely on SE(3)-
equivariant Stochastic Differential Equation (SDE) to convert 2D
representations into 3D or SE(3)-invariant SDE to transform 3D
representations into 2D. However, predicting 3D downstream tasks
may also require 2D information, and vice versa. Since the 2D
and 3D representations are modeled separately, the model cannot
effectively leverage information across modalities.

The second category aims to unify 2D and 3D molecular repre-
sentations within a single model, offering computational efficiency
and better integration of 2D and 3D features. However, without
a proper alignment of the two modalities, the model may strug-
gle to capture complementary information. Additionally, most of
these approaches are not capable of handling unpaired data, such
as UnifiedMol [45], which relies on the joint use of paired 2D and
3D data (i.e., having both 2D graph and 3D conformation for each
molecular) during pre-training. Even when somemodels can handle
single-modality data, it will reduce to a less effective single-modality
model, such as Transformer-M [18] and MolBlend [42].
OurWork. To address these limitations, we propose a novel frame-
work called FlexMol, which integrates the advantages of both ap-
proaches while mitigating their challenges, as illustrated in Fig-
ure 1(c). Specifically, first, to ensure that information from different
modalities is effectively fused while maintaining alignment, we
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Figure 1: (a) & (b) Two categories of models that integrate both 2D and 3D molecule modalities, and their respective advantages
and drawbacks; (c) Our proposed FlexMol framework.

start with separate models to learn from the 2D and 3D modali-
ties. Inspired by the “align before fuse” strategy in vision-language
models [3, 13], we introduce parameter sharing across the mod-
els, allowing our framework to learn a unified representation that
integrates information from both modalities. Second, to enable
flexible multi-modal learning with any combination of available
modality data (i.e., molecules with only 2D or 3D information, as
well as molecules with both 2D and 3D information), we employ
2D→3D and 3D→2D decoders to generate the missing modality,
ensuring effectiveness even when only single-modality information
is available.
Summary of Contributions. Our proposed framework, FlexMol,
supports flexible input from either single or paired modalities, as
well as their mixture. Its effective feature alignment and fusion
strategy enables it to achieve competitive performance across vari-
ous molecular property prediction tasks. Trained on a dataset with
only 3.4M paired and 2M single-modality samples, it can outperform
much larger molecular models pre-trained on data exceeding 10M
samples on certain benchmark tasks. The main contribution of this
paper is summarized as follows.
• We propose FlexMol, a unified framework for molecule pre-
training that effectively aligns and fuses 2D and 3D modalities,
while preserving modality-specific information.

• We develop 2D→3D and 3D→2D decoders that can generate
missing modality data based on the available modality, allowing
the model to perform multi-modal learning even with single-
modality inputs. Hence, FlexMol supports flexible pre-training
data, including a mixture of paired and single-modality data.

• We empirically demonstrate that FlexMol achieves competitive
performance across various benchmark tasks in molecular prop-
erty prediction.

2 Related Work
2D Molecule Pre-training. 2D molecule pre-training focuses on
learning molecular representations from graph-based structures,
often incorporating graph augmentations or sequential SMILES

representations. PretrainGNN [12] is a pre-training strategy for
graph neural networks (GNNs) that combines node- and graph-level
tasks to capture both local and global representations. Building on
similar ideas of leveraging multi-level information, GROVER [26]
employs self-supervised tasks at node, edge, and graph levels to
capture structural and semantic information. Expanding the scope
of molecular pre-training, MolCLR [34] focuses on self-supervised
learning with graph augmentations, pre-training on 10 million un-
labelled molecules via atom masking, bond deletion, and subgraph
removal. Complementary to this, DVMP [46] introduces a dual-
view framework by integrating Transformer and GNN branches to
harness both sequential (SMILES) and graphical representations of
molecules. Taking a further step in node- and graph-level learning,
Mole-BERT [37] employs a context-aware tokenizer using VQ-VAE,
enabling masked atom modeling and triplet masked contrastive
learning to refine molecular representations. FineMolTex [14] en-
ables the model not only to establish correspondences between
entire molecular graphs and their textual descriptions but also to
align common 2D motifs with key terms in descriptions, enhancing
the understanding of molecular structures.
3D Molecule Pre-training. 3D molecule pre-training leverages
geometric information such as atomic distances, bond angles, and
3D conformations to capture spatial and physical properties of
molecules. GEM [5] employs a geometry-based graph neural net-
work with geometry-level self-supervised learning strategies to in-
tegrate bond angles and bond lengths as additional edge attributes,
enhancing the representation of 3D molecular information. Build-
ing on this emphasis on 3D geometry, GeoSSL-DDM [16] uses an
SE(3)-invariant score matching strategy to denoise pairwise atomic
distances while leveraging energy-based models (EBM) for mutual
information maximization, offering a generative self-supervised
learning method for molecular geometric data. Diverging from
the pairwise focus of GeoSSL-DDM, LEGO [33] targets localized
tetrahedral structures as core representations, employing pertur-
bation and reconstruction of these units with masked modeling to
pre-train molecular representations. Expanding the application of
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3D data, Uni-Mol [43] introduces a unified framework with two
SE(3) Transformer models pre-trained for molecular conformations
and protein pockets. Furthermore, Frad [24] adopts fractional de-
noising and hybrid noise designs, incorporating chemical priors to
enhance force learning interpretation and achieve refinedmolecular
distribution modeling.
2D & 3D Molecule Pre-training. We first review separate modal-
ity training methods. GraphMVP [17] employs a multiview frame-
work for molecular pre-training by maximizing mutual information
(MI) between 2D and 3D representations, reformulating MI via con-
ditional probabilities and leveraging contrastive and generative
losses for robust integration. MoleculeSDE [15] extends this with
direct data-space modeling for geometry and topology reconstruc-
tion, utilizing SE(3)-equivariant and reflection-antisymmetric SDEs.
In contrast, 3D Infomax [31] encodes implicit 3D knowledge into
GNNs using only 2D graphs, maximizing MI between latent 3D
representations and GNN outputs. This allows models to infer 3D
geometry during fine-tuning without explicit 3D data, capturing
transferable 3D features for efficient 2D-based inference. Unicorn
[6] integrates 2D graph masking, 2D-3D contrastive learning, and
3D denoising via a diffusion process to model augmented trajecto-
ries. MoleculeJAE [35] further unifies 2D and 3D representations
through self-supervised chemical structure learning.

The other line of research focuses on unified modality training.
Zhu et al. [45] propose a unified 2D-3D molecular pre-training
framework with three tasks: masked atom/coordinate reconstruc-
tion, 2D-to-3D conformation generation, and 3D-to-2D graph gen-
eration on a backbone graph network block [1]. To enhance multi-
modal integration, Transformer-M [18] employs separate channels
for 2D and 3D structures but unifies them in a Transformer-based
model, enabling flexible processing of both formats. MolBlend [42]
follows the same encoding approach yet adopts self-supervised pre-
training, unifying 2D-3D molecular relations into a single matrix
and reconstructing modality-specific information, thereby improv-
ing generalization.

3 Proposed Method
In the first pre-training stage, paired 2D and 3D molecular features
are used for self-supervised training to learn a unified molecular
representation. In the second pre-training stage, continual learning
is conducted on the model trained in the first stage using single-
modality data. The overall pipeline is illustrated in Figure 2.

3.1 Pre-training on Paired 2D & 3D Modalities
3.1.1 2D& 3D Feature Learning. Following priorwork Transformer-
M [18], we represent the atoms and their associated features as a
matrix X ∈ R𝑛×𝑑 , where 𝑛 denotes the number of atoms, and 𝑑 is
the dimensionality of the feature space. For a 2D molecular struc-
ture, we define the molecular graph as G2𝐷 = (X, 𝐸), where 𝐸
represents the set of edges. An edge 𝑒 (𝑖, 𝑗) ∈ 𝐸 corresponds to the
feature of the bond (e.g., bond type) between atom 𝑖 and atom 𝑗 ,
provided such a bond exists. For the 3D geometric structure, we
define it as G3𝐷 = (X, 𝑅), where 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑛} is a set of 3D
coordinates, with each 𝑟𝑖 ∈ R3 specifying the spatial position of
atom 𝑖 .

2D Molecule Feature. For each atom 𝑖 , let𝜓deg (𝑖) represent the
degree encoding of atom 𝑖 , which is a 𝑑-dimensional learnable
vector determined by the atom’s degree. The degree encodings
for all atoms in the molecule are collectively denoted as Ψ2D =

[𝜓deg (1),𝜓deg (2), . . . ,𝜓deg (𝑛)] ∈ R𝑛×𝑑 . The representation of a 2D
molecule is then given by x = X + Ψ2D, where x ∈ R𝑛×𝑑 , and
X ∈ R𝑛×𝑑 denotes the initial features of the atoms.
3D Molecule Feature. For each atom pair (𝑖, 𝑗), we compute a
distance encoding 𝜓 (𝑖, 𝑗) ∈ R𝐾 , where each component 𝜓𝑘 (𝑖, 𝑗)
is obtained by applying a Gaussian kernel 𝑘 to the Euclidean dis-
tance between 𝑖 and 𝑗 , where 𝑘 = 1, . . . , 𝐾 , where 𝐾 is the num-
ber of Gaussian Basis kernels, following Transformer-M [18]. For
each atom 𝑖 , the 3D distance encodings between 𝑖 and all other
atoms are summed to compute its centrality encoding: 𝜓3D (𝑖) =∑𝑛
𝑗=1𝜓 (𝑖, 𝑗)W𝐷 , whereW𝐷 ∈ R𝐾×𝑑 is a learnable weight matrix,

and 𝜓 (𝑖, 𝑗) ∈ R𝐾 aggregates the Gaussian kernel values for each
pair. The 3D molecule representation is then given by y = X +
Ψ3D, where y ∈ R𝑛×𝑑 , and Ψ3D = [𝜓3D (1), . . . ,𝜓3D (𝑛)] ∈ R𝑛×𝑑 .
2D & 3D Molecule Representation Learning.We employ two
separate multi-layer perceptrons (MLPs) to approximate the previ-
ously obtained 2D and 3D molecular features, x and y. The outputs
of these MLPs are denoted as x̃ and ỹ, which serve as the supervi-
sion signals for the decoders of the missing modality during the
second stage of training.
2D Atom Pair Representation. For each atom pair (𝑖, 𝑗), let
𝑑𝑖 𝑗 ∈ Z≥0 be the Shortest-Path Distance (SPD) in the molecular
graph. We denote ΦSPD

𝑖 𝑗
∈ R as an SPD encoding between atom

𝑖 and 𝑗 , which is a learnable scalar determined by the distance
of the shortest path between them. In addition, we encode the
edge features (e.g., chemical bond types) along the shortest path
from 𝑖 to 𝑗 . Let the sequence of edges on this shortest path be
𝑆𝑇𝑃𝑖 𝑗 = (𝑒1, 𝑒2, . . . , 𝑒𝑁 ), where each 𝑒𝑛 denotes the feature vec-
tor of the 𝑛-th edge on the path. For most molecules, there exists
only one distinct shortest path between any two atoms; in the rare
case of multiple shortest paths, we simply take one returned by
the shortest-path algorithm. The edge encoding between 𝑖 and 𝑗
is defined as ΦEdge

𝑖 𝑗
= 1

𝑁

∑𝑁
𝑛=1 𝑒𝑛 (𝑤𝑛)𝑇 , where 𝑤𝑛 are learnable

vectors of the same dimension as the edge features. Finally, the 2D
atom pair representation is obtained as P = ΦSPD + ΦEdge ∈ R𝑛×𝑛 .
3D Atom Pair Representation. The 3D distance encoding Φ3D

𝑖 𝑗

is obtained according to Φ3D
𝑖 𝑗

= GELU
(
𝝍 (𝑖, 𝑗 )𝑾

1
𝐷

)
𝑾2
𝐷
, where

𝝍 (𝑖, 𝑗 ) =

[
𝜓1
(𝑖, 𝑗 ) ; . . . ;𝜓

𝐾
(𝑖, 𝑗 )

]⊤
is the Gaussian basis kernel applied

to the 𝑑𝑖 𝑗 capturing spatial variations. 𝑾1
𝐷

∈ R𝐾×𝐾 , and𝑾2
𝐷

∈
R𝐾×1are learnable parameters. Subsequently, the 3D atom pair
representation is Q = Φ3D ∈ R𝑛×𝑛 .

3.1.2 Transformer layers. Inspired by some vision-language mod-
els [3, 13], we adopt an “align before fuse” Transformer architecture
to jointly learn 2D and 3Dmolecular representations, which enables
efficient encoding of both features. The 2D and 3D representations
are further aligned using contrastive learning, as detailed in §3.1.3.
2D (3D) Encoder.We adopt the SE(3) Transformer encoder with 𝐹
layers, as proposed in Uni-Mol [43], to encode molecular structures
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with 3D equivariance. To process 2D and 3D modalities efficiently,
the encoder shares self-attention parameters. The encoder inputs
2D/3D molecular representations (x, y) and atom pair representa-
tions (P,Q) as attention bias. After 𝐹 layers, it outputs x(𝐹 ) , y(𝐹 )

(molecules) and P(𝐹 ) ,Q(𝐹 ) (pairs).
We maintain a pair-level representation, similar to Uni-Mol [43].

Take 2D atom pair representation as example, P𝑖 𝑗 is initialized as
the 2D atom pair representation and iteratively updated via atom-
to-pair communication using multi-head Query-Key interaction.
The update for atom pair 𝑖 𝑗 at layer 𝑙 + 1 is:

P(𝑙+1)
𝑖 𝑗

= P(𝑙 )
𝑖 𝑗

+
{
Z(𝑙,ℎ)
𝑖

(K(𝑙,ℎ)
𝑗

)⊤
√
𝑑

����ℎ ∈ {1, . . . , 𝐻 }
}
, (1)

where𝐻 is the number of attention heads,𝑑 is the hidden dimension,
and Z(𝑙,ℎ)

𝑖
, K(𝑙,ℎ)

𝑗
denote Query and Key of atom 𝑖, 𝑗 in the ℎ-th

attention head. Similarly, Q𝑖 𝑗 is updated.
2D→3D (3D→2D) Decoder. We further propose an 𝐹 -layer SE(3)-
Transformer decoder to reconstruct missing modality features. The
decoder uses cross-attention to integrate the aligned 2D and 3D
representations while ensuring 3D equivariance.

The 3D→2D decoder inputs the 3D molecular representation
y(𝐹 ) and uses P as self-attention bias. Similarly, the 2D→3D decoder
inputs x(𝐹 ) and uses Q as self-attention bias. The self-attention
layers share parameters in both decoders.

We utilize cross-attention to align the two modalities. In the
3D→2D decoder, the cross-attention computes:

Attention2𝐷 (y(𝐹 ) , x(𝐹 ) ) = softmax
(
y(𝐹 )x(𝐹 )⊤√

𝑑

)
x(𝐹 ) , (2)

where
√
𝑑 is a scaling factor based on the dimensionality of the

embeddings. Conversely, in the 2D→3D decoder, cross-attention
uses x(𝐹 ) as the query and y(𝐹 ) as the key and value.

The 3D→2D decoder outputs x̂ and P̂, while the 2D→3D decoder
outputs ŷ and Q̂:

x̂, P̂ = Decoder2𝐷 (y(𝐹 ) ,Q, x(𝐹 ) , P),

ŷ, Q̂ = Decoder3𝐷 (x(𝐹 ) , P, y(𝐹 ) ,Q).
(3)

The decoders integrate complementary information and reconstruct
the representations. We then use a reconstruction loss (§3.1.3) to
further guide the decoder, ensuring modality consistency and ro-
bustness to missing data.
Multi-modal Encoder. The multi-modal (MM) encoder refines the
approximate molecular representations x̂ and ŷ from the decoders
and utilizes the decoder-learned atom-pair features P̂ and Q̂ as
attention bias. Similar to the vision-language expert in models like
VLMo [3], the encoder integrates cross-modal interactions while
preserving intra-modal information. After 𝐿 layers, the refined
representations x(𝐿) and y(𝐿) are obtained as the final outputs of
the encoder. These representations are used as input to various 2D
and 3D prediction heads for downstream tasks, enabling effective
multi-task learning.

3.1.3 Pre-training Target. Our pre-training employs several differ-
ent losses, as follows.
Contrastive Loss. We use InfoNCE loss to align the 2D & 3D
representations generated by the 2D and 3D encoders.
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L𝑐𝑙 = −1
2
E𝑝 (𝒙,𝒚 )

[
log

exp
(〈
x(𝐹 ) ,y(𝐹 )

〉)
exp(⟨x(𝐹 ) ,y(𝐹 ) ⟩)+∑𝑗 exp

(〈
x(𝐹 )
𝑗
,y(𝐹 )

〉)
+ log

exp
(〈
y(𝐹 ) ,x(𝐹 )

〉)
exp(⟨y(𝐹 ) ,x(𝐹 ) ⟩)+∑𝑗 exp

(〈
y(𝐹 )
𝑗
,x(𝐹 )

〉) ] . (4)

Reconstruction Loss. The reconstruction loss consists of two
components, as follows.

Representation Alignment Loss: This loss measures the discrep-
ancy between themolecular representations learned by themodality-
specific Feature Learner (FL), namely, 2D/3D-FL (i.e., MLPs in our
framework), and their corresponding reconstructed counterparts.
For the 2D modality, it aligns the 2D molecular representation x
with the representation learned by the 2D-FL, x̃. Similarly, for the
3D modality, it aligns the 3D molecular representation y with the
representation learned by the 3D-FL, ỹ, as follows.

Lra = ∥x − x̃∥2 + ∥y − ỹ∥2 . (5)

Encoder-Decoder Consistency Loss: This loss ensures consistency
between the multi-layer encoder’s learned molecular and atom
pair representations and the outputs generated by the decoder.
Specifically, the 2D/3D molecular representations x(𝐹 ) and y(𝐹 )

learned by the encoder are alignedwith the reconstructedmolecular
representations x̂ and ŷ produced by the decoder. Similarly, the
2D/3D atom pair representations P andQ learned by the encoder are
aligned with their reconstructed counterparts P̂ and Q̂, as follows.

Lc = ∥x(𝐹 ) − x̂∥2 + ∥y(𝐹 ) − ŷ∥2 + ∥P − P̂∥2 + ∥Q − Q̂∥2 . (6)

The overall reconstruction loss is the sum of these two components:
Lrec = Lra + Lc .

Prediction Head. Following Uni-Mol [43], we adopt the same
pre-training objectives of 3D position recovery and masked atom
prediction. Additionally, we introduce a shortest path distance (SPD)
prediction task, implemented with a two-layer MLP head, to in-
corporate 2D molecular graph features as auxiliary self-supervised
signals alongside Uni-Mol’s 3D-based objectives.

3.2 Pre-training in Single Modality
The second pre-training stage pipeline is shown in Figure 2(b). In
this stage, the model is complemented with only a single modality
(either 2D or 3D molecular data), which fine-tunes the representa-
tions learned in the first stage.

In the 2D-only scenario, we first utilize the frozen 3D-FL, trained
during the first stage, to generate the 3D molecular representa-
tion ỹ. This serves as the supervision signal for 2D→3D decoder,
which learns to generate the 3D molecular representation ŷ and
the corresponding atom pair representation Q̂.

Next, the 2D molecular representation x(𝐹 ) , output by the 2D
encoder, is combined with the decoder-generated 3D molecular
representation ŷ. The resulting fused representation is then passed
as input to the multi-modal encoder. Additionally, the 3D atom pair
representation Q̂, generated by the decoder, is combined with the
original 2D atom pair representation P to construct the attention
bias. Specifically, the pairwise term Q̂ + P is added to the attention
score before applying the softmax function, allowing the model to

incorporate structural information from both modalities during the
self-attention computation.

This process enables the multi-modal encoder to effectively com-
bine 2D and 3D molecular features, achieving a comprehensive and
robust molecular representation.

4 Experiment
We conduct experiments on molecular property prediction and
conformation generation, and analyze the model’s performance.

4.1 Molecular Property Prediction
4.1.1 Experimental Setup. All experiments were conducted on a
server with an Intel Xeon Gold 2.40 GHz CPU and NVIDIA A100
40GB GPUs. For the pre-training Stage 1, we used PyTorch Light-
ning for distributed training on 2 GPUs for 20 epochs. Each epoch
takes 3.5 hours, resulting in a total of 140 GPU hours. For the pre-
training Stage 2, our model takes 4 GPU hours on 3D-only molecule
data and 7 GPU hours on 2D-only molecule data for 10 epochs.
Datasets.We train FlexMol using the aforementioned two-stage
pre-training approach.

In Stage 1 of the pre-training, we utilize PCQM4Mv2, a dataset
containing paired 2D and 3D information [23]. It comprises 3.4
million organic molecules sourced from PubChemQC, each with
a single equilibrium conformation and a label derived from DFT
calculations. Since our approach is self-supervised, the label is not
used. Each molecule is represented as: (a) a 2D graph with nodes
as atoms and edges as chemical bonds; (b) a SMILES string, which
can generate graph representations; (c) 3D structural information
(coordinates) to enhance model performance.

During the second pre-training stage, we used the dataset pro-
vided by Uni-Mol [43]. The Uni-Mol dataset is 3D-feature data,
which contains about 19M molecules, and uses RDKit to randomly
generate 11 conformations for eachmolecule. To construct our train-
ing set for Stage 2, we extracted a subset of 2 million molecules,
referred to as Unimol-2M-3D, which retains the 3D structural
information, including atomic coordinates and spatial relationships
such as atom pair distances. Additionally, for each molecule in
this 2M subset, we used its SMILES representation to generate cor-
responding 2D molecular features, forming the Unimol-2M-2D
dataset, which contains 2D features like edge_index, edge_input,
spatial_pos, and in_degree.
Baselines.We use baseline models trained on datasets of varying
sizes, as follows.

• Supervised methods such as Attentive FP, and N-GramRF, along
with the unsupervised method trained on MoleculeNet [36].

• PretrainGNN [12] and Mole-BERT [37], which use 2D molecular
features and are pre-trained on 2M samples from ZINC15 [32].

• 3D InfoMax [31], GraphMVP [17], MoleculeSDE [15], MoleBlend
[42], and Transformer-M [18] utilize both 2D and 3D modalities
to pre-train molecular representations on 3.4M samples from the
PCQM4Mv2 [23] or other small-scale paired 2D-3D datasets.

• GROVER [26], MolCLR [34], GEM [5], and Uni-Mol [43] are 3D
molecular models pre-trained on datasets containing over 10M
3D samples.
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Table 1: Performance (ROC-AUC %) on molecular property (2D topology) classification tasks. Results are averaged over 3 runs
with standard deviations in parentheses. Results of models with [⋄] are taken from Uni-Mol [43] and [†] from MoleBlend [42].
Transformer-M* denotes our reproduced variant of Transformer-M, differing only in its training objective: the original model
was optimized with PCQM labels, whereas we adopt purely self-supervised signals.

Dataset Pre-train size Modality BBBP BACE Tox21 ToxCast SIDER HIV PCBA
# Molecules 2039 1513 7831 8575 1427 41127 437929
# Tasks 1 1 12 617 27 1 128

Models trained on small or similar-scale data
Attentive FP [⋄] - 2D 64.3 (1.8) 78.4 (0.022) 76.1 (0.5) 63.7 (0.2) 60.6 (3.2) 75.7 (1.4) 80.1 (1.4)
N-GramRF [⋄] - 2D 69.7 (0.6) 77.9 (1.5) 74.3 (0.4) 66.2 (0.5) 66.8 (0.7) 77.2 (0.1) 75.0 (0.2)
PretrainGNN [⋄] 2M 2D 68.7 (1.3) 84.5 (0.7) 78.1 (0.6) 65.7 (0.6) 62.7 (0.8) 79.9 (0.7) 86.0 (0.1)
3D InfoMax [†] 1.1M Mixed 70.4 (1.0) 79.7 (1.5) 74.5 (0.7) 64.4 (0.8) 60.6 (0.7) 76.1 (1.3) 75.2 (0.4)
GraphMVP [†] 50K Mixed 68.5 (0.2) 76.8 (1.1) 72.5 (0.4) 62.7 (0.1) 62.3 (1.6) 74.5 (0.5) 73.0 (0.3)
MoleculeSDE [†] 3.4M Mixed 71.8 (0.7) 79.5 (2.1) 76.8 (0.3) 65.0 (0.2) 60.8 (0.3) 78.8 (0.9) 74.8 (0.6)
Mole-BERT [†] 2M 2D 71.9 (1.6) 80.8 (1.4) 76.8 (0.5) 64.3 (0.2) 62.8 (1.1) 78.2 (0.8) 76.0 (0.4)
MoleBlend [†] 3.4M Mixed 73.0(0.8) 83.7 (1.4) 77.8 (0.8) 66.1 (0.0) 64.9 (0.3) 79.0 (0.8) 75.5 (0.5)
Transformer-M* 3.4M Mixed 69.7 (0.6) 78.1 (0.7) 77.4 (0.4) 62.6 (0.2) 62.1 (0.3) 76.3 (0.2) 86.1 (0.3)
Uni-Mol 3.4M 3D 66.0 (0.7) 75.8 (0.6) 72.0 (0.5) 61.3 (0.3) 58.8 (0.4) 74.0 (0.6) 83.5 (0.3)
Uni-Mol 5.4M 3D 69.2 (0.6) 77.9 (0.5) 74.1 (0.4) 62.7 (0.3) 60.5 (0.3) 74.9 (0.5) 84.7 (0.3)

Our models
FlexMol+2D 5.4M Mixed 72.4 (0.5) 80.0 (0.3) 77.6 (0.4) 64.2 (0.3) 63.0 (0.2) 75.3 (0.4) 86.0 (0.2)
FlexMol+3D 5.4M Mixed 75.1 (0.6) 85.7 (0.5) 78.6 (0.4) 66.4 (0.3) 65.3 (0.2) 78.3 (0.3) 86.6 (0.2)

Models trained on over 10M data (for reference only)
GROVERbase [⋄] 11M 3D 70.0 (0.1) 82.6 (0.7) 74.3 (0.1) 65.4 (0.4) 64.8 (0.6) 62.5 (0.9) 76.5 (2.1)
GROVERlarge [⋄] 11M 3D 69.5 (0.1) 81.0 (1.4) 73.5 (0.1) 65.3 (0.5) 65.4 (0.1) 68.2 (1.1) 83.0 (0.4)
MolCLR [⋄] 10M 3D 72.2 (2.1) 82.4 (0.9) 75.0 (0.2) 66.5 (0.7) 58.9 (0.1) 78.1 (0.5) 74.7 (0.3)
GEM [⋄] 20M 3D 72.4 (0.4) 85.6 (1.1) 78.1 (0.1) 69.2 (0.4) 67.2 (0.4) 80.6 (0.9) 86.6 (0.1)
Uni-Mol [⋄] 19M 3D 72.9 (0.6) 85.7 (0.2) 79.6 (0.5) 69.6 (0.1) 65.9 (1.3) 80.8 (0.3) 88.5 (0.1)

Hyperparameter Settings. The key hyperparameters and training
settings of our model are listed below.

During pre-training, the Adam optimizer is applied with default
betas, a learning rate of 3 · 10−5, and 30 epochs for the two stages
in total. Transformer encoder/decoder layers are searched from
𝐹 ∈ {4, 6, 8}. The dimension of both the encoder and decoder is
fixed at 512, and the number of attention heads is set to 64.

During fine-tuning for downstream tasks, we perform hyper-
parameter search for learning rate in {10−5, 3 · 10−5, 10−4}, batch
size in {16, 32, 64, 128}, and dropout rate in {0.1, 0.2, 0.3}. Addi-
tionally, we use the ‘use_lora’ hyperparameter to control whether
LoRA (Low-Rank Adaptation) [11] is applied during fine-tuning.
When ‘use_lora’ is enabled, the ‘lora_rank’ is set to 64, allowing
for efficient fine-tuning of the model while reducing the number of
trainable parameters.

4.1.2 Main Results. Following MoleculeNet [36], we adopt scaffold
splitting and report results for 2D- and 3D-basedmolecular property
prediction in Tables 1 and 2, respectively. Here FlexMol+2D (3D)
indicates pre-training on 3.4M paired data (PCQM4Mv2) followed
by 2M 2D (3D)-only data. Baselines with smaller or similar-scale
datasets are compared, with best results in bold; models trained
with >10M molecules are for reference only.

Results across various datasets reveal that FlexMol+3D (2D) con-
sistently outperforms the baseline models with smaller or similar-
scale datasets, while also achieving competitive or even superior

performance compared to large-scale state-of-the-art baselines such
as GEM and Uni-Mol in many cases.

We further make two noteworthy observations. (1) The perfor-
mance of Uni-Mol drops significantly when trained on smaller
data, suggesting its dependence on large-scale pre-training. Our
model performs well even with limited data and consistently sur-
passes Uni-Mol at the same scale (5.4M), demonstrating that gains
come from the 2D features and modality alignment. (2) Compared
to Transformer-M* with identical feature construction, FlexMol’s
stronger performance implies that our Stage 2 pre-training with
added single-modal data yields significant gains.

4.2 Molecule Conformation Generation
4.2.1 Experimental Setup. Following prior work [27, 43], we eval-
uate our model on the conformation generation task using the
GEOM-QM9 dataset [2], which involves generating accurate and
diverse 3D molecular conformations from corresponding 2D molec-
ular graphs. Unlike traditional approaches that rely on expensive
methods such as advanced sampling or semi-empirical DFT, recent
methods [7, 20, 29, 38] leverage learned representations for efficient
conformation generation.
Baselines. Following Uni-Mol, we select ten baseline methods. RD-
Kit [25] is a classical conformation generation approach grounded
in distance geometry. GraphDG [30], CGCF [39], ConfVAE [40],
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Table 2: Performance (RMSE & MAE) on molecular property (3D conformation) regression tasks. Notations follow Table 1.

RMSE ↓ MAE ↓
Datasets Pre-train size Modality ESOL FreeSolv Lipo QM7 QM8 QM9
# Molecules 1128 642 4200 6830 21786 133885
# Tasks 1 1 1 1 12 3

Models trained on small or similar-scale data
Attentive FP [⋄] - 2D 0.877 (0.029) 2.073 (0.183) 0.721 (0.0010) 72.0 (2.7) 0.0179 (0.001) 0.00812 (0.00001)
N-GramRF [⋄] - 2D 1.074 (0.107) 2.688 (0.085) 0.812 (0.028) 92.8 (4.0) 0.0236 (0.0006) 0.01037 (0.00016)
PretrainGNN [⋄] 2M 2D 1.100 (0.006) 2.764 (0.002) 0.739 (0.003) 113.2 (0.6) 0.0200 (0.0001) 0.00922 (0.00004)
GraphMVP [⋄] 50K Mixed 1.029 (0.033) - 0.681 (0.010) - 0.0178 (0.0003) -
Transformer-M* 3.4M Mixed 0.925 (0.034) 1.772 (0.058) 0.723 (0.026) 61.23 (1.3) 0.0177 (0.0004) 0.00608 (0.0004)
Uni-Mol 3.4M 3D 0.959 (0.030) 2.509 (0.052) 0.774 (0.031) 60.60 (0.2) 0.0186 (0.0002) 0.00649 (0.0004)
Uni-Mol 5.4M 3D 0.912 (0.029) 2.101 (0.055) 0.745 (0.027) 56.20 (0.3) 0.0181 (0.0003) 0.00612 (0.0004)

Our models
FlexMol+2D 5.4M Mixed 0.918 (0.031) 1.623 (0.064) 0.709 (0.020) 52.8 (1.5) 0.0176 (0.0004) 0.00589 (0.0003)
FlexMol+3D 5.4M Mixed 0.812 (0.040) 1.738 (0.087) 0.640 (0.028) 53.1 (2.2) 0.0170 (0.0005) 0.00561 (0.0004)

Models trained on over 10M data (for reference only)
GROVERbase [⋄] 11M 3D 0.983 (0.090) 2.176 (0.052) 0.817 (0.008) 94.5 (3.8) 0.0218 (0.0004) 0.00984 (0.00055)
GROVERlarge [⋄] 11M 3D 0.895 (0.017) 2.272 (0.051) 0.823 (0.010) 92.0 (0.9) 0.0224 (0.0003) 0.00986 (0.00025)
MolCLR [⋄] 10M 3D 1.271 (0.040) 2.594 (0.249) 0.691 (0.004) 66.8 (2.3) - 0.00746 (0.00001)
GEM [⋄] 20M 3D 0.798 (0.029) 1.870 (0.094) 0.660 (0.008) 58.9 (0.8) 0.0171 (0.0001) 0.00746 (0.00001)
Uni-Mol [⋄] 19M 3D 0.788 (0.029) 1.480 (0.048) 0.603 (0.010) 41.8 (0.2) 0.0156 (0.0001) 0.00467 (0.00004)

ConfGF [28], and DGSM [19] employ generative modeling in con-
junction with distance geometry. These methods typically generate
interatomic distance matrices as an intermediate representation,
followed by the iterative reconstruction of atomic coordinates. CV-
GAE [21], GeoMol [8], DMCG [44], and GeoDiff [41] directly predict
atomic coordinates, thereby circumventing the need for intermedi-
ate distance-based representations.
Evaluation Metrics. We follow Uni-Mol [43] in using RDKit to
generate initial conformations, and fine-tune our model to map 2D
graphs to labeled 3D conformations. For eachmolecule, we generate
twice the number of labeled conformations and select the closest
prediction to each labeled conformation based on root-mean-square
deviation (RMSD). Performance is evaluated using Coverage (COV)
and Matching (MAT), where higher COV indicates greater diversity,
and lower MAT reflects higher accuracy.

COV(𝑆𝑔, 𝑆𝑟 ) =
��{𝑹∈𝑆𝑟 |∃𝑹̂∈𝑆𝑔,RMSD(𝑹,𝑹̂ )<𝛿

}��
|𝑆𝑟 | , (7)

MAT(𝑆𝑔, 𝑆𝑟 ) = 1
|𝑆𝑟 |

∑
𝑹∈𝑆𝑟 min𝑹̂∈𝑆𝑔 RMSD(𝑹, 𝑹̂), (8)

RMSD(𝑹, 𝑹̂) = min
Φ

(
1
𝑛

∑𝑛
𝑖=1 ∥Φ(𝑹𝑖 ) − 𝑹̂𝑖 ∥2

) 1
2
. (9)

Here 𝑆𝑔 and 𝑆𝑟 represent the set of generated and reference confor-
mations, respectively. We use 𝑹̂ to denote a generated conformation
and 𝑹 to denote a reference conformation, where 𝑖 indexes heavy
atoms, 𝑛 is the number of heavy atoms, and Φ is an optimal align-
ment operator.

4.2.2 Main Results. The results are reported in Table 3. For brevity,
we henceforth use FlexMol to denote FlexMol+3D, the variant pre-
trained with 3D-only data in Stage 2.

The conformation generation results show that our model sig-
nificantly outperforms existing methods such as DGSM, GeoDiff,
and ConfGF. Moreover, we also achieve competitive performance
with Uni-Mol, the current state-of-the-art model pre-trained on a

Table 3: Performance of molecular conformation generation
onQM9. COV ismeasured in percent, whileMAT ismeasured
in Å (angstroms, a length unit), representing the average
atomic coordinate deviation.

COV (%) ↑ MAT (Å) ↓
Mean Median Mean Median

RDKit [⋄] 83.26 90.78 0.3447 0.2935
GraphDG [⋄] 73.33 84.21 0.4245 0.3973
CGCF [⋄] 78.05 82.48 0.4219 0.3900
ConfVAE [⋄] 80.42 85.31 0.4066 0.3891
ConfGF [⋄] 88.49 94.13 0.2673 0.2685
GeoMol [⋄] 71.26 72.00 0.3731 0.3731
DGSM [⋄] 91.49 95.92 0.2139 0.2137
GeoDiff [⋄] 92.65 95.75 0.2016 0.2006
DMCG [⋄] 94.98 98.47 0.2365 0.2312
FlexMol 97.25 100.00 0.1890 0.1741
Uni-Mol [⋄] 97.95 100.00 0.1831 0.1659

substantially larger set of 19M molecules. This demonstrates that
our model not only generates diverse molecular conformations but
also maintains precision in structural alignment.

4.3 Ablation Study
We further evaluate the contributions of various components in
our approach. The results of the ablation study are presented in
Table 4 for the following variants.

• w/o 3D Feature: This configuration involves pre-training the
model without 3D features in Stage 1 and performing continual
learning using only 2D features in Stage 2. Similarly, w/o 2D
Feature refers to pre-training without 2D features in Stage 1 and
continual learning using only 3D data in Stage 2.
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Table 4: Ablation study.

ROC-AUC ↑ MAE ↓
BBBP BACE QM7 QM9

FlexMol 75.1 85.7 52.8 0.00561
w/o 3D Feature 62.4 68.8 73.8 0.00764
w/o 2D Feature 70.2 81.1 54.3 0.00569
w/o 3D→2D Decoder 69.5 78.6 61.2 0.00608
w/o 2D→3D Decoder 68.6 75.4 62.3 0.00644
w/o CS Loss 56.7 70.6 108.1 0.00807
w/o Rec Loss 73.5 84.1 58.3 0.00559
w/o MM Encoder 69.5 78.5 57.4 0.00610

Table 5: Effect of decoders in Stage 1.

ROC-AUC ↑ MAE ↓
BBBP QM9

FlexMol-Stage1 72.3 0.00587
FlexMol-Stage1 w/o decoder 72.7 0.00574
FlexMol-Stage1-3D-only 69.5 0.00639

• w/o 2D→(3D) Decoder: In Stage 2 of the pre-training, for the
missing 2D (3D) modality, the model directly utilizes the molecu-
lar representation learned by the MLP during Stage 1, without
employing the decoder to generate the corresponding represen-
tation, and uses the 2D (3D)-only data for Stage 2.

• w/o CS/Rec Loss: This setup excludes the contrastive similarity
(CS) loss or reconstruction (Rec) loss from the training objectives
during the pre-training Stage 1 to assess their impact on the
model performance.

• w/o MM Encoder: This configuration removes the multi-modal
encoder in both pre-training stages to demonstrate the effect of
modality fusion on the model performance.
The ablation results show that each component contributes to

the overall performance, as removing any of them leads to a degra-
dation in results. Removing 3D or 2D features, the contrastive
similarity (CS) loss, and the MM encoder are especially critical to
FlexMol’s performance,which collectively indicates that effective
cross-modal alignment and fusion are central to the success of
molecular representation learning. Excluding either decoder leads
to consistent drops, especially on regression tasks, highlighting the
need for cross-modality translation.

However, not all components contribute equally to the perfor-
mance. Specifically, the removal of the reconstruction loss (w/o
Rec Loss) results in relatively smaller performance declines. This
may be because in Stage 1 of the pre-training, the output repre-
sentations from the 2D→3D (3D→2D) decoders are used as inputs
to the multi-modal encoder, and the prediction head serves as an
additional loss, which already guides the molecule and atom-pair
representations towards an optimal form, thus alleviating the re-
liance on the reconstruction loss for further refinement.

To further investigate the impact of the decoders in Stage 1,
we observe that the usage of decoders may lead to a slight perfor-
mance degradation, as their primary role is to facilitate cross-modal
alignment rather than to directly optimize for downstream tasks.
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(d) QM7 on 2D-only data

Figure 3: FlexMol performance on various sizes of 2D/3D-
only data in Stage 2. BBBP is evaluated in ROC-AUC (↑) and
QM7 is evaluated in MAE (↓).

To assess this effect, we conduct an additional experiment on the
PCQM4Mv2 dataset for 3 model variants, and use 3D-only data
for all variants as the second pre-training stage. The downstream
results are shown in Table 5.

The results indicate that, without the decoder in Stage 1, slightly
better performance than the full model can be achieved, and both
models outperform the 3D-only variant by a notable margin. These
findings suggest that the performance drop potentially caused by
the decoders is relatively minor compared to the loss incurred from
the absence of modality-specific information. More importantly,
decoders are crucial in Stage 2. As Table 4 shows, removing the
decoder significantly harms performance (e.g., removing the 2D
decoder drops ROC-AUC on BBBP from 75.1% to 69.51%). Thus,
despite the minor Stage 1 degradation, decoders are essential for
flexible modality handling and strong downstream performance.

4.4 Effect of Single-Modality Data Size
We study the impact of single-modality data size on model perfor-
mance during Stage 2 of the pre-training. The results for 2D-only
and 3D-only data on the BBBP and QM7 datasets are shown in
Figure 3.

When data sizes range from 0M to 2M, the model improves
consistently with more data. In the 3D-only setting, performance
on both 3D and 2D molecular property predictions improves. This
suggests that the model can effectively perform continual learning
initially on a moderate amount of additional single-modal data.

However, for data sizes beyond 2M, performance gains plateau.
We further observe that the performance starts to decline when the
size grows toward 4M. This trend may be attributed to the extent
of Stage 1 pre-training, where the upper bound of performance
gains on single-modal data is constrained by the amount of paired
data used in Stage 1. Once the Stage 2 data size approaches the
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Table 6: Hyper-parameter sensitivity.

ROC-AUC ↑ MAE ↓
Model size BBBP BACE QM7 QM9

layer=4 62.5M 72.3 70.6 54.3 0.00569
layer=6 87.7M 72.5 83.2 55.5 0.00553
layer=8 112M 75.1 85.7 52.8 0.00561
dim=512 46.8M 72.0 83.9 52.2 0.00568
dim=1024 68.9M 71.9 82.5 53.6 0.00565
dim=2048 112M 75.1 85.7 52.8 0.00561
max_hop=100 112M 72.9 85.7 53.1 0.00561
max_hop=200 114M 70.1 82.8 56.2 0.00569
max_hop=400 117M 74.0 83.4 57.0 0.00574

paired data size (3.4M) in Stage 1, the model may begin to overfit
to single-modal data, resulting in performance degradation.

4.5 Hyper-parameter Sensitivity
We conduct hyper-parameter sensitivity experiments to evaluate
the impact of Transformer encoder/decoder layers (denoted as
‘layer’) and the maximum number of hops (denoted as ‘max_hop’)
used in calculating shortest path features. The results are shown
in Table 6. Note that since the max_hop parameter pertains to 2D
molecular features, the provided results are based on pre-training
with 2D-only data in Stage 2.

The analysis shows that the overall impact of hyper-parameters
on performance is relatively minor. Reducing layers or dimension
size does not significantly degrade results, indicating that the model
is somewhat robust to parameter reduction. This suggests the poten-
tial for lighter-weight models that balance efficiency with minimal
performance loss in the future. Additionally, increasing the hop
count does not yield performance improvements, which suggests
that beyond a certain point, further increasing the hop count may
not contribute to better performance and could even introduce
unnecessary complexity.

4.6 Computational Efficiency
We compare the computational efficiency of FlexMol, its variants
without modality decoders, and Uni-Mol, all trained on the 3.4M-
scale PCQM4Mv2 dataset. The results are shown in Table 7. Here,
#Params denotes the number of model parameters,𝑇train/eph repre-
sents the average training time per epoch (only Stage 1 for FlexMol
and its variants), 𝑇infer is the average inference latency per sample,
and GPU Mem indicates the peak memory usage during training.
For multi-GPU settings, the memory usage per GPU is reported
alongside the number of GPUs used (e.g., 24 × 2). All measurements
are conducted under the same dataset and batch size settings to
ensure fairness.

The results show that the introduction of modality decoders re-
sults in moderate computational overhead in terms of training time,
inference latency, and parameter count. However, this overhead is
justified by the observed performance improvement, making it a
reasonable trade-off for practical deployment. Futhermore, with the
adoption of a parameter-sharing mechanism in the self-attention

Table 7: Computational efficiency comparison of FlexMol, its
variants w/o modality decoders, and Uni-Mol.

Metric FlexMol w/o 2D→3D w/o 3D→2D Uni-Mol

#Params (Millions) 112 47 47 45.5
𝑇train/eph (GPU hrs) 7 4.5 4 4
𝑇infer (ms) 28 25 20 18
GPU Mem (GB) 24×2 22×2 39 36

layers, the trainable parameter count is reduced from 248M to 112M,
significantly improving memory and computational efficiency.

5 Conclusion and Future Work
In this work, we propose a unified framework for molecular pre-
training that addresses the limitations of existing methods in lever-
aging both 2D and 3D molecular data. Our approach effectively
integrates single and paired modality inputs, enabling flexible learn-
ing scenarios. By combining separate models for 2D and 3D data
with shared parameters, we achieve the fusion of modality-specific
representations while maintaining computational efficiency. The
proposed decoders further enhance the capability of the frame-
work by generating missing modality data, ensuring robust multi-
modal learning even with single-modality inputs. Extensive ex-
periments show that our approach delivers strong performance on
diverse molecular property prediction and conformation generation
tasks, surpassing existing models trained on smaller or similar-scale
datasets, while remaining competitive with large-scale state-of-the-
art pre-trained models.

Our model still has certain limitation that merit further investi-
gation. The scalability of the model is constrained by the limited
availability of paired data. In the second pre-training stage, where
single-modal data is introduced, performance improvements re-
main dependent on the paired data from the first stage. When the
amount of single-modal data substantially exceeds that of paired
data, performance deteriorates due to potential overfitting to single-
modal data, which restricts scaling to larger single-modal datasets.
Future work will therefore focus on balancing paired and single-
modal data, as well as constructing higher-quality paired datasets
to enhance modality alignment and enable large-scale learning.
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