SMU Classification: Restricted

School of **Information Systems**

Collaborative Cross-modal Fusion with Large Language Model for Recommendation

Zhongzhou Liu, Hao Zhang, Kuicai Dong, Yuan Fang

Motivation

- Traditional CF-based model: capture collaborative signal but struggle to process rich semantic knowledge in user/item features.
- LLM: understand semantic knowledge but can not extract collaborative signals simply from textual descriptions.

How to integrate collaborative signals into LLM4Rec?

Related works

- Collaborative signals in natural language descriptions [Bao et al, 2023]
 - Idea: user-item interaction as plain text.
 - E.g., Input: Will Tom like to buy milk? Output: Yes.
 - Limitation: representability of plain text vs. high-dimensional non-linear dense vector
- Collaborative signals in embeddings [Zhang et al, 2023]
 - Idea: insert collaborative signals into prompts.
 - E.g., <u>Input</u>: will Tom like to buy milk <<u>extra_token_milk</u>>?
 - <extra_token_milk> is a pre-defined special token. Its embedding is initialized from CF model.
 - Limitation: heterogenous collaborative signals

Objective: to assist LLMs to encode and fuse collaborative signals and semantic knowledge.

Framework

#Question: A user has given high ratings to the following items: {[Item_u]}. Additionally, we have information about the user's preferences encoded in the feature [User_u]. Using all available information, make a prediction about whether the user would enjoy the item [Item_i]. Answer with "Yes" or "No". #Answer:

- [User_u]: special token as placeholder for user *u*'s feature.
- [Item_i]: special token as placeholder for item *i*'s feature.
- {[Item_u]} = [Item_1], [Item_2],...: the sequential set of special tokens for historical items for user *u*.

Mapping

- $x_i^{CF} \in \mathbb{R}^l$: embedding for collaborative signal
- $x_i^{SM} \in R^{T_i \times d}$: embeddings for semantic knowledge
- T_i is the number of tokens in item *i*'s textual description.
- User feature
 - Only x_i^{CF}
 - textual descriptions in different datasets vary a lot.

Fusion

- Alignment network ALG
 - Transform all embeddings into an identical dimension.
 - ALG: $\mathbb{R}^l \to \mathbb{R}^d$
 - aligned user and item embeddings \tilde{x}_u^{CF} and \tilde{x}_i^{CF}
- Gate network GATE
 - Fuse the two modality embeddings into one

$$\alpha = GATE(\tilde{x}_{i}^{CF}, x_{i}^{SM}; \Theta_{G}) = MLP(\tilde{x}_{i}^{CF}; \Theta_{G_{1}}) + MLP(x_{i}^{SM}[t]; \Theta_{G_{2}}),$$
(5)
$$\tilde{x}_{i}[t] = x_{i}^{SM}[t] + \alpha \cdot \tilde{x}_{i}^{CF},$$
token
ligned User Task Fused Item Task

Training

- Learning objectives
 - Output: multinomial distribution over whole vocab
 - $\{p_{\text{yes}}, p_{\text{no}}\}$
 - Classification loss L1 and ranking loss L2.

$$\min_{\Theta} \mathcal{L} = \mathcal{L}_1(p_{yes}, y) + \mathcal{L}_1(p_{no}, 1 - y) + k \times \mathcal{L}_2(p_{yes}, p_{no}, y), \quad (7)$$

- Two stage training
 - Stage 1: Fine-tuning only the LLM with LoRA.
 - Stage 2: Fine-tuning only ALG and GATE modules.

Experiments

Method		MovieLens-1M		Amazon-Book	
		AUC	RelaImpr	AUC	RelaImpr
No / Inadequate fusion	MF	0.6482^{\dagger}	-	0.7134^{\dagger}	-
	Collm (MF) CCF-llm (MF)	0.7295† 0.7315	54.86% 56.21%	0.8109† 0.8150	45.69% 47.61%
	LightGCN	0.5959^{\dagger}	-	0.7103^{\dagger}	-
	CoLLM (LightGCN)	0.7100 [†]	118.98%	0.7978 [™]	41.61%
	CCF-LLM (LightGCN)	0.7427	153.08%	0.8049	44.98%
	SASRec	0.7078^\dagger	-	0.6887^\dagger	-
	CoLLM (SASRec)	0.7235^\dagger	7.56%	0.7746^\dagger	45.52%
	CCF-LLM (SASRec)	0.7526	21.56%	0.7792	47.96%
Other LLM4Rec	Softprompt	0.7071^\dagger	-	0.7224^\dagger	-
	TallRec	0.7097^\dagger	1.25%	0.7375^\dagger	6.79%
	CoLLM (Best)	0.7295^\dagger	10.82%	0.8109^\dagger	39.79%
	CCF-LLM (Best)	0.7526	21.97%	0.8150	41.64%

- 1. Semantic knowledge is effective.
- 2. Collaborative signals is useful.
- Fusion strategy contributes to a more comprehensive integration.
- Improper tuning of the embeddings can lead to a negative impact.

Results are reported as the average of 5 runs.

†Results are obtained from Zhang et al. [48].

Experiments

- 1. Our finer dimensional-level fusion led to the optimal performance.
- 2. Backbone CF-based model can influence the results. Using multiple backbone models do not improve as introducing redundant collaborative signals may not offer additional insights.

Experiments

Green: aligned collaborative signals Yellow: semantic knowledge Violet: fused embedding. Two types of modalities are better fused with the proposed attentive cross-modal fusion strategy.

- A novel framework for collaborative cross-modal fusion with large language models for recommendation.
 - Hybrid prompt translation, mapping, fusion
- Pros:
 - Integrate collaborative signals and semantic knowledge for recommendation.
 - Proposed a fusion strategy to let language model better understand the collaborative signals
- Limitations & future works:
 - The semantic knowledge for user-side is not incorporated.
 - More modalities (such as image) could be considered.
 - Analysis of different LLMs.

Thank you! Q&A

https://arxiv.org/abs/2408.08564