Voucher Abuse Detection with Prompt-based Fine-tuning on Graph Neural Networks

Zhihao Wen and Yuan Fang Singapore Managent University Singapore Yihan Liu, Yang Guo and Shuji Hao Lazada Inc. Singapore

Outline

Introduction

Methodology

D Experiment

Conclusion

Voucher Abuse Detection on Order Graph

Account Apply voucher Same device

(a) Order graph

Order graph encodes rich relationships and patterns between orders (b) Orders of legitimate user

A **legitimate user** typically only logs into **one** account on **one** device and applies **one** voucher

An **abusive user** often employs **many** devices, and in each device, they create **multiple** accounts

Existing works

- Traditional ML methods [1][2][3], do not leverage graph structure information
- Supervised GNN-based approaches [4][5][6], cannot perform well with limited labels
- Self-supervised GNNs [7][8] become promising for capture intrinsic graph patterns without annotated label.
- Self-supervised GNNs suffer from a major drawback: the objective gap between the pre-training and downstream tasks

[1] Xgboost: A scalable tree boosting system. In KDD 2016.

- [2] Links between perceptrons, MLPs and SVMs. In ICML 2004.
- [3] Support-vector networks. In Machine learning 1995.
- [4] Semi-Supervised Classification with Graph Convolutional Networks. In ICLR 2017.
- [5] Inductive Representation Learning on Large Graphs. In NeurIPS 2017.
- [6] Graph Attention Networks. In ICLR 2018.
- [7] Strategies for Pre-training Graph Neural Networks. In ICLR 2019.
- [8] GPT-GNN: Generative pre-training of graph neural networks. In KDD 2020.

Finetune

Challenges of bridging the gap between GNN pre-training and downstream tasks

Q1: Cannot directly apply the **textual prompting** function to bridge various **graph-based** tasks

We propose a graph prompting function that reformulates the downstream node classification problem into a pairwise matching task between node tokens and context tokens

Q2: How to **initialize** the context tokens

We **reuse** the **graph readout** function from pre-training to initialize the context tokens downstream

Outline

Introduction

Methodology

D Experiment

Conclusion

Data preparation

Two key inputs: 1) an **order graph**; 2) a small number of **labels**.

Graph construction.

- Two categories of raw data: (1) User profiles, and (2) Buyer journey logs.
- Construct an order graph based on various shared attributes

Limited pseudo-label generation.

 Generate limited pseudo-labels by employing a set of predefined business rules

Overall framework of our proposed VPGNN

SINGAPORE MANAGEMENT

Computing and Information Systems

(b) Downstream: prompt-based fine-tuning

Overall framework of VPGNN. (a) We conduct **self-supervised pre-training** based on **DGI**. (b) we perform **prompt-based fine-tuning** for the downstream voucher abuse detection.

Pre-training based on DGI

- In voucher abuse detection, abusive orders are the minority and the majority are legitimate orders.
- Utilize DGI to maximize the local-global mutual information, whereby the graph-level global information captures the "normal" patterns manifested by the majority

Prompt generation

- Our prompt-based fine-tuning framework generates and tunes prompts, and makes predictions based on the prompts.
- Propose a graph prompting function
 P, transforming an input node *i* into
 a prompt *p_i* consisting of a pair of
 node token t_i and context token z_c

Prompt generation

- Our prompt-based fine-tuning framework **generates** and **tunes** prompts, and **makes predictions** based on the prompts.
- Propose a graph prompting function *P*, transforming an input node *i* into a prompt *p_i* consisting of a pair of node token t_i and context token z_c

Prompt initialization

- Context tokens are learnable vectors, needing **initialization**.
- To improve the **robustness** of the initialization, we augment the labeled nodes with their **neighboring nodes**.
- To improve the **informativeness**, we reuse the graph **Readout** function from **pre-training** to pool the labeled nodes with their subgraphs.

Prompt-assisted prediction

- Leverage the same pretext projection head Φ^{pre} to score the matching probability of each token pair.
- Predict the order represented by node *i* as **abusive** if

 $\Phi^{\text{pre}}(\mathbf{t}_i, \mathbf{z}_1; \phi') > \Phi^{\text{pre}}(\mathbf{t}_i, \mathbf{z}_0; \phi')$

Prompt-based fine-tuning

(b) Downstream: prompt-based fine-tuning

- Our prompt design allows us to reuse not only the pretext projection head, but also the pretext task loss.
- Our prompt-based approach unifies the pretext and downstream task, narrowing the gap between pretraining and downstream objectives.

Outline

□ Introduction

Methodology

Experiment

Conclusion

Datasets

- We collect four proprietary large-scale datasets, named VN0909, VN1010, ID0909, and ID1023, from an e-commerce platform provided by Lazada Inc.
- Each dataset is a huge **order graph**, where the nodes represent the **orders** with pre-defined features, and the edges are pre-defined **relationships** between them.
- VN0909 is only used for pre-training, and we do test on three other datasets.
- We also use a public dataset , namely Amazon.

Offline performance comparison with baselines

Table 1: Performance comparison between VPGNN and the baselines, in percent, with 95% confidence intervals.

In each row, the best result is **bolded** and the runner-up is <u>underlined</u>. "/" indicates no result obtained due to out-of-memory issue or excessively long training time (>72 hours).

	SVM	XGBoost	MLP	GCN	SAGE _{sup}	GAT	CARE-GNN	Geniepath	AMNet	DCI	SAGEunsup	Pre-train	VPGNN
Shots = 10													
VN1010	37.1±8.9	65.7±5.5	62.9±2.8	59.1±6.7	61.9±3.6	60.9±4.6	/	58.0±4.5	/	/	61.8±4.6	64.8±3.6	67.1±3.1
ID0909	28.1±11.0	51.3±9.9	61.6±3.8	64.1±3.9	61.2±7.3	65.6±3.7	/	62.1±2.8	/	/	62.2±3.7	66.1±3.0	69.0±3.7
ID1023	38.7±8.3	73.5±6.1	69.3±2.1	69.3±4.8	71.3±5.2	73.7±3.6	73.0±2.9	72.0±5.0	70.0±3.5	73.4±1.6	67.5±5.3	71.8±5.2	75.1±1.9
Amazon	41.4±9.2	62.5±11.5	63.3 ± 5.7	16.5±4.9	59.9 ± 9.1	20.5 ± 6.1	38.6±2.9	30.7 ± 2.8	64.8 ± 6.2	18.5 ± 4.0	36.7±6.0	62.3±8.1	70.0±2.7
Shots = 20													
VN1010	59.2±3.8	73.1±3.9	69.2±2.2	71.6±2.8	73.6±3.2	74.5±4.4	/	69.5±5.7	/	/	72.8±2.0	75.7±3.0	75.9±2.8
ID0909	53.1±6.1	64.9±3.8	64.9±1.7	68.7±2.5	70.3±2.8	71.0±3.4	/	61.4±9.1	/	/	67.5±2.2	71.4±2.5	72.7±2.8
ID1023	65.2±3.6	78.9±1.4	74.7±1.6	79.0±1.7	81.5±1.3	81.1±1.1	74.2±0.9	80.7±4.2	75.6±1.9	79.4±1.3	78.1±2.1	81.3±1.4	81.8±1.1
Amazon	60.3±3.6	72.9 ± 8.2	70.4 ± 4.4	16.8±8.0	63.0 ± 8.5	48.8 ± 10.1	42.2±6.7	30.8 ± 4.4	<u>75.1</u> ±3.1	21.8±2.6	54.5 ± 2.8	73.1±3.9	76.6±2.5
Semi-supervised													
VN1010	86.7±0.1	87.8±0.1	86.7±0.1	91.8±0.1	<u>94.1</u> ±0.1	91.9±0.0	/	91.7±0.4	/	/	89.3±0.0	<u>94.1</u> ±0.1	95.2±0.1
ID0909	86.0±0.2	89.2±0.3	86.8±0.3	92.2±0.2	93.4±0.2	92.3±0.2	/	91.1±0.4	/	/	86.3±0.2	93.3±0.2	94.1±0.2
ID1023	89.3±0.1	89.9±0.2	88.8±0.2	94.4±0.1	<u>95.6</u> ±0.1	94.5±0.1	87.0±0.3	94.5±0.1	94.1±0.3	93.7±1.0	92.6±0.1	95.6±0.1	96.2±0.1
Amazon	78.8±1.1	75.6 ± 2.7	78.1±1.8	34.4±3.6	81.1±1.5	73.3±2.9	45.2±5.6	30.9 ± 4.5	81.7±1.1	26.1±4.5	76.1±0.9	80.9±0.9	80.6±0.7

Classical machine learning General semi-supervised GNNs Anomaly detection GNNs

Pre-trained GNNs

- Given that **pre-training** is done on **VN0909**, the superior performance of VPGNN on VN1010, ID0909 and ID1023 shows its generalization ability across time and/or markets.
- VPGNN is a strong **few-shot** learner, as it attains larger improvements relative to the runner-up under the 10-shot setting.

Online performance

Online performance in the Indonesia market over the Double 12 Campaign.

Model	11 Dec 2022	12 Dec 2022	13 Dec 2022	Overall
BCP	100.0%	100.0%	100.0%	100.0%
LPA	816.9%	1784.1%	330.3%	809.3%
VPGNN	1964.1%	1990.3%	469.1%	998.7%
(% ↑ over LPA)	(140.4%)	(11.6%)	(42.0%)	(23.4%)

 $Metric = \frac{Precision of model A \times \# True positives detected by model A}{Precision of BCP \times \# True positives detected by BCP}$

Precision of BCP \times # True positives detected by BCP

• VPGNN shows a **23.4%** increase over LPA, demonstrating the advantage of prompt-based fine-tuning on GNNs when dealing with voucher abuse detection.

Outline

Introduction

Methodology

D Experiment

Conclusion

Conclusion

Key contributions

- Addressed the problem of **voucher abuse detection** on e-commerce order graph;
- We attempted to bridge the gap between pretext and downstream tasks by proposing a graph prompting function that reformulates the downstream task to follow a similar template as the pretext task.

THANK YOU FOR YOUR ATTENTION

Paper, code, data... <u>www.yfang.site</u>

School of Computing and Information Systems We are hiring! Looking for a PhD student for Fall 2024 admission! www.yfang.site/hiring