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Voucher Abuse Detection on Order Graph 
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Order graph encodes rich 
relationships and patterns
between orders

A legitimate user typically 
only logs into one account 
on one device and applies 
one voucher 

An abusive user often employs 
many devices, and in each 
device, they create multiple
accounts 
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Existing works
• Traditional ML methods [1][2][3], do not leverage 

graph structure information

• Supervised GNN-based approaches [4][5][6], cannot 
perform well with limited labels

• Self-supervised GNNs [7][8] become promising for 
capture intrinsic graph patterns without annotated 
label.

• Self-supervised GNNs suffer  from a major drawback: 
the objective gap between the pre-training and 
downstream tasks

[1] Xgboost: A scalable tree boosting system. In KDD 2016.
[2] Links between perceptrons, MLPs and SVMs. In ICML 2004.
[3] Support-vector networks.  In Machine learning 1995.
[4] Semi-Supervised Classification with Graph Convolutional Networks. In ICLR 2017.
[5] Inductive Representation Learning on Large Graphs. In NeurIPS 2017.
[6] Graph Attention Networks. In ICLR 2018.
[7] Strategies for Pre-training Graph Neural Networks. In ICLR 2019.
[8] GPT-GNN: Generative pre-training of graph neural networks. In KDD 2020.



SMU Classification: Restricted

5

Challenges of bridging the gap between GNN pre-training and downstream tasks 

Q2: How to initialize the context 
tokens

Q1: Cannot directly apply the 
textual prompting function to 
bridge various graph-based
tasks

We propose a graph prompting function 
that reformulates the downstream node 
classification problem into a pairwise 
matching task between node tokens and 
context tokens

We reuse the graph readout function 
from pre-training to initialize
the context tokens downstream
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Data preparation

Two key inputs: 1) an order graph; 2) a small 
number of labels.

Graph construction. 
• Two categories of raw data: (1) User profiles, 

and (2) Buyer journey logs. 
• Construct an order graph based on various 

shared attributes 

Limited pseudo-label generation. 
• Generate limited pseudo-labels by employing 

a set of predefined business rules
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Overall framework of our proposed VPGNN

Overall framework of VPGNN. (a) We conduct self-supervised pre-training based on DGI. 
(b) we perform prompt-based fine-tuning for the downstream voucher abuse detection.
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Pre-training based on DGI

• In voucher abuse detection, abusive orders are the minority and the 
majority are legitimate orders.

• Utilize DGI to maximize the local-global mutual information，whereby the 
graph-level global information captures the “normal” patterns manifested 
by the majority
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Prompt generation

• Our prompt-based fine-tuning 
framework generates and tunes 
prompts,   and makes predictions 
based on the prompts. 

• Propose a graph prompting function
𝒫,  transforming an input node 𝑖 into 
a prompt 𝑝𝑖 consisting of a pair of 
node token 𝐭𝒊 and context token 𝐳𝒄
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Prompt generation

• Our prompt-based fine-tuning 
framework generates and tunes 
prompts,   and makes predictions 
based on the prompts. 

• Propose a graph prompting function
𝒫,  transforming an input node 𝑖 into 
a prompt 𝑝𝑖 consisting of a pair of 
node token 𝐭𝒊 and context token 𝐳𝒄
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Prompt initialization

• Context tokens are learnable vectors, 
needing initialization.

• To improve the robustness of the 

initialization, we augment the labeled 

nodes with their neighboring nodes.

• To improve the informativeness, we 

reuse the graph Readout function 

from pre-training to pool the labeled 

nodes with their subgraphs.
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Prompt-assisted prediction

• Leverage the same pretext projection 
head Φpre to score the matching 
probability of each token pair.

• Predict the order represented by 
node 𝑖 as abusive if
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Prompt-based fine-tuning

• Our prompt design allows us to reuse 
not only the pretext projection head, 
but also the pretext task loss.

• Our prompt-based approach unifies
the pretext and downstream task, 
narrowing the gap between pre-
training and downstream objectives.
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Datasets

• We collect four proprietary large-scale datasets, named 
VN0909, VN1010, ID0909, and ID1023, from an e-commerce 
platform provided by Lazada Inc. 

• Each dataset is a huge order graph, where the nodes 
represent the orders with pre-defined features, and the 
edges are pre-defined relationships between them. 

• VN0909 is only used for pre-training, and we do test on 
three other datasets. 

• We also use a public dataset , namely Amazon.
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Offline performance comparison with baselines

Classical machine learning General semi-supervised GNNs Anomaly detection GNNs Pre-trained GNNs

• Given that pre-training is done on VN0909, the superior performance of VPGNN on VN1010, ID0909 
and ID1023 shows its generalization ability across time and/or markets. 

• VPGNN is a strong few-shot learner, as it attains larger improvements relative to the runner-up 
under the 10-shot setting.
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Online performance

Metric =

Online performance in the Indonesia market over the 
Double 12 Campaign.

• VPGNN shows a 23.4% increase over LPA, demonstrating the advantage of 
prompt-based fine-tuning on GNNs when dealing with voucher abuse detection.
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Conclusion

Key contributions

• Addressed the problem of voucher abuse 

detection on e-commerce order graph;

• We attempted to bridge the gap between 

pretext and downstream tasks by proposing a 

graph prompting function that reformulates 

the downstream task to follow a similar 

template as the pretext task.
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