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ABSTRACT
Voucher abuse detection is an important anomaly detection problem
in E-commerce. While many GNN-based solutions have emerged,
the supervised paradigm depends on a large quantity of labeled data.
A popular alternative is to adopt self-supervised pre-training using
label-free data, and further fine-tune on a downstream task with
limited labels. Nevertheless, the “pre-train, fine-tune” paradigm
is often plagued by the objective gap between pre-training and
downstream tasks. Hence, we propose VPGNN, a prompt-based fine-
tuning framework on GNNs for voucher abuse detection. We design
a novel graph prompting function to reformulate the downstream
task into a similar template as the pretext task in pre-training,
thereby narrowing the objective gap. Extensive experiments on
both proprietary and public datasets demonstrate the strength of
VPGNN in both few-shot and semi-supervised scenarios. Moreover,
an online evaluation of VPGNN shows a 23.4% improvement over
two existing deployed models.
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• Information systems→ Clustering and classification; En-
terprise applications.
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1 INTRODUCTION
Amidst vigorous market rivalry, user acquisition has been a crucial
metric for E-commerce platforms. One of the primary strategies
is to introduce electronic vouchers, which could help attract more
new users or encourage existing users to buy more. However, the
widespread use of vouchers in E-commerce also provides oppor-
tunities for abusers. They usually start by registering a massive
number of accounts and placing orders just to exploit the vouchers
intended for new users. They either resell the goods (often bought
with a deep discount after applying the vouchers) at a higher mar-
ket price or collude with the sellers by placing orders with vouchers
in the sellers’ own stores. Such behaviors not only cause losses for
E-commerce platforms but also damage the ecosystem for legiti-
mate users. Thus, it is of great significance to detect orders of these
abusive users and prevent them from collecting vouchers.

In this paper, we study the problem called Voucher Abuse De-
tection, which aims to detect the orders of abusive users in the
E-commerce industry. A key insight into voucher abuse detection is
the network structures among orders. For example, even when or-
ders are placed through different accounts, they can still be related
if they share the same device or the same delivery address. As illus-
trated in Fig. 1(a), the order graph encodes rich relationships and
patterns between orders, which can help differentiate the behaviors
of legitimate and abusive users. As shown in Fig. 1(b), a legitimate
user typically only logs into one account on one or two devices,
and applies one voucher on their first order to utilize the new buyer
incentive. In contrast, as shown in Fig. 1(c), an abusive user often
employs a large number of devices, and in each device, they create
multiple accounts with multiple sets of information (e.g., e-mail
and mobile number). In each account, they collect the voucher for
new buyer incentives and just place one order with that voucher.
By distinguishing the graph structures related to legitimate and
abusive orders, we cast the problem of voucher abuse detection as
binary node classification on graphs.

While voucher abuse detection is a subclass of anomaly detec-
tion, existing solutions are not ideal choices for the specific problem
of voucher abuse detection. On one hand, although traditional ma-
chine learning methods [5–7] are widely used in industry, they do
not leverage important graph structure information. Hence, many
recent attempts for anomaly detection [30] turn to graph neural
networks (GNNs) [43] to exploit structure information. On the
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Figure 1: Illustration of voucher abuse detection.

other hand, voucher abusers often adopt variable strategies from
time to time to reduce detection by the platform. Thus, timely and
high-quality labeled instances of abusive order are crucial for de-
tection, but they are very limited in the production environment of
real business scenarios. Hence, most GNN-based approaches can-
not cope well in a supervised manner. Meanwhile self-supervised
GNNs [14, 15, 32] become promising as they aim to capture intrinsic
graph patterns without requiring any annotated label. However,
most self-supervised approaches follow the “pre-train, fine-tune”
paradigm [14, 15], which suffers from a major drawback: There
exists an objective gap between the pre-training and downstream
tasks, impairing the generalization of the pre-trained model.
Challenges and our work. To bridge the gap between GNN
pre-training and downstream tasks, we propose a framework for
Voucher abuse detection with Prompt-based fine-tuning on Graph
Neural Networks (VPGNN). We introduce prompting [12, 20] to
graph-based tasks, which reformulates the downstream node classi-
fication into a similar form as the pretext task in pre-training. While
increasingly popular in NLP, prompt-based learning for GNNs still
presents two major challenges.

First, we cannot directly apply the textual prompting function
to bridge various graph-based tasks, as textual prompts are incom-
patible with fundamental graph elements (e.g., nodes and edges).
Therefore, in this paper, we propose a graph prompting function
that reformulates the downstream node classification problem into
a pairwise matching task between node tokens and context tokens.
Specifically, each context token represents a node class, and node
classification is achieved by selecting the most likely class (i.e., con-
text token) that matches the node token. This pairwise template
would be consistent with the paired formulation of many popular
pretext tasks in graph pre-training [13–15, 38].

Second, it is still unclear how to initialize the context tokens
before any tuning. The context tokens should be 1) informative, to
fully exploit prior knowledge learned during pre-training, which is
also the initial intention of prompting; 2) robust, especially in low-
resource scenarios with limited task labels. For informativeness,
we reuse the graph readout function from pre-training to initialize
the context tokens downstream; for robustness, we augment the
limited labeled nodes with their local subgraphs. Finally, the context
tokens and the pre-trained GNN model are fine-tuned together for
downstream classification.
Contributions. We summarize the contributions of this work. (1)
We propose a novel framework called VPGNN, with a complete
pipeline to pre-train and generalize GNNs for voucher abuse de-
tection. (2) We design a graph prompting function to reformulate

the downstream node classification task, which aligns better with
the pretext task. (3) In offline experiments, VPGNN can outperform
state-of-the-art baselines by up to 4.4% in the 10-shot setting; in
online evaluation, VPGNN shows a 23.4% improvement over two
existing deployed models.

2 RELATEDWORK
Recently, GNNs [13, 17, 37, 43, 44] have enjoyed widespread appli-
cation in industry. Motivated by their success, many GNN-based
anomaly detection algorithms have emerged, including GAS [18],
FdGars [40], GraphConsis [27] and CARE-GNN [10] for review
fraud detection, GeniePath [25] and SemiGNN [39] for financial
fraud detection, FANG [31] for fake news detection, ASA [42] for
mobile fraud detection, and MTAD-GAT [45] for time-series anom-
aly detection. There are also some unsupervised anomaly detection
GNNs [1, 9, 16, 23], but they are often less reliable since they do not
make use of any labeled data. To reduce labeling requirements, GNN
pre-training [14, 15, 22, 29, 32] has become a popular alternative,
which aims to capture general patterns on label-free graphs. Never-
theless, a considerable amount of labeled data are still required for
fine-tuning on downstream tasks.

In NLP, prompting [20] has emerged to overcome the objective
gap between the pretext and downstream tasks. Prompting refor-
mulates the downstream task to follow a similar template as the
pretext task so that the downstream task can be optimized with a
light tuning or even without tuning [3]. On graphs, there have also
been some attempts to leverage prompt-based learning. GPF [11]
only trains a prefix prompt vector appended to the node features,
lacking a unified template for pretext and downstream tasks. GPPT
[35] and GraphPrompt [28] attempt to unify the pretext task of
link prediction and downstream classification, but the unification is
incompatible with voucher abuse detection, where abusive orders
are linked with many legitimate orders.

3 PRELIMINARIES
Pre-training. Many pretext tasks [13, 14, 38] have been proposed
to pre-train GNNs. In voucher abuse detection, abusive orders are
the minority and the majority are legitimate orders. Hence, we
utilize DGI [38] to maximize the local-global mutual information,
whereby the graph-level global information captures the “normal”
patterns manifested by the majority, which helps indicate the extent
of a node deviating from what is normal.

Specifically, let H be the node representation matrix in which
each row h𝑖 is the representation of node 𝑖 generated by a GNN
encoder, parameterized by 𝜃 . Furthermore, let h𝐺 be the global
representation of𝐺 , given by h𝐺 = Ω(H;𝜔) = POOL({h𝑖 | 𝑖 ∈ 𝑉 })
where Ω is a readout function with parameters 𝜔 . In pre-training,
DGI [38] aims to minimize the following loss:

argmin𝜃,𝜔,𝜙
∑

(𝑖,𝐺 ) Lpre (Φpre (h𝑖 , h𝐺 ;𝜙) ,match(𝑖,𝐺)) , (1)

where Φpre, parameterized by 𝜙 , is a projection head to evaluate
the matching score of a node-graph pair (𝑖,𝐺), which measures
the local-global consistency. Note that the supervision comes from
match(𝑖,𝐺), which is an indicator function: 1 if node 𝑖 is from the
original graph𝐺 ; 0 if node 𝑖 is from a corrupted version of𝐺 . Hence,
the pre-training process does not require any human annotation,
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Figure 2: Overall framework of VPGNN.

updating model parameters including 𝜃 (GNN), 𝜔 (readout), and 𝜙
(projection head) in a self-supervised manner.
Fine-tuning. The pre-trained GNN parameters 𝜃pre, optimized by
Eq. (1), serve as a good initialization for downstream classification
tasks. Following the “pre-train, fine-tune” paradigm, the initializa-
tion is further fine-tuned together with a new set of classification
weights𝜓 , by optimizing the following:

argmin𝜃 ′,𝜓
∑
𝑖∈𝑉 Ldown (Φdown (h𝑖 ;𝜓 ), 𝑦𝑖

)
, (2)

where Φdown is a new projection head with randomly initialized
parameters 𝜓 , replacing the pretext projection head Φpre. Ldown

is the downstream classification loss (e.g., cross entropy), and 𝑦𝑖 is
the task-specific label of node 𝑖 .

4 PROPOSED APPROACH
In this section, we give an overview of our approach and elaborate
on our prompt-based fine-tuning.

4.1 Overview of VPGNN
Unlike textual prompts in NLP, on graph data, it is non-trivial to
design the prompts due to the incompatibility between traditional
textual prompts and graph elements. To materialize prompt-based
fine-tuning on graphs, our VPGNN has two major stages, as shown
in Fig. 2. First, in Fig. 2(a), we conduct pre-training based on DGI.
Then, in (b), we perform prompt-based fine-tuning for the down-
stream voucher abuse detection.

In particular, prompt-based fine-tuning consists of three key
modules: (1) Prompt generation: Our graph prompting function gen-
erates a set of token pairs for each input node; (2) Prompt-assisted
prediction: For each input node, the matching probabilities of its to-
ken pairs can be scored by the same projection head in pre-training.
The matching probabilities will be used for the prediction of le-
gitimate/abusive orders. (3) Prompt-based fine-tuning: The context
tokens in the prompt will be fine-tuned together with the pre-
trained GNN, and the key difference from traditional fine-tuning is
that the same pretext projection head Φpre and pretext loss function
Lpre employed in pre-training will be reused for the downstream
task, without needing a new projection head or task loss.

In the following, we will first briefly introduce the data prepara-
tion process, then focus on the downstream stage in Fig. 2(b), as
the pre-training stage has been introduced in the preliminaries.

4.2 Data preparation
Our model VPGNN requires two key input elements, including an
order graph and a small number of labels, as we lay out below.
Graph construction. We work with two categories of proprietary
raw data: (1) User profiles with details such as email, IP and ship-
ping addresses, and (2) Buyer journey logs such as logins, orders,
payments, etc.We construct an order graph based on various shared
attributes like the same device or address, similar usernames, etc.,
as shown in Fig. 1(a), to capture collusive patterns between orders.
Note that different order graphs could be created based on differ-
ent markets or days, where pre-training may be conducted on one
order graph for downstream prediction on a different order graph,
enabling generalization across markets or time.
Limited pseudo-label generation. Due to the fluid nature of
voucher abuse, timely and high-confidence labels are preferred.
Hence, we generate pseudo-labels by employing a set of predefined
business rules, which have been crafted by Lazada Inc.’s internal
experts. In particular, the rules are designed to be conservative to
avoid upsetting legitimate users, so that only the most conspicuous
abusive orders would be flagged out. Hence, these pseudo-labels
hold high confidence, but their availability is limited. These few la-
beled examples will be employed for our prompt-based fine-tuning
in the downstream prediction.

4.3 Prompt generation, prediction, and tuning
Instead of introducing a new projection head and loss for down-
stream task, our prompt-based fine-tuning framework generates
and tunes prompts, and makes predictions based on the prompts.

First, we propose a graph prompting function P, which trans-
forms an input node 𝑖 into a prompt p𝑖 . The prompt p𝑖 is a continu-
ous embedding vector and has the same shape as the input to the
pretext projection head in pre-training. Given that our pretext task
in DGI is to maximize the mutual information in node-graph pairs,
our prompt p𝑖 also assumes a pairwise template, consisting of a
pair of node token and context token. For a node 𝑖 ∈ 𝑉 , we have

p𝑖 = P(𝑖) = [t𝑖 , z𝑐 ], (3)

where the node token t𝑖 is a vector representation of node 𝑖 that
can be encoded by a GNN, and the context token z𝑐 is a learnable
embedding for class 𝑦𝑐 in the downstream task, as explained below.
Node token. The node token captures the node information. Cor-
responding to the input text embedding in NLP, our node token
t𝑖 is an embedding of the input node 𝑖 . It can simply be h𝑖 , the
representation of node 𝑖 as encoded by a GNN, or an aggregation
of the embedding vectors of adjacent nodes of 𝑖 . In our work, we
simply implement t𝑖 = h𝑖 , which is the direct output of the GNN.
Context token. The context token is designed to capture the con-
textual information about a class. Inspired by prompt tuning [19, 21],
we model our context token with a learnable vector z𝑐 for each
class 𝑦𝑐 in the downstream task. Suppose there is a set of 𝐶 classes
{1, 2, . . . ,𝐶}. Hence, for each input node 𝑖 , we can pair its node to-
ken with 𝐶 different context tokens, to form 𝐶 token pairs, namely,
(t𝑖 , z1), (t𝑖 , z2), . . . , (t𝑖 , z𝐶 ). The context tokens can be represented
by a learnable prompt matrix Z = [z1, z2, . . . , z𝐶 ]⊤ ∈ R𝐶×𝑑 , where
𝑑 is also the embedding dimension of node representations.
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Prompt initialization. Since the context tokens are learnable
vectors, we need to address their initialization. The traditional
way is random initialization, i.e., trained from scratch, which is
uninformative and fails to exploit our pre-trained model.

An optimal context token z𝑐 is designed to capture the contextual
information about class 𝑐 ∈ {1, . . . ,𝐶}. One straightforward option
is to take the mean of the representation vectors of all labeled nodes
in class 𝑐 , since information about the class should ideally relate to
class centroid. This is more informative than random initialization,
by making use of the embedding vectors encoded by the pre-trained
GNN. However, it still suffers from two problems. Firstly, in low-
resource scenarios where each class has very few labeled nodes,
the sample mean could be an unreliable estimation of the class
centroid. Secondly, a simple mean cannot capture complex non-
linear relationship between the contextual information about the
class and the class centroid.

To improve the robustness of the initialization, we augment the
labeled nodes with their neighboring nodes, which can provide
additional local information around a labeled node. To improve the
informativeness, we reuse the graph Readout function from pre-
training. As the Readout is designed to pool the nodes in a graph
to derive a graph-level summary representation, it can be similarly
applied downstream to pool the nodes related to a class to derive a
class-level summary representation. The class-level summary can
serve as a more informative initialization for the context token,
which aims to capture information about the class. Specifically, for
each class 𝑐 , we gather the set of labeled nodes and their neighboring
nodes 𝑉𝑐 = {𝑐1, 𝑐2, . . . , 𝑐𝑁 }, where 𝑁 = |𝑉𝑐 |. Then, we construct
an input embedding matrix H𝑐 = [h𝑐1 , h𝑐2 , . . . , h𝑐𝑁 ]⊤ ∈ R𝑁×𝑑 for
the nodes in 𝑉𝑐 , where h𝑐𝑖 is the representation of node 𝑐𝑖 ∈ 𝑉𝑐 as
encoded by the pre-trained GNN. Subsequently, the context token
z𝑐 can be initialized by Ω(H𝑐 ;𝜔pre), where 𝜔pre is the pre-trained
parameters of the Readout function. For efficiency, we only sample
𝜂 neighbors from each labeled node.

Based on our prompt design, we outline prompt-based learn-
ing for voucher abuse detection, which involves prompt-assisted
prediction and prompt-based fine-tuning.
Prompt-assisted prediction. For each input node 𝑖 , the prompt-
ing function generates two token pairs (t𝑖 , z0) and (t𝑖 , z1), given
classes {0 = legitimate, 1 = abusive} for the binary voucher abuse
detection. We can leverage the same pretext projection head Φpre to
score the matching probability of each token pair, similar to scoring
the node-graph pairs in pre-training. Thus, we predict the order
represented by node 𝑖 as abusive if and only if

Φpre (t𝑖 , z1;𝜙 ′) > Φpre (t𝑖 , z0;𝜙 ′), (4)

since z0, z1 capture the contextual information about the two classes.
Here 𝜙 ′ can be initialized by 𝜙pre, the pre-trained parameters of
the projection head, and further fine-tuned based on task-specific
labels as we show next.
Prompt-based fine-tuning. Our prompt design allows us to reuse
not only the pretext projection head without introducing a new clas-
sification head, but also the pretext task loss without formulating a
new task loss.

argmin𝜃 ′,𝜙 ′,Z
∑

(𝑖,𝑐 ) Lpre (Φpre (t𝑖 , z𝑐 ;𝜙 ′); match(𝑖, 𝑐)) + 𝜆L𝑜 , (5)

where match(𝑖, 𝑐) is a reloaded indicator function: 1 if node 𝑖 is la-
beled 𝑐 ; 0 otherwise. L𝑜 =



ZZ⊤ − I


2
2 is the orthogonal constraint

on the prompt matrix to promote separability of each class, and
𝜆 ≥ 0 is a co-efficient to control the importance of the constraint.

Compared to the traditional fine-tuning in Eq. (2), we still opti-
mize w.r.t. the pre-training loss function Lpre with the same pro-
jection head Φpre. Meanwhile, we optimize the prompt matrix Z in
Eq. (5) instead of the new classification weights𝜓 in Eq. (2). Hence,
our prompt-based approach unifies the pretext and downstream
task, narrowing the gap between pre-training and downstream ob-
jectives, where 𝜃 ′ and 𝜙 ′ are the parameters of pre-trained GNNs
and projection head, Z are the well-initialized context tokens, 𝜆 is
the hyper-parameter, controlling the orthogonal constraint.

5 EXPERIMENTS
We conduct a comprehensive suite of offline experiments first, fol-
lowed by an online evaluation of our deployed model.

5.1 Offline setup and results
Datasets. First, we collect four proprietary large-scale datasets
for voucher abuse detection, named VN0909, VN1010, ID0909,
and ID1023, from an e-commerce platform provided by Lazada
Inc. on the premise of complying with all the security and privacy
policies. Each dataset is a graph with millions of nodes, where the
nodes represent the orders with pre-defined features, and the edges
are pre-defined relationships between them. VN0909 and VN1010
are from Lazada’s Vietnam market, collected on Sep. 9 and Oct. 10
2022, while ID0909 and ID1023 are from Lazada’s Indonesia market,
collected on Sep. 9 and Oct. 23. Note that VN0909 is only used for
pre-training, and we do test on three other datasets. Second, we
also use a public dataset on anomaly detection, namely Amazon
[10]. We perform pre-training on itself.
Task setup.We construct downstream tasks in 10-shot, 20-shot and
semi-supervised settings. In 10- or 20-shot settings, we sample 10 or
20 nodes labeled as anomaly for training, respectively. In the semi-
supervised setting, we sample 100 anomaly labels on Amazon and
5000 anomaly labels on others for training. As anomaly detection
is an imbalanced binary classification problem, we further sample
negative nodes (i.e., normal nodes without anomaly) for training so
that the anomaly rate in training is similar to the overall rate. For
all settings, a validation set with an equal size to the training set is
also sampled, and the remaining will be used for testing. Finally,
we randomly generate 10 different splits of train/validation/test
in each setting, and report the average performance with a 95%
confidence interval.
Baselines.We consider competitive baselines from four categories.
(1) Classical machine learning, widely used in industry, including
SVM [7], XGBoost [5], andMLP [6]; (2) General semi-supervised
GNNs, which use both node features and graph structures and train
end to end, including GCN [17], GAT [37], and SAGEsup, the su-
pervised version of GraphSAGE [13]; (3) Anomaly detection GNNs,
which are special-purpose GNNs designed for anomaly detection
and trained in a supervised fashion. CARE-GNN [10] enhances
the GNN aggregation process with three unique modules against
camouflages. GeniePath [25] is an approach learning adaptive
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Table 1: Performance comparison between VPGNN and the baselines, in percent, with 95% confidence intervals.

In each row, the best result is bolded and the runner-up is underlined. “/” indicates no result obtained due to out-of-memory issue or excessively long training time (>72 hours).

SVM XGBoost MLP GCN SAGEsup GAT CARE-GNN GeniePath AMNet DCI SAGEunsup Pre-train VPGNN
Number of shots = 10

VN1010 37.1±8.9 65.7±5.5 62.9±2.8 59.1±6.7 61.9±3.6 60.9±4.6 / 58.0±4.5 / / 61.8±4.6 64.8±3.6 67.1±3.1
ID0909 28.1±11.0 51.3±9.9 61.6±3.8 64.1±3.9 61.2±7.3 65.6±3.7 / 62.1±2.8 / / 62.2±3.7 66.1±3.0 69.0±3.7
ID1023 38.7±8.3 73.5±6.1 69.3±2.1 69.3±4.8 71.3±5.2 73.7±3.6 73.0±2.9 72.0±5.0 70.0±3.5 73.4±1.6 67.5±5.3 71.8±5.2 75.1±1.9
Amazon 41.4±9.2 62.5±11.5 63.3 ±5.7 16.5±4.9 59.9±9.1 20.5±6.1 38.6±2.9 30.7±2.8 64.8±6.2 18.5±4.0 36.7±6.0 62.3±8.1 70.0±2.7

Number of shots = 20
VN1010 59.2±3.8 73.1±3.9 69.2±2.2 71.6±2.8 73.6±3.2 74.5±4.4 / 69.5±5.7 / / 72.8±2.0 75.7±3.0 75.9±2.8
ID0909 53.1±6.1 64.9±3.8 64.9±1.7 68.7±2.5 70.3±2.8 71.0±3.4 / 61.4±9.1 / / 67.5±2.2 71.4±2.5 72.7±2.8
ID1023 65.2±3.6 78.9±1.4 74.7±1.6 79.0±1.7 81.5±1.3 81.1±1.1 74.2±0.9 80.7±4.2 75.6±1.9 79.4±1.3 78.1±2.1 81.3±1.4 81.8±1.1
Amazon 60.3±3.6 72.9±8.2 70.4±4.4 16.8±8.0 63.0±8.5 48.8±10.1 42.2±6.7 30.8±4.4 75.1±3.1 21.8±2.6 54.5±2.8 73.1±3.9 76.6±2.5

Semi-supervised
VN1010 86.7±0.1 87.8±0.1 86.7±0.1 91.8±0.1 94.1±0.1 91.9±0.0 / 91.7±0.4 / / 89.3±0.0 94.1±0.1 95.2±0.1
ID0909 86.0±0.2 89.2±0.3 86.8±0.3 92.2±0.2 93.4±0.2 92.3±0.2 / 91.1±0.4 / / 86.3±0.2 93.3±0.2 94.1±0.2
ID1023 89.3±0.1 89.9±0.2 88.8±0.2 94.4±0.1 95.6±0.1 94.5±0.1 87.0±0.3 94.5±0.1 94.1±0.3 93.7±1.0 92.6±0.1 95.6±0.1 96.2±0.1
Amazon 78.8±1.1 75.6±2.7 78.1±1.8 34.4±3.6 81.1±1.5 73.3±2.9 45.2±5.6 30.9±4.5 81.7±1.1 26.1±4.5 76.1±0.9 80.9±0.9 80.6±0.7

receptive fields of GNN, with an adaptive path layer consisting
of two complementary functions designed for breadth and depth
exploration respectively.AMNet [4] is an adaptive multi-frequency
GNN, capturing both low-frequency and high-frequency signals,
and adaptively combine signals of different frequencies; (4) Pre-
trained GNNs, which perform pre-training on label-free graphs, in-
cluding DCI [41], SAGEunsup, the unsupervised version of Graph-
SAGE [13] which employs a form of linear probe that is known to
be a strong few-shot learner [36], and Pre-train which uses the
same pre-training strategy as VPGNN, and is then fine-tuned with
a new projection head.
Settings. We set the number of hidden units to 128, using two
layers with ReLU activation for all GNNs, except for GeniePath
and CareGNN. Geniepath uses 16 hidden units and 7 layers, while
CareGNN has 64 hidden units and 1 layer, as recommended in
[10, 25]. The Adam optimizer is applied to both pre-training and
fine-tuning. The learning rate is 0.01 on the Lazada datasets and
0.001 on Amazon. For VPGNN, we use a 128×128 fully connected
layer as the Readout function, inner product as the pretext task
projection head, set 𝜂 = 5 for the number of neighbors sampled per
labeled node for context token initialization, and 𝜆 = 0.01 for the
coefficient of the orthogonal constraint.
Classification performance. In Tab. 1, we compare the perfor-
mance of VPGNNwith the baselines. First, given that pre-training is
done on VN0909, the superior performance of VPGNN on VN1010,
ID0909 and ID1023 shows its generalization ability across time
and/or markets. Furthermore, VPGNN is a strong few-shot learner,
as it attains larger improvements relative to the runner-up under
the 10-shot setting. In general, other pre-trained GNNs also tend
to perform better under the few-shot settings. Second, classical
machine learning methods are generally inferior to GNN-based
methods, demonstrating that graph structures can complement
node features in our problem. Third, those GNNs specifically de-
signed for anomaly detection only achieve similar performance to
vanilla GNNs on the Lazada datasets, showing that these special-
purpose GNNs cannot play to their strengths in voucher abuse
detection due to the fluidity and complexity of the problem.
Ablation study. To better understand the contribution of each
component in VPGNN, we compare VPGNN with the following ab-
lated models. 1) No prompt, which follows the traditional “pre-train,

fine-tune” paradigm without prompting; 2) Random init., which ran-
domly initializes the context tokens; 3) No constr., which removes
the orthogonal prompt constraint in Eq. (5). We report the results on
ID1023 with different shots in Tab. 2, and under the semi-supervised
setting on different datasets in Fig. 3. VPGNN outperforms all the
ablated models consistently, demonstrating the overall benefit of
integrating various components. Among the ablated models, No
prompt performs rather poorly in most cases, especially under the
10-shot setting. This demonstrates the superiority of prompt-based
fine-tuning compared with traditional fine-tuning in low-resource
setting. Random init. also performs not as well, showing that the
token initialization in VPGNN is crucial.
Analysis of token initialization.When initializing the context
tokens, we sample 𝜂 neighbors of the labeled nodes. To analyze
the impact of the sampling, we experiment with different 𝜂 values
under the 10-shot setting, as shown in Fig. 4. Naturally, when more
neighbors are sampled, we observe somewhat better performance.
But too many neighbors will also bring more noise. Therefore, it is
proper to sample a not big or small amount of neighbors. Besides,
we notice that when 𝜂 = 0, i.e., no neighbor information is used, the
performance is worse, reflecting that utilizing neighbor information
will make an informative and robust token initialization.
Prompt tuning only. For large-scale graphs in E-commerce, it is
costly to fine-tune the pre-trained GNNmodel. Some studies [19, 21]
have shown that prompt tuning only while freezing the pre-trained
model can still outperform traditional fine-tuning. To evaluate the
effect of only tuning the prompt in VPGNN, we compare it with
DCI and Pre-train, two models with fine-tuning on ID1023, across
different shots. Specifically, DCI and Pre-train are fine-tuned with
10 epochs, while we fix all pre-trained parameters of VPGNN and
only tune the prompt vectors. As shown in Fig. 5, VPGNN still
achieves significant improvements over DCI and Pre-train, even
when no fine-tuning is done on the pre-trained model.

5.2 Online deployment and evaluation
To further demonstrate the effectiveness of VPGNN in production,
we deploy it in the Lazada production line to detect voucher abuse
orders, and compare it against existing deployed models.
Deployment details. The deployed model is a D+1 model, which
means that we process and predict the orders placed in the past
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Table 2: Ablation study on
ID1023 under different shots.

Model \ shots 10 20 Semi

No prompt 71.82 81.31 95.61

Random init. 73.76 79.07 95.55

No constr. 74.72 81.81 96.12

VPGNN 75.09 81.84 96.21

VN1010 ID0909 ID102393

94
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No prompt
Random init.

No ortho.
VPGNN

Figure 3: Ablation study on
semi-supervised setting.
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Figure 4: Impact of neighbors
for token initialization
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Figure 5: Prompt tuning only
without fine-tuning

one day in the production environment. Figure 6(a) describes the
deployment pipeline, and (b) zooms into feature engineering.

First, we pre-train a model using historical order data. Next,
given the past one-day order data flown into the deployed model,
they first pass through the feature extractor and relation extractor
to exploit rich attributes and various relations for the order graph
construction. Meanwhile, high-confidence pseudo-labels are gen-
erated in limited quantity (see Sect. 4.2). Finally, the pre-trained
model is loaded and further fine-tuned by VPGNN using the pseudo
labels. After tuning, we output the predictions for abusive orders,
and a downstream team will handle the predictions appropriately
(e.g., canceling orders or suspending accounts).

Moreover, feature engineering still plays a vital role in modern
production systems. First, each order is accompanied by a user click
path, in the form of a sequence of actions, e.g., “Home, Personal
Page, My orders, Home”, which is, in fact, a natural language
sentence. Hence, we choose FastText [2] to model and generate the
click path embedding p𝑖 for order 𝑖 , which is a fast implementation
based on the unsupervised skip-gram model, more feasible than
large pre-trained language models [8, 24] in our high-throughput
production setting. Second, voucher abuse orders tend to have the
characteristics of aggregation [26], i.e., often have a high degree.
Due to economic constraints, voucher abusers often place a large
number of orders from multiple accounts on shared devices and/or
IP addresses. Hence, we also take node degree as an important
feature. Finally, we concatenate the raw tabular feature r𝑖 , the
generated FastText embedding of click path p𝑖 and node degree 𝑑𝑖
as the node feature x𝑖 for order 𝑖 .
Online performance. VPGNN is deployed in the Indonesia mar-
ket between 11 and 13 Dec, 2022, for the Double 12 Campaign. We
compare VPGNN with two existing deployed models: BCP, a dis-
tributed implementation of an unsupervised K-means clustering
model [34], and LPA [33], an efficient unsupervised community
detection algorithm.

As ground truth is only judged on the detected orders, recall
cannot be computed since the total number of positive orders is

Past one day order data

Feature
extractor Relation 

extractor

Database

Pseudo label 
generation

Order graph construction

Pre-trained model

VPGNN tuningVoucher abuse prediction

Historical data Pre-training

(a) Deployment

Node feature 
𝐱𝒊 = 𝒓𝒊 𝒑𝒊 𝒅𝒊

i

Tabular data Raw tabular 
feature

Click path
embedding

Node 
degree 

User click path 

Graph structure

𝒑𝒊

𝒅𝒊

𝒓𝒊

(b) Feature engineering

Figure 6: Deployment pipeline and feature engineering.

Table 3: Online performance in the Indonesia market over
the Double 12 Campaign, measured in BPWC.

Model 11 Dec 2022 12 Dec 2022 13 Dec 2022 Overall
BCP 100.0% 100.0% 100.0% 100.0%
LPA 816.9% 1784.1% 330.3% 809.3%

VPGNN 1964.1% 1990.3% 469.1% 998.7%
(% ↑ over LPA) (140.4%) (11.6%) (42.0%) (23.4%)

unknown. Besides, the exact precision and the number of true
positives cannot be disclosed as they are commercially sensitive.
Hence, we define a metric called BCP-normalized Precision Weighted
Coverage (BPWC). Given a model A under evaluation, this metric
is calculated by

Precision of model A × # True positives detected by model A
Precision of BCP × # True positives detected by BCP

. (6)

Here BCP is treated as the base unit (i.e., 100%). This metric con-
siders both precision and true positives (which is proportional to
recall), and hence is a good trade-off between more detections and
fewer false alerts, without disclosing sensitive information.

As shown in Tab. 3, compared to BCP and LPA, our proposed
VPGNN achieves significant improvements in the production set-
ting: over the entire period, VPGNN shows a 23.4% increase over
LPA, and almost a 9-fold increase over BCP. The results demon-
strate the advantage of prompt-based fine-tuning on GNNs when
dealing with voucher abuse detection.

6 CONCLUSION
In this paper, we proposed a prompt-based fine-tuning approach
for GNNs, called VPGNN, to address the problem of voucher abuse
detection. We attempted to bridge the gap between pretext and
downstream tasks by proposing a graph prompting function that
reformulates the downstream task to follow a similar template as the
pretext task. The pre-trained GNNmodel could then be applied with
a relatively light fine-tuning given limited downstream labels for
abusive orders. Extensive offline experiments on both proprietary
and public datasets show that VPGNN outperforms state-of-the-art
baselines in few-shot and semi-supervised scenarios. Moreover, an
online evaluation also demonstrates that VPGNN achieves a 23.4%
improvement over two existing deployed models.
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