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B Heterogeneous graphs (HGs) (T~ -—- ~r

B Multiple types of nodes and edges; N E EE :
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B Rich unstructured text content carried by nodes

R |

such as paper abstracts, descriptions or reviews, |

are also pervasive in HGs. |
B Text content 1s often a mixture of semantics e | b) Hierarchical aggregating paradigm

arising from multi-facet topic-aware factors, which

e Topic-awarelfactors:

Q

Author Conference I_Of EXiStiﬂg_ﬂ_GNN r_n_e_thods

Paper Term

fundamentally manifest why nodes of different I
types would connect and form a specific o [/
i |
R
heterogeneous structure. 9 g kol El{; 1

B Such topic-aware semantics are more fine-grained 2 A heterogeneous graph
and predefined metapaths {

than structural semantics for link prediction.
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B Disentangled learning in HGNNs

4 )
Only focuses on a coarse-grained level to

automatically factorize structural semantics.
\ %

7 )
Only focuses on local level avoid metapath selection

only from neighbor nodes.
- J

4 )

Cannot further recognize and unveil more fined-grained

semantics underlying the bare node connections.

\_ )
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B Our approach

Exploit both heterogeneous learn multi-facet topic-aware

Identify the potential but fundamental :> _ . o
structures and unstructured text |:> topic-aware factors representations for link prediction
content

l Challenges

. .. How to combine both How to to preserve the global
No explicit labels indicating . e :
: structural and topic-aware characteristics of topic-aware
the topic-aware factors . :
semantics semantics
l Method ‘ Method l Method
Intra-metapath Inter-metapath Topic prior
decomposition mergence guidance

Topic-aware Heterogeneous Graph Neural Network
(THGNN)



https://www.emnlp-ijcnlp2019.org/

CIKM 2021 I

Background
THGNN

()
O
Z
—]
[ T]
Z
—]
LN

Experiments

Conclusions



https://www.emnlp-ijcnlp2019.org/

Topic-aware Heterogeneous Graph Neural Network
(THGNN)
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A node with multi-

B Multi-facet Projection facet factors

Text-related node

 There exists K potential topic-aware subspaces in the HG:

hu,k = Pf(u) ) Xu:

» Sampling Strategy : ﬂMetapath based
context sampling
Given a node u with multi-facet factors in the HG, sample some 8/6\8
metapath-based contexts via different metapaths
ZUSsUs+1 EC,ﬂext COS(ACH Acu ) 9 9, 8

Pe, = > ﬂProj ection
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(a) Multi-facet Projection
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THGNN

B Multi-facet Heterogeneous Graph Neural Network

Multi-facet Heterogeneous Graph Neural N CIKM 2021 '

* Intra-metapath Decomposition. (step 1) |

|
h® = f({hy Yo € c,}), E

exp(cos(hy, g, hZ’;‘k)

Pkle, =

K (r‘u ? o XX ]
Zk’:l exp(cos(hu,k’ ) hu’kr) - Multi-facet

Attention

M; _ Cu
h: = 12_Norm( Z Prle, - %),

M.
ceC,"’

_ e g

the set of selected metapaths: M = (My, My, ---, Mp) for u.

It generates P groups of metapath-specific multi- :

facet topic-aware representations for u, denoted as: I
11)Antra-metapath Decomposition

|
M; . M, M, M; 4 M Mz, . maMp Mp  Mp e e e = = = = = = === =
{[hu 1 hu 2’ h ] [hu 1 hu 2’ ’hu,K ], ’[hu,l ’ hu,2 ’ ’hu,K I (b) Multi-facet Heterogeneous@NN

2)@Anter-metapath Mergence
J
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IR (CI\ NI Multi-facet Heterogeneous Graph Neural

* Inter-metapath Mergence. (step 2)

Mi _ 1 Mi
S, = H Z tanh(W - O'(hu,k)),

ueB

K
Mi_ T Mi
M= D a8
k=1

Multi-facet
. Attention

ﬁMi — exp(eMz) /’ ™

2MeM exp(eM)
2 M; 1, M;
hu,k = Z ﬁ ’ hu,k’

M;eM

~ (T)
Zuk = J(hu,k)

For a text-related node v, let z,x = o(h, %)
without any iteration
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B Topic Prior Guidance

 There might be still confounding among different topic-aware
subspaces.

» It’s difficult to capture global knowledge from K potential
topic-aware subspaces we assume.

T —
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K
B We estimate the similarity for a training pair (u, v) through sw = ) 2z, - zyx,
k=1

B The loss of graph reconstruction in two major learning paradigms:

* Only one node with multi-facet factors in training pair (u,v): assuming that u is the only node with
multi-facet factors , then

Leg=- Z log o(syp) — Z log o(=syuy),

(u,v)eB* (u,0’)eB~
* Both are nodes with multi-facet factors in training pair (u,v):

1 1
Log=- Z log a(gsw) - Z log a(—EsurUr),
(u,v) e B+ (w,0)eB-

B The overall training loss:
Lg=Lsg+yLr.
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* Q1: How does THGNN perform in link prediction task compared with state-of-the-art methods?
» Q2: How does topic prior guidance affect the result of THGNN?
* Q3: Can THGNN capture multi-facet topic-aware semantics?

B Datasets

CIKM 2021 '

Dataset | Relation (A-B) #A #B #A-B
Paper-Author 11,248 | 11,569 | 32,534
DBLP Paper-Conference | 11,248 | 16 11,248
Paper-Term 11,248 | 2,463 65,818
Business-User 2,203 1,430 27,793
YELP Business-City 2,203 66 2,157
Business-Category | 2,203 347 9,787
Movie-User 1,754 2,476 34,042
Amazon | Movie-Brand 1,754 | 293 734
Movie-Category 1,754 | 95 4913
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Table 2: The performance comparison of link prediction. The underlined means the best performance in baselines.

DBLP (A-P) DBLP (A-A) YELP (U-B) | Amazon (U-M)

Models AUC AP | AUC AP | AUC AP | AUC AP
DeepWalk | 0.7754 0.7782 | 0.7488 0.7568 | 0.6200 0.6281 | 0.7684  0.7840
Mp2vec | 07213  0.7243 | 0.7600 0.7484 | 0.6792  0.6872 | 0.7812  0.7834

HERec 0.8186  0.7927 | 0.7565 0.7871 | 0.8383  0.8215 | 0.8085  0.8083

GraphSage | 0.8218 0.8341 | 0.8524 0.8817 | 0.8874 0.8810 | 0.8236  0.8327
GAT 0.8322  0.8367 | 0.8579 0.8805 | 0.8915 0.8847 | 0.8329  0.8343

DisenGCN | 0.8301 0.8352 | 0.8692 0.8936 | 0.8957 0.8838 | 0.8435  0.8390
HAN 0.8535 0.8719 | 0.8744 0.9046 | 0.9013  0.8722 | 0.8418  0.8414

DisenHAN | 0.8496 0.8654 | 0.8868 0.8947 | 0.8976  0.8843 | 0.8426  0.8419
MAGNN | 0.8543 0.8727 | 0.8671 0.9035 | 0.9123  0.8926 | 0.8378  0.8278
THGNN\ 4 | 0.8546 0.8683 | 0.8712 0.8939 | 0.9154 0.8945 | 0.8578  0.8502
THGNN | 0.8807 0.9000 | 0.8996 0.9174 | 0.9243 0.9037 | 0.8634 0.8515

B Our model consistently performs better than all baselines on three datasets.

B [t indicates the effectiveness of both structural and topic-aware semantics.
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SOEIgIERER Analysis of Topic Prior Guidance
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Figure 3: Effect of the topic prior guidance module. THGNN-w/o0 means THGNN without topic prior guidance.



https://www.emnlp-ijcnlp2019.org/

CIKM 2021 '

Experiments Multi-facet Embedding Visualization (Q3)

B The topic prior guidance plays an
important role on giving more
3! 3
2 02 2
o orthogonality and keeping the quality of
(a) MAGNN DBLP (A-P). (b) THGNN-w/o DBLP (A-P). . . .
multi-facet topic-aware embeddings.
2 "
:
S 3
3 :
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(c) THGNN DBLP (A-P). (d) THGNN Amazon (U-M).

Figure 4: The magnitude of the correlations between the ele-
ments of the 256-dimensional representations for DBLP (A-
P), and 128-dimensional representations for Amazon (U-B).
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B \\e proposed to identify and reason multi-facet topic-aware factors underlying the bare

connections between associated nodes, by taking advantage of both heterogeneous
structures and unstructured text content in HGs;

B \We proposed a novel framework THGNN for link prediction to distinctively aggregate
rich heterogeneous information according to the inferential multi-facet topic-aware
factors ;

B \We incorporated a topic prior guidance module, which aims to leverage global
knowledge from unstructured text content, to further improving the quality of multi-facet
topic-aware embeddings;

B Experiments show that the learned multi-facet topic-aware node embeddings are more
predictive and interpretable.
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Thank you !
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More materials in http://shichuan.org
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