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1 Background HGs and HGNNs

1

ÂMultiple types of nodesand edges;

ÂRich and diverse semantics;

Heterogeneous graphs (HGs) 

Heterogeneous graph neural networks 

(HGNNs) 

ÂDefines and leverages metapaths

preserve semantics and model heterogeneousstructure 

ÂClassical paradigm

hierarchical aggregation at node and semantic level
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1 Background Motivation

Â Rich unstructured text content carried by nodes 

such as paper abstracts, descriptions or reviews, 

are also pervasive in HGs. 

2

Â Text content is often a mixture of semantics 

arising from multi-facet topic-aware factors, which 

fundamentally manifest why nodes of different 

types would connect and form a specific 

heterogeneous structure.

Â Such topic-aware semantics are more fine-grained 

than structural semantics for link prediction. 
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1 Background Prior Efforts

ÂDisentangled learning in HGNNs

2

Only focuses on a coarse-grained level to 

automatically factorize structural semantics.

Only focuses on local level avoid metapathselection 

only from neighbor nodes. 

Cannot further recognize and unveil more fined-grained 

semantics underlying the bare node connections. 
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1 Background Our approach

2

ÂOur approach

Exploit both heterogeneous 
structures and unstructured text 
content 

learn multi-facet topic-aware 
representationsfor link prediction

Identify the potential but fundamental 
topic-aware factors 

Challenges

No explicit labels indicating 
the topic-aware factors 

How to combine both 
structural and topic-aware 

semantics 

How to to preserve the global 
characteristics of topic-aware 

semantics 

Method

Intra-metapath
decomposition

Inter-metapath
mergence

Method Method

Topic prior 
guidance 

Topic-aware Heterogeneous Graph Neural Network 

(THGNN)
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2 THGNN Our proposed method

4

Topic-aware Heterogeneous Graph Neural Network 

(THGNN)
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2 Multi -facet Projection 

5

Å There exists ὑpotential topic-aware subspaces in the HG:

Multi -facet Projection 

THGNN CIKM2021
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Å Sampling Strategy :

Given a node όwith multi-facet factors in the HG, sample some 

metapath-based contexts via different metapaths 

https://www.emnlp-ijcnlp2019.org/


2 Multi -facet Heterogeneous Graph Neural Network 

5

Å Intra-metapathDecomposition. (step 1) 

Multi -facet Heterogeneous Graph Neural Network 

THGNN
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It generates ὖgroups of metapath-specific multi-

facet topic-aware representationsfor ό, denoted as: 

the set of selected metapaths: 
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2 Multi -facet Heterogeneous Graph Neural Network 

5

Å Inter-metapathMergence.(step 2) 

Multi -facet Heterogeneous Graph Neural Network 
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For a text-related node ὺ, let
without any iteration 
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2 Topic Prior Guidance 

5

Topic Prior Guidance 

THGNN
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Å There might be still confoundingamong different topic-aware 

subspaces.

Å Itôs difficult to capture global knowledge from ὑpotential 

topic-aware subspaces we assume.
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2 GNUD

9

Model Training

ÂWe estimate the similarity for a training pair (ό, ὺ) through

Å Only one node with multi-facet factors in training pair (ό,ὺ): assuming that όis the only node with 

multi-facet factors , then 

ÂTheloss of graph reconstruction in two major learning paradigms:

Å Both are nodes with multi-facet factors in training pair (ό,ὺ): 

ÂTheoverall training loss:
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3 Experiments

10

Datasets

ÅQ1: How does THGNN perform in link prediction task compared with state-of-the-art methods? 

ÅQ2: How does topic prior guidance affect the result of THGNN? 

ÅQ3: Can THGNN capture multi-facet topic-aware semantics? 
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3 Experiments

11

ÂOur model consistently performs better than all baselines on three datasets.

Â It indicates the effectiveness of both structural and topic-aware semantics. 

Link Prediction (Q1) CIKM2021


