

Topic-aware Heterogeneous Graph Neural Network for Link Prediction

Siyong Xu¹, Cheng Yang¹, Chuan Shi¹, Yuan Fang², Yuxin Guo¹, Tianchi Yang¹, Luhao Zhang³, Maodi Hu² ¹Beijing University of Posts and Telecommunications, China ²Singapore Management University, ³Meituan

Report: Siyong Xu

Background HGs and HGNNs

Heterogeneous graphs (HGs)

- Multiple types of nodes and edges;
- Rich and diverse semantics;
- Heterogeneous graph neural networks (HGNNs)
- Defines and leverages metapaths preserve semantics and model heterogeneous structure
- Classical paradigm
 - hierarchical aggregation at node and semantic level

Background Motivation

- Rich unstructured text content carried by nodes such as paper abstracts, descriptions or reviews, are also pervasive in HGs.
 - Text content is often a mixture of semantics
 arising from multi-facet topic-aware factors, which
 fundamentally manifest why nodes of different
 types would connect and form a specific
 heterogeneous structure.
- Such topic-aware semantics are more fine-grained than structural semantics for link prediction.

Disentangled learning in HGNNs

Only focuses on a coarse-grained level to

automatically factorize structural semantics.

Only focuses on local level avoid metapath selection

only from neighbor nodes.

Cannot further recognize and unveil more fined-grained

semantics underlying the bare node connections.

Topic-aware Heterogeneous Graph Neural Network (THGNN)

Background

THGNN

Experiments

Conclusions

THGNN

Topic-aware Heterogeneous Graph Neural Network (THGNN)

Multi-facet Projection

• There exists K potential topic-aware subspaces in the HG:

$$\mathbf{h}_{u,k} = \mathbf{P}_k^{\varphi(u)} \cdot \mathbf{x}_u,$$

• Sampling Strategy :

Given a node u with multi-facet factors in the HG, sample some metapath-based contexts via different metapaths

$$p_{c_u} = \frac{\sum_{v_s, v_{s+1} \in c_u^{text}} \cos(\lambda_{v_s}^{c_u}, \lambda_{v_{s+1}}^{c_u})}{\sum_{c'_u \in C_u^M} \sum_{v_s, v_{s+1} \in c'_u^{text}} \cos(\lambda_{v_s}^{c'_u}, \lambda_{v_{s+1}}^{c'_u})}$$

(a) Multi-facet Projection

Multi-facet Heterogeneous Graph Neural Network

• Intra-metapath Decomposition. (step 1)

$$\mathbf{h}_{u,k}^{c_u} = f(\{\mathbf{h}_{v,k}, \forall v \in c_u\}),$$

$$p_{k|c_u} = \frac{\exp(\cos(\mathbf{h}_{u,k}, \mathbf{h}_{u,k}^{c_u}))}{\sum_{k'=1}^{K} \exp(\cos(\mathbf{h}_{u,k'}, \mathbf{h}_{u,k'}^{c_u}))},$$

$$\mathbf{h}_{u,k}^{M_i} = L2_Norm(\sum_{c \in C_u^{M_i}} p_k|_{c_u} \cdot \mathbf{h}_{u,k}^{c_u}),$$

the set of selected metapaths: $\mathcal{M} = (M_1, M_2, \cdots, M_P)$ for u

It generates P groups of metapath-specific multifacet topic-aware representations for u, denoted as:

 $\{[\mathbf{h}_{u,1}^{M_1}, \mathbf{h}_{u,2}^{M_1}, \cdots, \mathbf{h}_{u,K}^{M_1}], [\mathbf{h}_{u,1}^{M_2}, \mathbf{h}_{u,2}^{M_2}, \cdots, \mathbf{h}_{u,K}^{M_2}], \cdots, [\mathbf{h}_{u,1}^{M_P}, \mathbf{h}_{u,2}^{M_P}, \cdots, \mathbf{h}_{u,K}^{M_P}]\}.$

Multi-facet Heterogeneous Graph Neural Network

• Inter-metapath Mergence. (step 2) $\mathbf{s}_{k}^{M_{i}} = \frac{1}{|B|} \sum_{u \in B} \tanh(\mathbf{W} \cdot \sigma(\mathbf{h}_{u,k}^{M_{i}})),$ $e^{M_i} = \sum_{k=1}^{\kappa} \mathbf{q}_k^T \cdot \mathbf{s}_k^{M_i},$ $\beta^{M_i} = \frac{\exp(e^{M_i})}{\sum_{M \in \mathcal{M}} \exp(e^M)},$ $\hat{\mathbf{h}}_{u,k} = \sum_{M_i \in \mathcal{M}} \beta^{M_i} \cdot \mathbf{h}_{u,k}^{M_i},$ $\mathbf{z}_{u,k} = \sigma(\hat{\mathbf{h}}_{u,k}^{(T)})$

For a text-related node v, let $\mathbf{z}_{v,k} = \sigma(\mathbf{h}_{v,k})$ without any iteration

THGNN

5

Topic Prior Guidance

- There might be still confounding among different topic-aware subspaces.
- It's difficult to capture global knowledge from *K* potential topic-aware subspaces we assume.

$$\mathcal{L}_{T} = \frac{1}{|\mathcal{M}|} \sum_{M_{i} \in \mathcal{M}} \| \frac{\Phi_{M_{i}}^{T} \Phi_{M_{i}}}{\| \Phi_{M_{i}}^{T} \Phi_{M_{i}} \|_{F}} - \frac{\overline{\lambda}_{M_{i}}}{\| \overline{\lambda}_{M_{i}} \|_{F}} \|_{F},$$
$$\overline{\lambda}_{M_{i}} = \frac{1}{|\mathcal{M}|} \sum_{M_{i}} \lambda_{d_{i}}^{c},$$

 $c \in C^{M_i}$

GNUD

We estimate the similarity for a training pair (u, v) through $s_{uv} = \sum_{k=1}^{K} \mathbf{z}_{u,k}^{T} \cdot \mathbf{z}_{v,k}$,

The loss of graph reconstruction in two major learning paradigms:

• Only one node with multi-facet factors in training pair (u,v): assuming that u is the only node with multi-facet factors, then

$$\mathcal{L}_{G,\mathcal{B}} = -\sum_{(u,v)\in\mathcal{B}^+} \log \sigma(s_{uv}) - \sum_{(u,v')\in\mathcal{B}^-} \log \sigma(-s_{uv'}),$$

• Both are nodes with multi-facet factors in training pair (u,v):

$$\mathcal{L}_{G,\mathcal{B}} = -\sum_{(u,v)\in\mathcal{B}^+} \log \sigma(\frac{1}{K}s_{uv}) - \sum_{(u',v')\in\mathcal{B}^-} \log \sigma(-\frac{1}{K}s_{u'v'}),$$

The overall training loss:

$$\mathcal{L}_{\mathcal{B}} = \mathcal{L}_{G,\mathcal{B}} + \gamma \mathcal{L}_{T}.$$

ONTENTS

- Q1: How does THGNN perform in link prediction task compared with state-of-the-art methods?
- Q2: How does topic prior guidance affect the result of THGNN?
- Q3: Can THGNN capture multi-facet topic-aware semantics?

Datasets

Dataset	Relation (A-B)	# A	# B	#A-B
DBLP	Paper-Author	11,248	11,569	32,534
	Paper-Conference	11,248	16	11,248
	Paper-Term	11,248	2,463	65,818
YELP	Business-User	2,203	1,430	27,793
	Business-City	2,203	66	2,157
	Business-Category	2,203	347	9,787
Amazon	Movie-User	1,754	2,476	34,042
	Movie-Brand	1,754	293	734
	Movie-Category	1,754	95	4,913

CIKM 2021

 Table 2: The performance comparison of link prediction. The underlined means the best performance in baselines.

	DBLP (A-P)		DBLP (A-A)		YELP (U-B)		Amazon (U-M)	
Models	AUC	AP	AUC	AP	AUC	AP	AUC	AP
DeepWalk	0.7754	0.7782	0.7488	0.7568	0.6200	0.6281	0.7684	0.7840
Mp2vec	0.7213	0.7243	0.7600	0.7484	0.6792	0.6872	0.7812	0.7834
HERec	0.8186	0.7927	0.7565	0.7871	0.8383	0.8215	0.8085	0.8083
GraphSage	0.8218	0.8341	0.8524	0.8817	0.8874	0.8810	0.8236	0.8327
GAT	0.8322	0.8367	0.8579	0.8805	0.8915	0.8847	0.8329	0.8343
DisenGCN	0.8301	0.8352	0.8692	0.8936	0.8957	0.8838	0.8435	0.8390
HAN	0.8535	0.8719	0.8744	0.9046	0.9013	0.8722	0.8418	0.8414
DisenHAN	0.8496	0.8654	0.8868	0.8947	0.8976	0.8843	0.8426	0.8419
MAGNN	<u>0.8543</u>	0.8727	0.8671	0.9035	<u>0.9123</u>	0.8926	0.8378	0.8278
THGNN $_{MA}$	0.8546	0.8683	0.8712	0.8939	0.9154	0.8945	0.8578	0.8502
THGNN	0.8807	0.9000	0.8996	0.9174	0.9243	0.9037	0.8634	0.8515

Our model consistently performs better than all baselines on three datasets.

■ It indicates the effectiveness of both structural and topic-aware semantics.

Figure 3: Effect of the topic prior guidance module. THGNN-w/o means THGNN without topic prior guidance.

Experiments Multi-facet Embedding Visualization (Q3)

Figure 4: The magnitude of the correlations between the elements of the 256-dimensional representations for DBLP (A-P), and 128-dimensional representations for Amazon (U-B).

The topic prior guidance plays an important role on giving more orthogonality and keeping the quality of multi-facet topic-aware embeddings.

ONTENTS

- CIKM 2021
- We proposed to identify and reason multi-facet topic-aware factors underlying the bare connections between associated nodes, by taking advantage of both heterogeneous structures and unstructured text content in HGs;
- We proposed a novel framework THGNN for link prediction to distinctively aggregate rich heterogeneous information according to the inferential multi-facet topic-aware factors;
- We incorporated a topic prior guidance module, which aims to leverage global knowledge from unstructured text content, to further improving the quality of multi-facet topic-aware embeddings;
 - Experiments show that the learned multi-facet topic-aware node embeddings are more predictive and interpretable.

Thank you !

More materials in http://shichuan.org