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B Graph Neural Network (GNN)
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lligefelifeifelaR | abel Scarcity on Graph Data |

B GNNs need abundant task-specific labeled = Better results

» However, labeled data is usually expensive or infeasible to obtain

B Learning from Unlabeled Data = Pre-training

» Unlabeled data (i.e., the whole graph) is abundant
» Recent progresses of pre-training in CV and NLP relieve the
reliance on labeled data, and some recent works propose to

pre-train GNNSs In a self-supervised manner
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B Existing pre-training methods for GNNs

» They are mainly designed for homogeneous graphs

B Heterogeneous Graphs and meta graph

Large heterogeneous graphs with different relations and rich semantics



B Two fundamental problems

€ 1. How to distinguish and tailor to different types of nodes and edges
during pre-training
» Defining characteristics of a heterogeneous graph ...... —> different node and edge types

€ 2. How to further preserve high-order semantic contexts during pre-training

» High-order semantics -> advanced structures for pre-training (i.e., meta-graph)
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CPT-HG
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Leverage contrastive pre-training tasks on relation- and subgraph-level, which captures both the

semantic and structural properties for pre-training GNNs on heterogeneous graph
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(a) A heterogeneous graph
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(b) Relation-level pre-training task <
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(¢) Subgraph-level pre-training task

Relation-level: differentiate the relation
type between two nodes
Subgraph-level: captures high-order
structure and embodies complex

multiparty relationships



B Relation-level Pre-training Task

Encode the relational semantics which constitute the basis of heterogeneity

1. Select negative samples from the unrelated node
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2. Select negative samples from the inconsistent relation
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B Relation-level Pre-training Task

Persevere the high-order semantic contexts on a heterogeneous graph

:>( i3 8 )  Structural Positive Samples
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RS poub capture local connectivity and semantic contexts.
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negative samples from the latest positive sample,

[._L. - . ,,,,,, }» which leads the contrastive procedure more efficient
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MEICININE Schema-level pre-training task

B Subgraph-level pre-training task
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sampling according to meta-graph
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Experiments Baselines & Datasets

B Datasets and statistics

. B asS el INes Dataset #Node type  #Nodes | #Edge type  #Edges
Author (A) 4,057
¢ GAE ¢ GPT-GNN Paper (P) 16.670 P-A 19,645
DBLP Teorn (T) 12420 PV 16,670
¢ DGI ¢ EdgePred Verme (V) 0 P-T 133,039
¢ No-Pretrain Business (B) 7,474 B-T 132,928
Yel Location (L) 65 B-L 7,474
“P Star (S) 9 B-S 7,474
Term (T) 36,412 T-T 360,676
Paper (P) 614,209 P-A 2,311,822
Amminey || Author(A) 737,621 P-C 764,246
Conference (C) 842 P-P 4,665,400

Terms (T) 80,589 P-T 7,722,124
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B Experiment results on Node classification and Link Prediction

Dataset | Link Type || No pre-train EgePred DGI GPT-GNN | CPT-HG Improv.
DBLP |  Paper-Term || 1234 %143 12512071 1261 +044 1247068 1271+035 | 13.06 +042 2.75%
Yelp | Business-Location || 45.83 £0.42 4592 %052 46.10+031 4557 +0.64 4604075 | 47.04 £0.71  2.03%
Aminer | Faper-Conference || 39.23 175 4031+078 3986+ 117 40744135 41.37£076 | 4217123  193%
Paper-Author 563+073 571+041 562+087 584+052 6024045 | 6431054 6.81%

Table 2: Experiment results (MRR + std) in link prediction task on the three datasets. The best method is bolded, and the

second best is underlined.

Downstream Task

Link Prediction

Dataset DBLP Yelp Aminer
Link/Labeled Node Type || Paper-Term | Business-Location | Paper-Conference  Paper-Author
No pre-train 12.34 + 1.43 45.83 + 0.42 3923+ 1.75 563 +0.73
CPT-HG,,,3 12.65 + 0.42 47.15 £ 0.44 41.54 £ 0.33 6.04 £ 0.51
CPT-HG, 12.79 £ 0.56 46.74 £ 0.65 41.75 £ 0.65 6.24 + 0.15
CPT-HG 13.06 = 0.42 47.04 = 0.71 4217 = 1.23 6.43 = 0.54

Table 4: Analysis of different ablated models in various downstream tasks.

The improvements suggest that the contrastive
pre-training on heterogeneous graphs is capable
of learning transferable knowledge
Both self-supervised tasks in GPT-GNN
help the pre-training framework

» Relation-level contrastive task

» Subgraph-level contrastive task



B Ablation study
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Downstream Task

Link Prediction Node Classification
Dataset DBLP Yelp Aminer DBLP Aminer
Link/Labeled Node Type || Paper-Term | Business-Location | Paper-Conference  Paper-Author Paper Author
No pre-train 1234 £ 1.43 45.83 + 0.42 39.23+1.75 5.63 £0.73 8745+ 043 | 92.17 £ 0.56
CPT-HGq,;, 12.65 £ 0.42 47.15 + 0.44 41.54 £ 0.33 6.04 + 0.51 89.57 £ 0.61 | 94.14 + 0.54
CPT-HG,,, 12.79 £ 0.56 46.74 £ 0.65 41.75 £ 0.65 6.24 £ 0.15 92.45 £+ 0.54 | 95.16 £ 0.32
CPT-HG 13.06 + 0.42 47.04 £ 0.71 42.17 + 1.23 6.43 + 0.54 9145+ 0.54 | 96.32 + 0.43
Table 4: Analysis of different ablated models in various downstream tasks.
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CPT-HGsub significantly improves the link prediction

(a) Link Prediction.

(b) Node Classification. . .
performance by focusing on modeling subgraph

Figure 3: Improvement of different ablated models over no

crabnbaselt structures in a graph.
pre-train baselne.
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Conclusion

» CPT-HG, which is a pre-training framework, enables the GNN to
capture heterogeneous semantics and structural properties

» Extensive experiments three real-world heterogeneous graphs



