

Contrastive Pre-Training of GNNs on Heterogeneous Graphs

Xunqiang Jiang¹, Yuanfu Lu², Yuan Fang³, Chuan Shi^{1*}

¹Beijing University of Posts and Telecommunications

²WeChat Search Application Department

³Singapore Management University

NTENTS

ONTENTS

Graph Neural Network (GNN)

GCN

GraphSAGE

Various Applications of GNN

Recommendation System

Polypharmacy

GNNs need abundant task-specific labeled \rightarrow Better results

> However, labeled data is usually **expensive** or **infeasible** to obtain

Learning from Unlabeled Data \rightarrow Pre-training

- Unlabeled data (i.e., the whole graph) is abundant
- Recent progresses of pre-training in CV and NLP relieve the reliance on labeled data, and some recent works propose to pre-train GNNs in a self-supervised manner

Existing pre-training methods for GNNs

They are mainly designed for homogeneous graphs

Heterogeneous Graphs and meta graph

Large heterogeneous graphs with different relations and rich semantics

Two fundamental problems

- 1. How to distinguish and tailor to different types of nodes and edges during pre-training
 - \succ Defining characteristics of a heterogeneous graph \rightarrow different node and edge types

2. How to further preserve high-order semantic contexts during pre-training

 \rightarrow High-order semantics \rightarrow advanced structures for pre-training (i.e., meta-graph)

CPT-HG

Leverage contrastive pre-training tasks on relation- and subgraph-level, which captures both the semantic and structural properties for pre-training GNNs on heterogeneous graph

- Relation-level: differentiate the relation type between two nodes
- Subgraph-level: captures high-order structure and embodies complex multiparty relationships

Relation-level Pre-training Task

Encode the relational semantics which constitute the basis of heterogeneity

1. Select negative samples from the unrelated node

Relation-level Pre-training Task

Persevere the high-order semantic contexts on a heterogeneous graph

- Structural Positive Samples
 - capture local connectivity and semantic contexts.
- Queued Negative Samples

negative samples from the latest positive sample,

which leads the contrastive procedure more efficient

Subgraph-level pre-training task

3

Datasets and statistics

Baselines

- GAE
- DGI

- GPT-GNNEdgePred
- No-Pretrain

Dataset	#Node type	#Nodes	#Edge type	#Edges
DBLP	Author (A) Paper (P) Term (T) Venue (V)	4,057 16,670 13,420 40	P-A P-V P-T	19,645 16,670 133,039
Yelp	Business (B)	7,474	B-T	132,928
	Location (L)	65	B-L	7,474
	Star (S)	9	B-S	7,474
	Term (T)	36,412	T-T	360,676
Aminer	Paper (P)	614,209	P-A	2,311,822
	Author (A)	737,621	P-C	764,246
	Conference (C)	842	P-P	4,665,400
	Terms (T)	80,589	P-T	7,722,124

Experiment results on Node classification and Link Prediction

Dataset	Link Type	No pre-train	GAE	EgePred	DGI	GPT-GNN	CPT-HG	Improv.
DBLP	Paper-Term	12.34 ± 1.43	12.51 ± 0.71	12.61 ± 0.44	12.47 ± 0.68	12.71 ± 0.35	$\textbf{13.06} \pm 0.42$	2.75%
Yelp	Business-Location	45.83 ± 0.42	45.92 ± 0.52	$\underline{46.10}\pm0.31$	45.57 ± 0.64	46.04 ± 0.75	$\textbf{47.04} \pm 0.71$	2.03%
Aminer	Paper-Conference Paper-Author	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 40.31 \pm 0.78 \\ 5.71 \pm 0.41 \end{array}$	$\begin{array}{c} 39.86 \pm 1.17 \\ 5.62 \pm 0.87 \end{array}$	$\begin{array}{c} 40.74 \pm 1.35 \\ 5.84 \pm 0.52 \end{array}$	$\frac{\underline{41.37} \pm 0.76}{\underline{6.02} \pm 0.45}$	$\begin{array}{c} {\bf 42.17} \pm 1.23 \\ {\bf 6.43} \pm 0.54 \end{array}$	1.93% 6.81%

Table 2: Experiment results (MRR \pm std) in link prediction task on the three datasets. The best method is bolded, and the second best is underlined.

Downstream Task	Link Prediction					
Dataset	DBLP Yelp		Aminer			
Link/Labeled Node Type	Paper-Term	Business-Location	Paper-Conference	Paper-Author		
No pre-train	12.34 ± 1.43	45.83 ± 0.42	39.23 ± 1.75	5.63 ± 0.73		
CPT-HG _{sub}	12.65 ± 0.42	$\textbf{47.15} \pm 0.44$	41.54 ± 0.33	6.04 ± 0.51		
CPT-HG _{rel}	12.79 ± 0.56	46.74 ± 0.65	41.75 ± 0.65	6.24 ± 0.15		
CPT-HG	13.06 ± 0.42	47.04 ± 0.71	42.17 ± 1.23	$\textbf{6.43} \pm 0.54$		

Table 4: Analysis of different ablated models in various downstream tasks.

- The improvements suggest that the contrastive pre-training on heterogeneous graphs is capable of learning transferable knowledge
- Both self-supervised tasks in GPT-GNN

help the pre-training framework

- Relation-level contrastive task
- Subgraph-level contrastive task

3 Experiments

Ablation study

Downstream Task		Node Classification				
Dataset	ataset DBLP Yelp Aminer		er	DBLP		
Link/Labeled Node Type	Paper-Term	Business-Location	Paper-Conference	Paper-Author	Paper	Author
No pre-train	12.34 ± 1.43	45.83 ± 0.42	39.23 ± 1.75	5.63 ± 0.73	87.45 ± 0.43	92.17 ± 0.56
CPT-HG _{sub}	12.65 ± 0.42	47.15 ± 0.44	41.54 ± 0.33	6.04 ± 0.51	89.57 ± 0.61	94.14 ± 0.54
CPT-HG _{rel}	12.79 ± 0.56	46.74 ± 0.65	41.75 ± 0.65	6.24 ± 0.15	92.45 ± 0.54	95.16 ± 0.32
CPT-HG	13.06 ± 0.42	47.04 ± 0.71	42.17 ± 1.23	6.43 ± 0.54	91.45 ± 0.54	96.32 ± 0.43

Table 4: Analysis of different ablated models in various downstream tasks.

Figure 3: Improvement of different ablated models over no pre-train baseline.

- The semantic relations encoded in CPT-HG*rel* seem more important for node representations in heterogeneous graph
- CPT-HG*sub* significantly improves the link prediction performance by focusing on modeling subgraph structures in a graph.

1

Conclusion

- CPT-HG, which is a pre-training framework, enables the GNN to capture heterogeneous semantics and structural properties
- Extensive experiments three real-world heterogeneous graphs