The 39th Annual AAAI Conference on Artificial Intelligence

Unlocking the Potential of Black-box Pre-trained GNNs for Graph Few-shot Learning

Qiannan Zhang¹, Shichao Pei², Yuan Fang³, Xiangliang Zhang⁴

Motivation

- Graph few-shot learning deals with label scarcity on graphs.
- Pre-trained GNNs have promoted the advancement of graph few-shot learning by providing rich graph knowledge via largescale label-free training.
- For economic and security considerations, pre-trained GNNs might be accessed only via Model-as-a-Service (Black-box).

Challenges

- When applying pre-trained GNNs in few-shot learning:
 - Task Gap: Pre-training objectives may include task-* irrelevant information for downstream few-shot tasks.
 - <u>Black-box Setting</u>: Conventional fine-tuning isn't applicable without access to internal gradients.
 - <u>Overfitting</u>: Limited meta-training tasks can lead to ** memorization and poor generalization

Key Idea

- Leverage a lightweight graph meta-learner, enabling:
 - Capturing just task-relevant knowledge needed for downstream node classification
 - ✓ Leveraging outputs from black-box pre-trained GNNs, no access to the gradients or parameters
 - ✓ Fast adapting to novel few-shot tasks with a compact subnetwork.

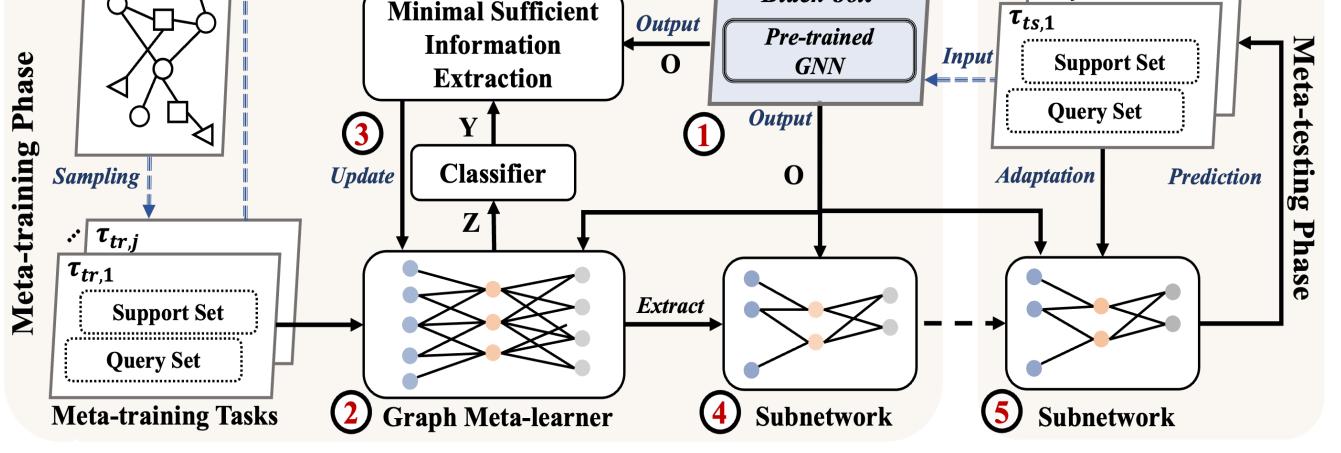
Graph Meta-learning with Black-box Pre-trained GNNs (Meta-BP)

	Input	J
\mathcal{G}	Black-box	

Meta-testing Tasks $\tau_{ts,j}$

Experiments

¹Cornell University ²University of Massachusetts Boston ³Singapore Management University ⁴University of Notre Dame



2 **Graph Meta-Learner (GML)**

- Receives output representations • (denoted as **O**) from the black-box pre-trained GNN as the initial embeddings of GML
- Pre-computes *neighbor* • abstractions with graph topology

 $\mathbf{h}_{\mathcal{N}_v} = \frac{1}{|\mathcal{N}_v|} \sum_{u \in \mathcal{N}_v} \mathbf{h}_u$

Fuses node features and neighbor ulletabstractions by linear transformation

$$\mathbf{z}_v = \sigma([\mathbf{h}_v || \mathbf{h}_{\mathcal{N}_v}] \mathbf{W})$$

3 **Extracting Minimal Sufficient Information**

- Outputs include both task-relevant and task-irrelevant information.
- Information bottleneck: learning node representations **Z** to be:
- a *minimal* knowledge (simplest Ο mapping) from the pre-trained **GNN**
- yet *sufficient* to adapt well to Ο meta-tasks

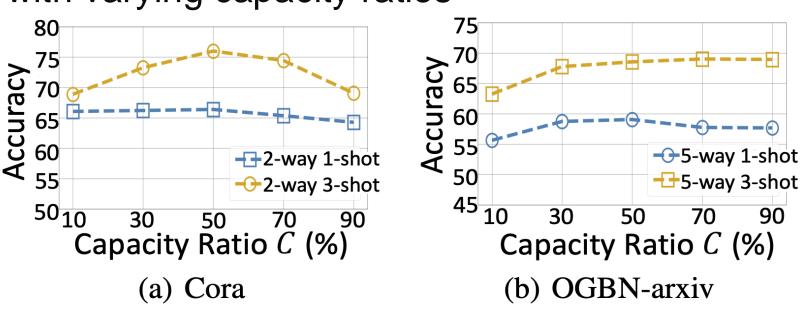
$$\mathcal{L}_{I} = \min_{\mathbf{Z} \sim \text{GML}(\cdot)} I(\mathbf{O}; \mathbf{Z}) - \beta I(\mathbf{Z}; \mathbf{Y})$$

$$= \min_{\mathbf{Z} \sim \text{GML}(\cdot)} I(\mathbf{O}; \mathbf{Z}) - \beta H(\mathbf{Y}) + \beta H(\mathbf{Y}|\mathbf{Z})$$

- Evaluated on four real-world graph datasets
- For node classification under various N-way Kshot settings

	Cora	Computers	Cora-full	
Methods	2-way	3-way	5-way	10-way
			1-shot	
GCN GraphSage	$\begin{array}{c} 55.21_{(\pm 5.64)} \\ 58.33_{(\pm 5.22)} \end{array}$	$\begin{array}{c} 37.33_{(\pm 3.91)} \\ 39.98_{(\pm 5.17)} \end{array}$	$\begin{array}{c} 43.75_{(\pm 2.92)} \\ 44.26_{(\pm 2.64)} \end{array}$	$\begin{array}{c} 31.26_{(\pm 3.29)} \\ 32.54_{(\pm 3.53)} \end{array}$
GMI DGI	$\begin{array}{c} 60.25_{(\pm 4.32)} \\ 61.56_{(\pm 4.46)} \end{array}$	${\begin{array}{c} 62.28_{(\pm 4.92)} \\ 64.52_{(\pm 5.03)} \end{array}}$	$\frac{56.81_{(\pm 1.42)}}{56.52_{(\pm 1.53)}}$	$\begin{array}{c} 40.98_{(\pm 1.72)} \\ 40.36_{(\pm 1.76)} \end{array}$
PN	$52.60_{(\pm 5.23)}$	$47.63_{(\pm 5.23)}$	$48.25_{(\pm 1.80)}$	$35.65_{(\pm 1.98)}$
MAML	$53.66_{(\pm 4.92)}$	$66.05_{(\pm 5.16)}$	$58.38_{(\pm 2.01)}$	$38.72_{(\pm 2.19)}$
Meta-SGC	$57.72_{(\pm 5.99)}$	$67.40_{(\pm 6.79)}$	$61.34_{(\pm 4.53)}$	$41.29_{(\pm 4.06)}$
GPN	$57.22_{(\pm 4.20)}$	$63.78_{(\pm 5.27)}$	$54.36_{(\pm 2.29)}$	$43.27_{(\pm 1.92)}$
G-Meta	$62.24_{(\pm 4.93)}$	$67.22_{(\pm 5.61)}$	$55.21_{(\pm 2.15)}$	$46.23_{(\pm 1.79)}$
TLP	$61.11_{(\pm 3.14)}$	$65.05_{(\pm 5.40)}$	$61.28_{(\pm 2.41)}$	$48.12(\pm 1.53)$
TENT	$61.25_{(\pm 5.15)}$	$66.24_{(\pm 5.24)}$	$62.42_{(\pm 2.16)}^{(\pm 2.16)}$	$47.95_{(\pm 1.88)}$
TEG	$\underline{63.14}_{(\pm 4.43)}$	$\underline{67.58}_{(\pm 5.11)}$	$\underline{63.73}_{(\pm 2.08)}$	$48.36(\pm 2.03)$
Meta-BP	66.38 _(±5.01)	69.35 _(±4.28)	66.05 _(±1.46)	51.41 _(±1.91)

Parameter sensitivity: training Meta-BP with varying capacity ratios



Pretrained model impact: performance varies with different pre-trained backbones

Meta-Learner Pruning

- Extracts a *sparse subnetwork* from • GML based on *capacity ratio* c
 - deals with overparameterization and overfitting the insufficient meta-training tasks
 - o inspired by the *Lottery Ticket Hypothesis* to learn a binary mask of GML parameters

 $\mathcal{L}_{S} = \min_{\mathbf{m}} \frac{1}{B} \sum_{j=1}^{B} \{ \frac{1}{b} \sum_{i=1}^{b} (\mathcal{L}_{CE}(f_{C}(\text{GML}(\mathbf{o}_{i}, \mathcal{G}; \phi_{j} \odot \mathbf{m})), \hat{y_{i}}) \}$ $-C_j)\}.$

> $C_j = \mathcal{L}_{CE}(f_{C}(GML(\mathbf{o}_i, \mathcal{G}; \phi_j)), \hat{y}_i)$ subject to $|\mathbf{m}^*| \leq c \cdot |\phi|$

constant classification loss

Neural estimation: using neural networks to efficiently estimate *I*(**O**, **Z**) alongside meta-optimization

$$I(\mathbf{O}; \mathbf{Z}) \approx \frac{1}{b} \sum_{i=1}^{b} T_{\theta}(\mathbf{o}_{i}, \mathbf{z}_{i}) - \log(\frac{1}{b} \sum_{i=1}^{b} e^{T_{\theta}(\mathbf{o}_{i}, \overline{\mathbf{z}}_{i})})$$

meta-task samples shuffled order

Optimization

- \mathcal{L}_{I} : Minimal sufficient *information* extraction during metaoptimization
- \mathcal{L}_{s} : Subnetwork extraction during meta-optimization
- Total loss:

 $\mathcal{L}_{Meta} = \mathcal{L}_I + \alpha \mathcal{L}_S$

Cora-full Methods 5-way 1-shot5-way 3-shot10-way 1-shot10-way 3-shot

Parameter efficiency: the number of parameters shows the extracted final subnetwork for adaptation is much smaller

Methods	Meta-PreGNN	Meta-BP
Computers	3-way	
#Total params	263.16 K	313.56 K
#Trainable Params in meta-training	263.16 K	50.40 k
#Params of GML	-	8.24 K
#Tunable params in meta-testing	263.16 K	2.47 K
Ratio of tunable params w.r.t. Meta-PreGNN	100%	0.94%

