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Abstract

Few-shot learning has emerged as an important problem on
graphs to combat label scarcity, which can be approached by
current trends in pre-trained graph neural networks (GNNs)
and meta-learning. Recent efforts integrate both paradigms
in a white-box setting, leaving the more realistic black-box
setting largely underexplored, where the parameters and gra-
dients in the pre-trained GNNs are inaccessible. In this pa-
per, we study the critical problem: Leveraging black-box pre-
trained GNNs for graph few-shot learning. Despite its appeal,
two key issues hinder the unlocking of its potential: the in-
herent task gap between pre-training and downstream stages,
which can introduce irrelevant knowledge and undermine the
generalizability of a pre-trained black-box GNN on down-
stream tasks; and the inaccessibility of parameters and gradi-
ents, which limits the model’s adaptation to novel tasks. To
effectively leverage the black-box pre-trained GNNs and im-
prove generalization, we propose a lightweight graph meta-
learner to extract relevant knowledge from a black-box pre-
trained GNN, meanwhile harnessing knowledge from related
tasks for rapid adaptation on novel tasks. Furthermore, we
prune the graph meta-learner to enhance its generalization on
novel tasks. Extensive experiments on real-world datasets for
few-shot node classification validate the effectiveness of our
proposed method in the black-box setting.

Introduction
Graph learning models (Chen et al. 2018; Kipf and Welling
2017; Xu et al. 2019; Wu et al. 2020) have become per-
vasive in various real-world applications, ranging from so-
cial network analysis (Tang and Liu 2010) to drug discovery
(Gaudelet et al. 2021). Despite its popularity, conventional
supervised training on graphs usually necessitates a large
volume of annotated data to improve model performance
on a specific task. Thus, when a task has limited labels due
to high annotation expense, model performance is often de-
graded. To tackle label scarcity, two research trends for few-
shot learning on graphs have emerged and gained significant
traction (Wang et al. 2020; Bose et al. 2019; Huang and Zit-
nik 2020; Ding et al. 2021). First, a growing trend on pre-
trained GNNs (Hu et al. 2020b; Jiang et al. 2021; Liu et al.
2023a) aims to harness the knowledge acquired with various
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self-supervised pre-training strategies on large-scale label-
free graphs, thus reducing the dependence on labeling for
the downstream tasks. Second, meta-learning emerges as a
promising paradigm for achieving rapid adaptation to novel
tasks with few-shot annotations, provided that the model has
been “meta-trained” on a series of related tasks (Hospedales,
Antoniou, and Micaelli 2020).

However, each paradigm has its drawbacks thus hinder-
ing their effective application in real-world scenarios. On the
one hand, pre-trained GNNs mostly rely on intrinsic infor-
mation from graph topology and features to capture the gen-
eral knowledge within graphs. Yet the lack of task-specific
knowledge at pre-training may inhibit the pre-trained GNNs
from generalizing well to downstream few-shot tasks. On the
other hand, meta-learning aims to acquire meta-knowledge
from related meta-training tasks, assuming these tasks are
independent and identically distributed (i.i.d.), drawn from
the same task distribution as the meta-testing tasks. How-
ever, the i.i.d. assumption may not hold for graph data where
nodes are interconnected, such that the information gained
from meta-training tasks may not perform effectively on
meta-testing tasks. Here, general graph knowledge from pre-
trained GNNs might serve as a useful complement for task
adaptation in meta-learning. Given their respective draw-
backs, the lack of integration between the two paradigms
can limit the ability to tackle data scarcity.

To fully capitalize on the advantages offered by both
trends, some endeavors are conducted to combine pre-
trained models and meta-learning in a white-box setting
where the parameters and gradients in pre-trained mod-
els are accessible (Sablayrolles et al. 2019). One straight-
forward approach applied on molecular graphs meta-trains
GNNs initialized with the pre-trained parameters (Guo et al.
2021; Wang et al. 2021). Recent work (Tan et al. 2023) also
gains insights from the success of prompt techniques in lan-
guage models (Liu et al. 2023b) and meta-learns continu-
ous prompts in the embedding space based on pre-trained
GNNs. However, the white-box assumption may not be
practical in some real-world scenarios. The prevalence of
pre-trained models inspires the Model-as-a-Service (MaaS)
(Brown et al. 2020; Sun et al. 2021), which has been the
new norm of the interplay between the cloud infrastruc-
ture and edge devices. In this case, the pre-trained model
is hosted on a remote server or accessed via cloud services.



And service providers usually encapsulate the model param-
eters and expose APIs to avoid model reverse-engineering
and protect proprietary. The black-box setting disables back-
propagation due to unavailable parameters and gradients, of-
fering a promising mechanism to leverage pre-trained mod-
els and secure service infrastructure. Moreover, operating
in a black-box setting with no need for complex parameter
sharing or model fine-tuning allows for more efficient and
scalable deployment of pre-trained models in various exist-
ing workflows and applications. Despite its appeal, the uti-
lization of black-box pre-trained GNNs for graph few-shot
learning is largely underexplored. Existing studies require
fine-tuning the parameters of pre-trained GNNs or optimiz-
ing continuous prompts by back-propagation in pre-trained
models, both necessitating access to parameters and gradi-
ents and violating the black-box setting.

The research gap motivates us to investigate the novel set-
ting, where the black-box pre-trained GNNs take a graph as
input and only output the representation of nodes. In this
work, we aim to design an effective strategy to employ the
black-box pre-trained GNNs for graph few-shot learning, yet
inevitably face two challenges, of which the first is (C1) how
to effectively utilize the black-box pre-trained GNNs. A
naive way (Tan et al. 2022b) is fine-tuning a classifier using
the output node representations for downstream tasks, yet
the lack of task-specific knowledge prevents the generaliza-
tion on downstream few-shot tasks. Also, due to the objec-
tive gap between pre-training and downstream tasks, task-
irrelevant knowledge in pre-trained GNNs tends to mislead
the prediction and harm the effectiveness of few-shot learn-
ing. Therefore, devising a learnable module for bridging the
black-box pre-trained GNNs and downstream tasks to lever-
age downstream task-specific knowledge is a primary and
vital aim. Meanwhile, the module is expected to be equipped
with the ability to extract task-relevant knowledge from the
black-box pre-trained GNNs to further alleviate the impact
of task-irrelevant knowledge. If possible to design such a
module, the module can be meta-trained on a series of re-
lated tasks and fast adapted to novel tasks. Thus, the second
challenge is (C2) how to design a learnable module to im-
prove the generalization on novel tasks. Meta-learning as-
sumes there is a large number of diverse meta-training tasks.
Nevertheless, a sufficient variety of meta-training tasks can
be absent in the real-world graph data, leading the model
to memorize meta-training tasks and limiting its general-
ization ability on the meta-testing tasks (Yao et al. 2021).
Provided with insufficient meta-training tasks, determining
the optimal size of the learnable module poses a complex
dilemma. A compact module might prove inadequate for ac-
quiring knowledge about task adaptation, while a larger one
would lead to memorization and overfitting. Thus, seeking a
solution to improve generalization in this scenario deserves
more thorough exploration.

In light of this, we propose a novel framework called
Graph Meta-learning with Black-box Pre-trained GNNs
(Meta-BP) for few-shot learning on graphs. It aims to
unify the two paradigms of pre-training and meta-learning
in a black-box setting. To address the challenge (C1),
we introduce a lightweight learnable module called graph

meta-learner to extract minimal sufficient information from
the black-box pre-trained GNN to exclude task-irrelevant
knowledge, and further adapt the knowledge to suit each
individual task. Thus, the graph meta-learner not only cap-
italizes on task-relevant knowledge from the black-box
pre-trained GNN but also the meta-knowledge from re-
lated meta-training tasks. Note that the reason for using
a lightweight graph meta-learner is to reduce the depen-
dency on computational resources in the real-world scenario,
where users of black-box models may not have enough re-
sources to perform large-scale model training. Then, to im-
prove the generalization and tackle the challenge (C2), in-
spired by the lottery ticket hypothesis (Frankle and Carbin
2019), we propose to optimize the size of the graph meta-
learner, and extract a subnetwork from the meta-learner for
fast adaptation on the novel tasks in meta-testing. To con-
form to the black-box setting, only the lightweight graph
meta-learner is updated, while the pre-trained GNN is kept
frozen and disables the back-propagation in both meta-
training and -testing.

Our contributions are summarized as follows:
(1) To our best knowledge, Meta-BP is the first work to ad-

dress few-shot learning on graphs by integrating meta-
learning with pre-trained GNNs in the black-box setting.

(2) We design a graph meta-learner to extract the mini-
mal sufficient information that excludes task-irrelevant
knowledge to achieve effective utilization of black-box
pre-trained GNNs. Then, we propose to extract a subnet-
work from the graph meta-learner to improve the gener-
alization on novel tasks.

(3) We conduct extensive experiments on real-world graphs
and show the effectiveness of Meta-BP on few-shot node
classification with black-box pre-trained GNNs.

Related Work
Graph Pre-training
Graph pre-training aims to obtain graph representations by
employing carefully crafted pre-training tasks, thereby miti-
gating the expense of annotating data for downstream tasks.
A line of research on graph pre-training involves utilizing
self-generated targets derived from both graph topology and
features to facilitate the training of GNNs (Hu et al. 2020b;
Jin et al. 2020). In addition, contrastive techniques come into
play by enhancing the alignment among analogous graph in-
stances while distancing the dissimilar ones (Sun et al. 2019;
You et al. 2020; Qiu et al. 2020; Liu et al. 2024). For ex-
ample, DGI (Velickovic et al. 2019) focuses on maximizing
mutual information between local and global graph repre-
sentations. GMI (Peng et al. 2020) introduces graphical mu-
tual information as a means to incorporate topological in-
sights. Despite the rich information it may preserve, the ap-
plication of pre-trained GNNs to downstream tasks usually
entails fine-tuning the whole parameter set (Guo et al. 2021;
Wang et al. 2021) or prompt-tuning a set of prompts (Tan
et al. 2023; Sun et al. 2022, 2023), leading to a violation
of the black-box setting. A recent work (Tan et al. 2022b)
leverages node representation from pre-trained GNNs di-
rectly with a classifier, yet it fails to handle the irrelevant



knowledge within pre-trained GNNs and is unable to effec-
tively utilize the pre-trained models.

Graph Meta-learning
As a prevalent paradigm for few-shot learning, meta-
learning has diverged into optimization-based approaches
(Finn, Abbeel, and Levine 2017; Li et al. 2017), and metric-
based methods (Li et al. 2019; Yoon, Seo, and Moon 2019).
To counter label scarcity in graph learning, recent studies
explore varied meta-knowledge to transfer, including initial-
izing graph representations (Kipf and Welling 2017; Wang
et al. 2020; Bose et al. 2019; Huang and Zitnik 2020; Zhang
et al. 2022a; Wang et al. 2023; Liu et al. 2022; Pei et al.
2023; Li et al. 2024) and understanding metric space prop-
erties (Ding et al. 2020; Lu et al. 2022; Qu et al. 2020; Yao
et al. 2020; Tan et al. 2022a). Existing methods mostly em-
ploy various GNNs as the base learner. Nevertheless, train-
ing these GNNs from scratch entails high computational re-
sources and often leads to overfitting (Chen et al. 2019). The
generalization of these models is also hampered by the lack
of general knowledge about the graph. A few works (Guo
et al. 2021; Wang et al. 2021; Zhang et al. 2023; Tan et al.
2023) leverage pre-trained models to complement meta-
learning, yet necessitate access to gradients in pre-trained
models and are not suited to the black-box setting.

Preliminary
Let G = (V, E ,X) denote a graph where V represents a
set of nodes and E denotes a set of edges. Nodes possess
features X ∈ R|V|×d with a dimension of d and share the
labels Y = {y1, y2, . . . , y|Y|}. In this paper, we center on
node classification, assuming there are disjoint node labels
Y = {Ytr,Yts}, where Ytr and Yts denote the training and
testing classes respectively and Ytr∩Yts = Ø. We follow the
conventions of few-shot learning, considering Yts as novel
classes with limited labeled nodes and Ytr as base classes
with sufficient labels. Hence, the objective is to develop a
graph learning model M such that it can accurately predict
node labels in Yts given few-shot annotations during meta-
testing, after sufficient meta-training iterations with Ytr. We
seek to take advantage of a black-box pre-trained GNN fpre
that provides general knowledge about the graph to com-
plement meta-learning. And fpre can be any GNN endowed
with diverse pre-training strategies (Jin et al. 2020). Note
that our focus is to leverage the existing pre-trained models,
rather than crafting novel pre-training strategies.
Episodic Training More specifically, we adopt an episodic
training paradigm (Finn, Abbeel, and Levine 2017) where
training and testing data are framed as a series of related
N -way K-shot meta-tasks denoted as Ttr and Tts. Each
meta-task τ is generated by randomly sampling N different
classes Yτ , where Yτ ⊂ Y and |Yτ | = N . Upon that, K and
J labeled nodes are sampled to form the support set Ωs and
the query set Ωq of each meta-task. The optimization-based
meta-learning adopted in this work involves minimizing the
loss on the query set Ωq (meta-update in the outer loop), us-
ing the parameters obtained by minimizing the loss on the
support set Ωs (inner-update in the inner loop). The learned

model then facilitates fast adaptation to novel classes.

Proposed Model
To reap the advantages of both meta-learning and pre-trained
GNNs in a black-box setting, we propose a lightweight
graph meta-learner to extract the relevant knowledge from
the black-box pre-trained GNN for downstream meta-
tasks without accessing its parameters and gradients, and
meanwhile, obtain the knowledge of how to adapt to
novel meta-tasks via meta-training with related meta-tasks.
However, extracting relevant knowledge from pre-trained
GNNs for downstream meta-tasks is non-trivial. The knowl-
edge learned from pre-trained models often contains task-
irrelevant details that are not directly applicable to down-
stream meta-tasks or even detrimental to the inference on
these tasks. To mitigate the irrelevant interference origi-
nating from the pre-trained model, the graph meta-learner
aims to extract approximately minimal sufficient informa-
tion specifically tailored to the meta-tasks. Therefore, we
meta-optimize the graph meta-learner using information
bottleneck (Tishby, Pereira, and Bialek 2000) to obtain the
node representation with only relevant knowledge from pre-
trained GNN yet sufficient information for label prediction.
To further enhance generalization on novel meta-tasks, we
prune the graph meta-learner and extract a subnetwork from
the learned graph meta-learner before transferring it to the
meta-testing tasks. The subnetwork enables more effective
fast adaptation on novel tasks. The minimum sufficient in-
formation extraction and meta-learner pruning are integrated
along with the meta-optimization of graph meta-learner in
an end-to-end framework. Next, we elaborate on the design
of Meta-BP, with the overall framework shown in Figure 1.

Designing Graph Meta-learner
To bridge the black-box pre-trained GNN fpre and down-
stream meta-tasks, we design a simple yet effective graph
meta-learner to capture the general knowledge from fpre to
benefit the meta-tasks. Formally, we denote the graph meta-
learner as GML(·), which works by:

Z = GML(O,G;ϕ) (1)

where G denotes the given graph and GML(·), parameter-
ized by ϕ, obtains the representations Z for nodes in G. In
this work, without contradicting the black-box setting, we
assume that the black-box fpre can output last-layer node
representations denoted as O, following O = fpre(G).

To account for both graph topology and features, we sum-
marize the neighborhood information by neighbor abstrac-
tion. Specifically, taking the initial feature xv of node v as
input, the last-layer node representations generated by fpre
can be obtained, denoted as hv . Then the neighbor abstrac-
tion for node v considering graph adjacency can be sim-
ply computed as hNv = 1

|Nv|
∑

u∈Nv
hu, where Nv de-

picts the neighboring nodes of v. It is important to note that
the pre-trained GNN remains unchanged throughout and we
only leverage the output node representations from the pre-
trained GNN. Neighbor abstractions are computed solely



Figure 1: The step-by-step illustration of Meta-BP. (1) The black-box pre-trained GNN outputs node representations for sub-
sequent components while remaining inaccessible itself; (2) Graph meta-learner built on (1) exploits both graph pre-training
and meta-learning; (3) Graph meta-learner learns the representations Z to capture minimal sufficient information from the
pre-trained GNN tailored to the meta-tasks; (4) A subnetwork is derived from the graph meta-learner during meta-training to
improve generalization; (5) The subnetwork is anticipated to rapidly adapt to the meta-testing tasks.

once in advance, eliminating the need for adjacency mul-
tiplication during model training. Moreover, although lever-
aging the node representations output from pre-trained GNN
layers, the method adheres to the black-box setting, since the
internal parameters or internal updating mechanisms of the
pre-trained model remain inaccessible.

Then we adopt linear transformation layers to introduce
trainable parameters for fusing the node representation and
neighbor abstraction for node v as follows:

zv = σ([hv||hNv
]W) (2)

where zv represents information extracted from the node and
its neighborhood for depicting node v, W is a randomly ini-
tialized weight matrix, σ signifies the activation function,
and || denotes concatenation operation. The prediction based
on GML(·) goes as follows:

yv = fC(zv) or Y = fC(Z) (3)

where fC(·) refers to a standard classifier, and Y denotes the
predicted node labels.

Extracting Minimal Sufficient Information
To prevent task-irrelevant knowledge in the pre-trained
GNN from interfering with downstream tasks, our objec-
tive is to extract relevant knowledge from the pre-trained
GNN for the downstream meta-tasks. To accomplish this,
the graph meta-learner is designed to extract the minimal
sufficient information tailored to few-shot node classifica-
tion tasks during meta-training, i.e., to extract relevant in-
formation preserved by input variable O about the output
variable Y. Thus, we utilize the prediction Y to implicitly
identify the relevant and irrelevant information within the
output O of the pre-trained GNN. It means that an optimal
representation mapping of O would capture the relevant fea-
tures while compressing O by discarding the irrelevant parts

that do not contribute to the prediction Y. The graph meta-
learner is thus expected to learn node representations Z de-
fined in Eq. (1) as the optimal mapping of O w.r.t. the pre-
diction Y.

We adopt the information bottleneck principle (Tishby,
Pereira, and Bialek 2000; Tishby and Zaslavsky 2015) and
describe the relatedness between the output O and the node
representations Z using mutual information I(O;Z). To dis-
card task-irrelevant knowledge from pre-trained GNN, the
output Z from graph meta-learner is regarded as a minimal
knowledge (simplest mapping) from the pre-trained GNN,
yet sufficient to adapt well to meta-tasks. In other words, we
can minimize the mutual information I(O;Z) to obtain the
simplest mapping under the constraint on I(Z;Y). Namely,
finding node representations Z with minimal sufficient in-
formation from the pre-trained GNN is formulated as the
minimization of the following Lagrangian:

LI = min
Z∼GML(·)

I(O;Z)− βI(Z;Y) (4)

subject to the Markov chain Y → O → Z. Here, β is
a tradeoff parameter between the complexity of the repre-
sentations I(O;Z) and the amount of preserved relevant in-
formation I(Z;Y). The preserved relevant information Z
from GML(·) contributes to diminishing the uncertainty in
Y: I(Z;Y) = H(Y) − H(Y|Z), where H denotes Shan-
non entropy. Then Eq. (4) can be rewritten as follows:

LI = min
Z∼GML(·)

I(O;Z)− βH(Y) + βH(Y|Z) (5)

where H(Y) is a constant and H(Y|Z) is regarded as a
cross-entropy loss denoted as LCE for node classification by
classifier fC(·). LI thus encourages the graph meta-learner
to leverage only relevant knowledge from fpre that is tai-
lored for downstream node classification. We then elaborate
on the estimation of I(O;Z).
Mutual Information Estimation. The computation of mu-
tual information struggles with scaling to large sample sizes



or high-dimensional data (Paninski 2003; Gao, Ver Steeg,
and Galstyan 2015). Inspired by the recent advance (Bel-
ghazi et al. 2018), we employ a neural estimator to ac-
curately estimate I(O;Z), and integrate it alongside the
meta-optimization process. Specifically, mutual information
is equivalent to KL divergence between the joint distribution
and the product of the marginals, derived as follows:
I(O;Z) = DKL(POZ ||PO ⊗ PZ)

≥ supT∈FEPOZ
[T ]− log(EPO⊗PZ

[eT ]) = IΘ(O;Z)
(6)

where PO and PZ refer to marginals of O and Z and POZ

denotes their joint distribution. IΘ(O;Z) is the lower bound
of I(O;Z) obtained following the Donsker-Varadhan repre-
sentation (Donsker and Varadhan 1983). And F can be any
class of functions T : Ω → R satisfying the integrability
constraints. By implementing T as a deep neural network,
i.e., the neural estimator, lower bound IΘ(O;Z) can be de-
fined as a neural information measure:

IΘ(O;Z) = supθ∈ΘEPOZ
[Tθ]− log(EPO⊗PZ

[eTθ ]) (7)
where Tθ is a neural network parameterized by θ ∈ Θ.

Practically, the expectations can be estimated using em-
pirical samples from O and Z as follows:

I(O;Z) ≈ 1

b

b∑
i=1

Tθ(oi, zi)− log(
1

b

b∑
i=1

eTθ(oi,zi)). (8)

where {(oi, zi), ..., (ob, zb)} are drawn to simulate the joint
distribution POZ and {z1, ..., zb} are randomly sampled
from Z to simulate the marginal and b denotes the num-
ber of empirical node samples to estimate expectations. And
Tθ(o, z) takes the concatenation of o and z as input. The
neural estimator is well aligned with meta-optimization, as
to be discussed in Optimization.

Pruning Graph Meta-learner
While the graph meta-learner extracts minimal sufficient
information to diminish the influence of task-irrelevant
knowledge from the pre-trained GNN, Meta-BP still adopts
dense layers for the graph meta-learner to accommodate the
learning of diverse meta-tasks. Due to the common over-
parameterization of DNNs (Denil et al. 2013; Han et al.
2015), the graph meta-learner might still face the challenge
of overfitting the insufficient meta-training tasks and lead to
inferior generalization when adapted to novel tasks. There-
fore, to better learn meta-training tasks for task-specific
knowledge acquisition, we propose enhancing the general-
ization by pruning redundant/unnecessary weights from the
graph meta-learner, thus finding a sparse subnetwork that
holds on fast adaptation on meta-testing tasks. Inspired by
the Lottery Ticket Hypothesis (LTH) (Frankle and Carbin
2019) and its capability to improve the generalization, we
aim to find a subnetwork of GML(·;ϕ) by learning its model
weights and binary masks (the subnetwork) together. The
binary mask m∗, which describes the subnetwork such that
|m∗| is less than the model capacity c · |ϕ|, works as follows:

m∗ = argmin
m

1

n

n∑
i=1

(LCE(fC(GML(oi,G;ϕ⊙m)), ŷi)− C)

subject to |m∗| ≤ c · |ϕ|,
(9)

where C = LCE(fC(GML(oi,G;ϕ)), ŷi) and c · |ϕ| ≪ |ϕ|.
c denotes the model capacity ratio in %. To enable backprop-
agation, m∗ is obtained via a continuous learnable mask s.
Concretely, m is determined as top-c scores of s where s can
be updated through gradient descent using Straight-through
Estimator (Bengio, Léonard, and Courville 2013; Ramanu-
jan et al. 2020). Note that it is not necessary to prune Tθ

because only the subnetwork of GML(·;ϕ) is transferred to
the meta-testing phase. Then we discuss the learning of the
subnetwork in the subsequent discussion.

Optimization
To benefit from the relevant information in the pre-trained
GNN, as well as the meta-knowledge of task adaptation
based on meta-training tasks, we perform minimal sufficient
information extraction along with the meta-optimization
process. Specifically, given a batch of meta-training tasks
{τ1, τ2, . . . , τB}, LI in Eq. (5) can be derived combined
with Eq. (8) as follows:

LI =min
θ,ϕ

1

B

B∑
j=1

{1
b

b∑
i=1

Tθ(oi, zi)− log(
1

b

b∑
i=1

eTθ(oi,zi))

+
β

b

b∑
i=1

LCE(fC(GML(oi,G;ϕj)), ŷi)}.

(10)
where ϕj = ϕ− λ∇Lj

CE , with λ denoting the inner update
rate and Lj

CE computed on support set Ωs
j of each meta-

task τj . We use the query set Ωq
j of size b as the empirical

samples. In the inner loop, GML(·;ϕ) is updated in a task-
specific manner regarding each meta-task while Tθ(·) keeps
the same across the batch of meta-tasks, thus ensuring con-
sistent mutual information estimation across all meta-tasks.

In addition, we extract the subnetwork from GML(·;ϕ)
during meta-optimization based on Eq. (9) as follows:

LS = min
m

1

B

B∑
j=1

{1
b

b∑
i=1

(LCE(fC(GML(oi,G;ϕj ⊙m)), ŷi)

− Cj)}.
(11)

where Cj = LCE(fC(GML(oi,G;ϕj)), ŷi), evaluated on
the query set Ωq

j of τj . Likewise, m remains unchanged dur-
ing the inner loop for the batch of meta-tasks. Ultimately,
the meta-optimization objective is formulated as follows:

LMeta = LI + αLS (12)

where α is the tradeoff weight. Consequently, GML(·;ϕ) un-
dergoes optimization-based meta-training with Eq. (12) for a
sufficient number of iterations. Following this, only the ex-
tracted subnetwork is utilized for meta-testing tasks as the
model initialization for fast adaptation.

Experiments
Experimental Setup
Dataset. We leverage four real-world graph datasets for
experimental evaluation following previous works (Zhou



Methods
Cora Computers Cora-full OGBN-arxiv

2-way 3-way 5-way 10-way 5-way 10-way
1-shot

GCN 55.21(±5.64) 37.33(±3.91) 43.75(±2.92) 31.26(±3.29) 54.17(±5.31) 37.80(±5.44)
GraphSage 58.33(±5.22) 39.98(±5.17) 44.26(±2.64) 32.54(±3.53) 52.33(±5.29) 35.20(±5.87)

GMI 60.25(±4.32) 62.28(±4.92) 56.81(±1.42) 40.98(±1.72) 55.92(±4.23) 38.74(±4.92)
DGI 61.56(±4.46) 64.52(±5.03) 56.52(±1.53) 40.36(±1.76) 55.63(±5.02) 39.82(±5.11)

PN 52.60(±5.23) 47.63(±5.23) 48.25(±1.80) 35.65(±1.98) 53.26(±3.94) 34.67(±4.07)
MAML 53.66(±4.92) 66.05(±5.16) 58.38(±2.01) 38.72(±2.19) 55.21(±4.13) 39.26(±4.21)
Meta-SGC 57.72(±5.99) 67.40(±6.79) 61.34(±4.53) 41.29(±4.06) 54.90(±5.08) 41.00(±5.40)
GPN 57.22(±4.20) 63.78(±5.27) 54.36(±2.29) 43.27(±1.92) 54.22(±5.22) 37.42(±5.18)
G-Meta 62.24(±4.93) 67.22(±5.61) 55.21(±2.15) 46.23(±1.79) 52.73(±5.15) 41.29(±5.37)
TLP 61.11(±3.14) 65.05(±5.40) 61.28(±2.41) 48.12(±1.53) 53.94(±4.36) 39.75(±4.23)
TENT 61.25(±5.15) 66.24(±5.24) 62.42(±2.16) 47.95(±1.88) 57.32(±4.91) 42.56(±4.17)
TEG 63.14(±4.43) 67.58(±5.11) 63.73(±2.08) 48.36(±2.03) 57.09(±5.37) 41.89(±4.74)

Meta-BP 66.38(±5.01) 69.35(±4.28) 66.05(±1.46) 51.41(±1.91) 59.06(±4.20) 43.78(±4.39)

3-shot
GCN 61.98(±4.77) 54.58(±7,89) 50.23(±3.25) 35.25(±3.41) 60.28(±5.77) 42.60(±6.11)
GraphSage 65.39(±6.32) 52.63(±5.72) 51.64(±2.63) 36.36(±2.69) 59.22(±6.23) 40.17(±6.39)

GMI 62.79(±4.01) 65.36(±4.86) 61.92(±1.49) 51.22(±1.79) 64.74(±5.04) 43.28(±5.26)
DGI 63.52(±4.18) 67.43(±4.91) 60.37(±1.56) 49.25(±1.88) 65.96(±5.31) 44.56(±5.71)

PN 62.31(±5.21) 60.22(±5.19) 53.72(±1.98) 37.69(±2.31) 61.73(±4.09) 42.67(±4.65)
MAML 56.77(±4.38) 69.26(±5.25) 63.18(±2.67) 52.64(±3.02) 62.22(±4.19) 52.60(±4.72)
Meta-SGC 59.64(±5.48) 70.91(±7.29) 67.31(±2.53) 54.82(±3.51) 65.85(±5.52) 51.73(±5.61)
GPN 64.28(±4.22) 68.82(±5.11) 62.85(±1.42) 50.75(±1.94) 62.23(±4.67) 46.68(±4.99)
G-Meta 62.47(±4.63) 72.08(±5.89) 69.16(±1.91) 54.21(±2.63) 63.15(±5.28) 51.32(±5.93)
TLP 73.38(±5.29) 73.28(±4.41) 64.53(±1.74) 52.76(±2.45) 62.58(±5.59) 43.16(±5.14)

TENT 65.43(±4.36) 71.32(±5.73) 67.59(±1.60) 55.21(±2.27) 66.37(±5.01) 52.07(±5.46)
TEG 68.28(±4.57) 73.54(±5.26) 69.75(±1.72) 55.83(±1.73) 66.49(±4.87) 53.64(±5.12)

Meta-BP 75.29(±4.21) 75.14(±4.16) 72.98(±1.86) 57.79(±2.16) 69.03(±5.18) 55.98(±5.03)

Table 1: Few-shot node classification accuracy (%) on multiple datasets.

et al. 2019; Wu et al. 2022), including Cora (Yang, Cohen,
and Salakhudinov 2016), Amazon Computers (Zhang et al.
2022b), Cora-full (Bojchevski and Günnemann 2018), and
OGBN-arxiv (Hu et al. 2020a). For dataset splitting (train/-
val/test), we used ratios of 3/2/2 for Cora, 4/3/3 for Comput-
ers, 25/20/25 for Cora-Full, and 20/10/10 for OGBN-Arxiv.
Baselines. To validate the effectiveness of our proposed
Meta-BP, we compare it with baselines in three groups: 1)
Graph Neural Networks including GCN (Kipf and Welling
2017) and GraphSage (Hamilton, Ying, and Leskovec
2017); 2) Graph pre-training including GMI (Peng et al.
2020), and DGI (Velickovic et al. 2019); 3) Graph few-shot
learning models such as conventional PN (Snell, Swersky,
and Zemel 2017) and MAML (Zhou et al. 2019); Besides,
we compare Meta-BP to Meta-SGC (Zhou et al. 2019),
GPN (Liu et al. 2019), G-Meta (Huang and Zitnik 2020),
TLP (Tan et al. 2022b), TENT (Wang et al. 2022), and
TEG (Kim et al. 2023). Note that baseline approaches ex-
cept TLP focus on the white-box setting and are unable to
perform in the black-box setting.
Reproducibility Details. Following common practice in
few-shot learning, we perform random class splitting to form
the training, testing, and validation classes for each run. Dur-
ing each run, model performance is evaluated on 500 ran-
dom few-shot tasks considering small support sets, obtain-
ing the average accuracy per run. To account for the ran-
domness of class splitting, we conduct four random runs
for each N -way K-shot problem and keep class splits con-
sistent across all models. Average scores and standard de-

viations across runs are reported. We implement Meta-BP
in PyTorch with an NVIDIA Tesla V100 GPU and use a
two-layer DGI of 256 hidden units as the black-box pre-
trained GNN, while most baselines, which cannot handle
the black-box setting, are allowed for GNN parameter up-
dating. Dimensions of the learnable transformation layer in
GML upon node representations are determined via a grid
search over {4, 8, 32, 64, 128}. The neural estimator is es-
tablished as a two-layer MLP with 64 units. β is 1.0 for
the information bottleneck regularization and α is 0.1 for
meta-optimization. Learning rates of all models are searched
from {0.01, 0.005, 0.001, 0.0005, 0.0001}. MAML-based
approaches including Meta-BP adopt two fast updates with
a step size of 0.05, except that on Amazon Computers it ap-
plies 0.01 as the step size. Implementation can be found at
https://github.com/repograph/metabp.

Experimental Results
Overall Performance. The performance of Meta-BP and
baselines are presented in Table 1, where the best results
are highlighted in bold and the best baseline results are
underlined. From the results, we find that Meta-BP achieves
the best performance in all settings. Other observations are
discussed as follows. First, GCN and GraphSage generally
exhibit inferior performance compared to graph pre-training
models such as GMI and DGI. It can be attributed to their
training from scratch, whereas pre-trained parameters could
convey useful knowledge about the graph. Second, graph
few-shot learning methods consistently outperform GCN
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Figure 2: Few-shot node classification on Cora and OGBN-
arxiv with different variants of Meta-BP.

and GraphSage. This suggests that few-shot approaches ac-
quire meta-knowledge regarding task adaptation, contrast-
ing with conventional supervised training. Last, Meta-BP
achieves the best performance in all cases. This underscores
Meta-BP’s ability to leverage pertinent information from
black-box pre-trained GNN and also task-specific knowl-
edge for rapid adaptation. The proposed minimum sufficient
information extraction and the graph meta-learner pruning
work jointly to promote the inference on novel classes. Note
that only TLP and Meta-BP operate in a black-box set-
ting, requiring no access to parameters or gradients in the
pre-trained models. However, Meta-BP outperforms TLP,
which struggles to handle task-irrelevant information from
pre-trained GNNs and task-specific knowledge. Considering
class splitting randomness, experimental evaluation utilizing
various class partitioning offers a better assessment of the
performances.
Ablation Study. We analyze the effectiveness of differ-
ent components in Meta-BP, aiming to answer the following
questions: (RQ1) Do neighbor abstractions improve graph
meta-learner by utilizing topological information? (RQ2)
Does minimal sufficient information extraction facilitate
few-shot node classification? (RQ3) How does subnetwork
extraction affect the few-shot performance? We conduct ab-
lation studies with three variants of Meta-BP, including: (a)
Meta-BP-w/o-N that only makes use of the node informa-
tion without neighbor abstractions from the black-box pre-
trained GNN; (b) Meta-BP-w/o-I that does not apply min-
imal sufficient information extraction; (c) Meta-BP-w/o-
S that utilizes a full set of parameters of GML for meta-
testing, rather than the extracted subnetwork. The perfor-
mance of the variants is depicted in Figure 2, from which
we find the answers to the above questions. RQ1: The in-
ferior performance of Meta-BP-w/o-N compared to Meta-
BP suggests that incorporating graph structural information
via neighbor abstractions enhances few-shot node classifi-
cation. RQ2: Meta-BP-w/o-I performs worse compared to
Meta-BP, implying that extracting relevant information from
the black-box pre-trained GNN helps obtain more accurate
node representations for classification tasks. RQ3: Meta-BP-
w/o-S is outperformed by Meta-BP, showing the advantages
of pruning graph meta-learner, which leads to enhanced gen-
eralizability on novel tasks.
Impact of Varying Capacity Ratios. We analyze the im-
pact of different capacity ratio values c, employed in the
subnetwork extraction from graph meta-learner. As shown
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Figure 3: Few-shot node classification on Cora and OGBN-
arxiv with varying capacity ratios.

Methods
Cora-full

5-way 1-shot5-way 3-shot10-way 1-shot10-way 3-shot
Meta-BP-GMI 66.13(±1.48) 75.58(±1.23) 51.88±(1.44) 62.28(±1.86)

Meta-BP-BGRL65.92(±1.62) 73.64(±1.42) 51.36(±1.65) 59.47(±1.94)

Meta-BP-DGI 66.05(±1.46) 72.98(±1.86) 51.41(±1.91) 57.79(±2.16)

Table 2: The accuracy (%) of few-shot node classification
with different pre-trained models.

in Figure 3, we observe that excessively small values of c
can lead to inferior performance probably due to insufficient
model capacity. As the capacity ratio c grows, the model per-
formance initially increases and then decreases. It suggests
that extracting a subnetwork from GML with an appropriate
capacity ratio can enhance model performance by avoiding
potential overfitting on the meta-training tasks.
Impact of Pre-trained Models. Meta-BP aims to integrate
meta-learning with flexible black-box pre-trained GNNs. In
our experiments, We employ DGI as the pre-trained GNN.
Here, we examine the impact of various pre-trained GNNs to
validate Meta-BP’s effectiveness. Table 2 presents the per-
formance of Meta-BP associated with black-box GMI (Peng
et al. 2020), BGRL (Thakoor et al. 2021) and DGI (Velick-
ovic et al. 2019), respectively. It is shown that Meta-BP with
different pre-training strategies performs differently, which
depends on the effectiveness of pre-training strategies and
demonstrates the capability and versatility of Meta-BP in ef-
fectively learning from different pre-trained GNNs and ex-
tracting relevant knowledge for few-shot node classification.
It is important to emphasize that our work underscores the
ability to learn from black-box pre-trained GNNs, focusing
on the utilization of any existing pre-trained models.

Conclusion
In this paper, we study graph few-shot learning and ex-
plore the integration of meta-learning and black-box pre-
trained GNNs. Specifically, we devise a graph meta-learner
to bridge the pre-trained GNN and downstream tasks to en-
able effective utilization of the black-box pre-trained GNN.
We then optimize the graph meta-learner to extract only
relevant knowledge from the pre-trained GNN to facilitate
the downstream few-shot node classification tasks. Further-
more, we introduce pruning to graph meta-learner to en-
hance adaptation ability on novel tasks. Extensive experi-
ments validate the effectiveness of our proposed framework.
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