

HGPROMPT: Bridging Homogeneous and Heterogeneous Graphs for Few-shot Prompt Learning

Xingtong Yu, Yuan Fang, Zemin Liu, Xinming Zhang

ΡX	periments	

Datasets

Table 1: Summary of datasets.

			-			
	# Nodes	# Node Types	# Edges	# Edge Types	Target Type	# Classes
ACM	10,942	4	547,872	8	paper	3
DBLP	26,128	4	239,566	6	author	4
Freebase	180,098	8	1,057,688	36	book	7

Baselines

Homogenous GNNs: GCN , GAT Heterogeneous GNNs: Simple-HGN[3], HAT Homogenous graph pre-training & fine-tuning: DGI, InfoGraph, GraphCL Heterogeneous graph pre-training & fine-tuning: CPT-HG, HeCo Homogenous graph pre-training & prompting: GPPT[4], GraphPrompt

Performance with different shots

Figure 3: Impact of shots on NC and GC tasks on ACM.

Main results

Table 2: Evaluation of node and graph classification. The best method is bolded and the runner-up is underlined.

			Node clas	sification					Graph class	ification		
Methods	AC	CM	DB	LP	Free	base	AC	CM	DB	LP	Free	base
	MicroF (%)	MacroF (%)	MicroF (%)	MacroF (%)	MicroF (%)	MacroF (%)	MicroF (%)	MacroF (%)	MicroF (%)	MacroF (%)	MicroF (%)	MacroF (%)
GCN	50.26±12.17	44.21±16.62	51.36 ± 15.40	48.62±17.27	17.11±11.80	15.35 ± 9.54	33.56± 1.05	$17.72\pm\ 2.78$	38.12±15.02	35.01±16.24	17.38±2.94	16.50 ± 2.54
GAT	$38.50\pm$ 7.86	28.01 ± 12.44	$65.04{\pm}11.68$	$62.83{\pm}13.21$	$17.93 \pm \hspace{0.1cm} 8.50$	16.51 ± 6.81	33.52 ± 1.05	17.25 ± 1.53	46.47±14.51	$40.33{\pm}16.84$	16.30 ± 2.69	16.01 ± 2.14
SIMPLE-HGN									44.56±15.80			
HAN	62.22 ± 9.11	57.19±11.79	62.46±18.92	60.64±19.73	18.73 ± 12.40	16.81 ± 8.16	35.35 ± 8.93	22.27 ± 5.60	47.09 ±16.52	42.01±17.92	18.47±3.11	17.36 ± 2.65
DGI/INFOGRAPH									51.01±15.60			
GRAPHCL	58.53±16.64	55.46±21.30	66.59±15.12	64.67±15.25	18.40± 9.23	16.93±6.24	33.17±13.49	21.75±12.03	50.62±15.78	44.78±16.21	18.32 ± 2.85	17.46 ± 2.38
CPT-HG									53.67±14.98			
HECO	63.32±15.14	59.13±17.46	70.74±11.60	67.63±12.35	19.42± 8.13	18.17±6.18	35.42±15.96	27.37±14.45	53.78±13.21	47.51±15.28	19.30±2.68	18.54 ± 2.38
GPPT				$63.23{\pm}10.67$				-	-	-	-	-
GRAPHPROMPT	65.67±13.69	61.10 ± 14.85	73.73± 9.94	69.26 ± 10.63	19.86± 6.07	18.18 ± 4.43	36.18±15.76	27.70±15.41	56.68±11.62	49.08±13.69	19.77±2.44	18.55 ± 1.81
HGPROMPT									58.49 ± 10.68			
HGPROMPT+	74.04 ±12.49	74.47±14.28	82.31±10.67	77.44±12.05	22.64 ± 7.94	21.08±5.72	39.72 ±15.08	32.96 ±18.07	60.53±11.40	52.02±13.95	21.70±3.32	20.91±3.29

Ablation study

Table 3: Variants used in ablation study, and corresponding results in MicroF (%) on node and graph classification.

Methods	Graph template	Heterogeneity	Graph template	Feature	N	ode classifi	cation	Gra	ph classific	ation
Methods	(pre-training)	prompt	(downstream)	prompt	ACM	DBLP	Freebase	ACM	DBLP	Freebase
VARIANT 1	×	×	×	×	55.92	56.49	17.43	33.92	40.47	16.78
VARIANT 2	×	×	×	~	61.10	69.26	18.18	35.18	56.68	19.77
VARIANT 3	×	×	\checkmark	~	62.34	70.77	18.63	35.70	56.23	19.03
HGPROMPT	×	\checkmark	\checkmark	\checkmark	63.57	73.22	19.81	37.57	58.49	20.91
VARIANT 1+	✓	×	×	×	61.79	60.71	18.09	35.48	48.56	17.81
VARIANT 2+	✓	×	×	~	68.47	72.05	19.88	36.85	58.24	20.85
VARIANT 3+	✓	×	\checkmark	~	71.37	74.36	20.73	37.60	59.08	20.32
HGPROMPT+	✓	\checkmark	\checkmark	\checkmark	74.47	77.44	21.08	39.72	60.53	21.70

Problem

- Motivation

• Transfer pre-trained knowledge from homogeneous/heterogeneous graph to downstream heterogeneous tasks

Proposed model: HGPrompt

networks. In SIGKDD. SIGKDD.

[4] Sun, M., et al. 2022. GPPT: Graph pre-training and prompt tuning to generalize graph neural networks. In SIGKDD.

Comparison with GraphPrompt							
	GraphPrompt [1]	HGPrompt					
Pre-train	Homogeneous	Homogeneous/ Heterogeneous					
Template	Task only	Task & Graph					
Prompt	Feature only	Feature & Heterogeneity					
Downstream	Homogeneous	Heterogeneous					
Dual I	Examplate & Du Unified graph ter $\mathcal{GT}(G) = \{G^0\} \cup \{G^r\}$	mplate					
$\mathbf{s}_v = \mathbf{s}_v$	Unified task tem $\operatorname{AGG}(\{\operatorname{ReadOut}(S^i_v)$	plate $ S_v^i \in \mathcal{GT}(S_v) \})$					
,	Feature prom $Feat$	•					
1		())))					
Heterogeneity prompt $AGG(\{(1 + p_i^{het}) \odot READOUT(S^i) \mid S^i \in \mathcal{GT}(S)\})$							

Conclusion

Prompting on heterogeneous graphs

 Dual templates unify not only pre-training and downstream tasks, but also various graph types

o Dual prompts narrow the gap caused by not only feature variations but also heterogeneity differences.

References

[1] Liu, Z., et al. 2023. GraphPrompt: Unifying pre-training and downstream tasks for graph neural networks. In WWW.

[2] Sun, X., et al. 2023. All in one: Multi-task prompting for graph neural

[3] Lv, Q., et al. 2021. Are we really making much progress? Revisiting, benchmarking and refining heterogeneous graph neural networks. In