
On Generalized Degree Fairness in Graph Neural Networks
(Technical Appendices)

Zemin Liu1*, Trung-Kien Nguyen2, Yuan Fang2

1 National University of Singapore, Singapore
2 Singapore Management University, Singapore

zeminliu@nus.edu.sg, {tknguyen, yfang}@smu.edu.sg

A Algorithm and Complexity
In this section, we first provide an outline of the model train-
ing, then analyze its computational complexity.
Algorithm. We outline the model training for DegFairGNN
in Algorithm 1. In line 1, we initialize the parameters set Θ.
In line 2, the training set V tr is divided into S0 and S1 w.r.t.
the predefined threshold K. In lines 4–10, we calculate the
layer-wise node representations for the training set V tr. In
particular, for a target node v in layer l, the context embed-
ding clv is calculated in line 6, and the scaling and shifting
vectors γl

v and βl
v are calculated in line 7. Furthermore, the

debiasing contexts for complementing (i.e., D(v; θl0)) and
distilling (i.e., D(v; θl1)) are achieved in lines 8 and 9, re-
spectively. Thereafter, we generate the node representation
hl
v based on the debiasing neighbor aggregation in line 10.

In lines 11–14, we compute the classification loss (line 11),
fairness loss (line 12), constraints on debiasing contexts (line
13), and constraints on scaling and shifting vectors (line 14),
respectively. Based on them, we formalize the overall objec-
tive L in line 15. We optimize Θ by minimizing L in line
16.
Complexity analysis. The debiasing neighborhood aggre-
gation increases the computational cost. Taking GCN as
base model, with everything else being the same, we com-
pare the complexity of 1-layer neighborhood aggregation for
one node in GCN and DegFairGCN. Given a node v with
degree d, the complexity of GCN is O(d) for neighborhood
aggregation. On the other hand, the debiasing neighborhood
aggregation of DegFairGCN contains the following steps.
(1) The calculation of context embedding clv: we use an op-
erator of mean-pooling to aggregate the layer-l contents in
node v’s r-hop local context Cr(v) with r = 1, thus involv-
ing the complexity of O(d). (2) The calculation of scaling
(i.e., γl

v) and shifting (i.e., βl
v) vectors: we utilize degree en-

coding δl(v) to calculate the scaling and shifting vectors,
with complexity O(1) for both of them. (3) The calculation
of debiasing contexts, including both D(v; θl0) and D(v; θl1):
they are computed based on the achieved context embedding
and scaling and shifting vectors, thus resulting in complex-

*Part of the work was done as a research scientist at Singapore
Management University.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Algorithm 1: MODEL TRAINING FOR DEGFAIRGNN

Require: Graph G = {V, E ,X}, training set V tr, threshold hyper-
parameter K, and hyperparameters {ϵ, µ, λ}.

Ensure: Model parameters Θ.
1: Θ← parameters initialization;
2: Split training set V tr into S0 and S1 w.r.t. K;
3: while not converged do
4: for l ∈ {1, 2, . . . , ℓ} do
5: for v ∈ V tr do
6: clv ← POOL({hl−1

u | u ∈ Cr(v)});
7: γl

v ← ϕγ(δ
l(v); θlγ), βl

v ← ϕβ(δ
l(v); θlβ);

8: D(v; θl0)← (γl
v + 1)⊙ f(clv; θ

l
c,0) + βl

v;
9: D(v; θl1)← (γl

v + 1)⊙ f(clv; θ
l
c,1) + βl

v;
10: hl

v ← debiasing neighbor aggregation by Eq. (9);
11: L1 ← −

∑
v∈V tr

∑|Y|
y=1[yv]y ln[h

ℓ
v]y;

12: L2 ←
∥∥∥ 1

|Str
0|
∑

v∈Str
0
hℓ
v − 1

|Str
1|
∑

v∈Str
1
hℓ
v

∥∥∥2

2
;

13: L3 ←
ℓ∑

l=1

(∑
v∈S tr

0

∥D(v; θl1)∥22 +
∑
v∈S tr

1

∥D(v; θl0)∥22
)

;

14: L4 ←
∑ℓ

l=1

∑
v∈Vtr

(∥γl
v∥22 + ∥βl

v∥22);
15: L ← L1 + µL2 + λ · (L3 + L4 +Ω(Θ));
16: Update Θ by minimizing L;
17: return Θ.

ity of O(1). (4) The calculation of debiasing neighborhood
aggregation hl

v: with referring to the neighbors once again
for neighborhood aggregation (i.e., operation AGGR(·)), this
step involves additional complexity of O(d). Overall, in
the calculation of debiasing neighborhood aggregation, the
complexity of DegFairGCN is O(2d + 2), which has the
same computational scale with its base model GCN, only
differing by a constant factor. Note that, this comparison is
also appropriate for other GNNs and the corresponding Deg-
FairGNNs.

B Details of Datasets
We use two Wikipedia networks, namely Chameleon and
Squirrel (Pei et al. 2020), in which each node represents a
Wikipedia page, and each edge denotes a reference between
two pages in either direction. Node features are derived from
informative keywords on each page. Each node is associ-
ated with a number denoting the monthly traffic of the page.

We split the nodes into five categories w.r.t. their traffic vol-
ume for node classification. We also use a citation network
EMNLP (Ma et al. 2021), in which each node denotes a
paper published in the EMNLP conference, and each edge
denotes two papers that have been co-cited by at least two
EMNLP papers. Node features are derived from the princi-
pal components of keywords in the paper title/abstract and
the year of publication. Each node is associated with a num-
ber denoting the citation from outside of EMNLP. We split
the nodes into two categories w.r.t. their outside EMNLP ci-
tation count for node classification.

C Details of Base GNN Models
We give detailed descriptions and settings for the base GNN
models, including GCN (Kipf and Welling 2017), GAT
(Veličković et al. 2018) and GraphSAGE (Hamilton, Ying,
and Leskovec 2017).
Descriptions. We describe the three base GNN models be-
low.
• GCN (Kipf and Welling 2017): GCN relies on the con-

volutional operation of neighborhood aggregation to re-
cursively incorporate information from the neighbors of a
target node. In particular, it resorts to mean-pooling to ag-
gregate information from neighbors to produce the node
representations.

• GAT (Veličković et al. 2018): GAT utilizes a self-
attention-based neighborhood aggregation in each layer,
thus the neighbors can be assigned particular weights w.r.t.
their content.

• GraphSAGE (Hamilton, Ying, and Leskovec 2017):
GraphSAGE relies on a similar yet different way with
GCN for neighborhood aggregation, by paying more at-
tention to the information from the target node itself.

D Details of Baselines
Descriptions. We describe the baselines as follows, which
are either degree-specific models or fairness-aware models.

The first group of baselines are degree-specific models.
• DSGCN (Tang et al. 2020): To address accuracy bias

among nodes with different degrees, DSGCN proposes
to employ different models for nodes with different de-
grees, thus they can improve the performance for all the
nodes.

• Residual2Vec (Kojaku et al. 2021): Residual2Vec also
addresses a similar problem with DSGCN, which tries
to modulate the random walk w.r.t. the node degrees thus
they can achieve balanced probability for node sampling
for better accuracy on all the nodes.

The second group of baselines are fairness-aware models.
• FairWalk (Rahman et al. 2019): FairWalk follows the

same paradigm of DeepWalk (Perozzi, Al-Rfou, and
Skiena 2014), including paths sampling and node rep-
resentation learning (e.g., by word2vec (Mikolov et al.
2013)). In particular, they conduct a sensitive attribute
guided walk for path sampling. In other words, when
sampling from the neighbors, they first randomly select a

sensitive attribute, then randomly select a node from the
chosen attribute.

• CFC (Bose and Hamilton 2019): In virtue of the well-
designed filters over the node representations, CFC can
filter out the sensitive attributes from the node represen-
tations for debiasing. It further employs a discriminator
to adversarially facilitate the identification of sensitive at-
tributes.

• FairGNN (Dai and Wang 2021): Similar to CFC,
FairGNN also applies the adversarial training principle
for the promotion of distinguishing sensitive attributes
from the node representations.

• FairAdj (Li et al. 2021): For dyadic fairness which is a
distinct problem from ours, FairAdj tries to learn a fair
adjacency matrix with proper graph structural constraints
to debias the sensitive attributes for fair link prediction,
and maintain the prediction accuracy at the same time.

• FairVGNN (Wang et al. 2022): FairVGNN tries to ad-
dress the issue of sensitive attribute leakage. To achieve
this, they resort to a generative adversarial debiasing
module to obtain fair node representations, and an adap-
tive weight clamping module to clamp the weights of the
encoder based on learned fair feature views.

E Hyper-Parameter Settings
General settings. For all the GNN-based models, we apply
a two-layer architecture (Kipf and Welling 2017; Hamilton,
Ying, and Leskovec 2017; Veličković et al. 2018).
Settings of base GNNs. Based on the proposed setup by
the original papers, we further tune the parameters in or-
der to achieve their optimal performance, including accu-
racy and fairness. For GCN (Kipf and Welling 2017), we set
the dropout rate as 0.5, the coefficient of regularization as
0.0001, and the learning rate as 0.01. In particular, we set
the hidden dimension of the first layer as 32 for Chameleon,
64 for Squirrel and 16 for EMNLP. For GAT (Veličković
et al. 2018), we utilize a self-attention mechanism with two
heads, and set the dropout rate as 0.5, the coefficient of reg-
ularization as 0.0001, the learning rate as 0.01, and the hid-
den dimension of the first layer as 16 for all the datasets. For
GraphSAGE (Hamilton, Ying, and Leskovec 2017), we use
the mean-pooling as the aggregator, and set the dropout rate
as 0.5, the coefficient of regularization as 0.0001, and the
learning rate as 0.01. In particular, we further set the hidden
dimension of the first layer as 32 for Chameleon and Squir-
rel and 16 for EMNLP.
Settings of baselines. We tune the parameters for baselines
based on the proposed settings from the original papers to
achieve their optimal performance, including accuracy and
fairness. For DSGCN (Tang et al. 2020), we implement the
model ourselves based on the details illustrated in the pa-
per, and set the hidden dimension of the first layer as 32,
and the threshold dmax to prevent the long-tail issue of the
degrees as 20. For Residual2Vec (Kojaku et al. 2021), we
choose the version of matrix factorization for model opti-
mization, and set the hidden dimension of embeddings as
32, and the length of context window as 10. For FairWalk

(Rahman et al. 2019), we sample 20 paths starting from
each node with length 80, and set embedding dimension as
128 on Chameleon and Squirrel while 64 on EMNLP w.r.t.
their performance. For CFC (Bose and Hamilton 2019), to
achieve its optimal performance, we set the training steps of
the discriminator as 2 with 0.1 as its weight, and the hidden
dimension of the first layer as 32 on all the three datasets.
For FairGNN (Dai and Wang 2021), we set α = 4 (control-
ling the influence of the adversary to the GNN classifier) and
β (controlling the contribution of the covariance constraint
to ensure fairness) as 1 for Chameleon, 0.01 for Squirrel, 10
for EMNLP, and the hidden dimension of the first layer as
32 on the three datasets. For FairAdj (Li et al. 2021), we
replace the reconstruction loss with node classification loss
for fair comparison, and set the number of epochs for utility
optimization T1 as 100. In addition, on datasets Chameleon
and Squirrel, we set the number of epochs for fairness opti-
mization T2 as 10, and η as 0.2; on dataset EMNLP, we set
T2 as 5 and η as 0.1. For FairVGNN (Wang et al. 2022), we
set the number of views K as 5, clamp weight ϵ as 1, and
mask density weight α as 1.
Settings of DegFairGNN. We build DegFairGNNs based
on the three base GNN models including GCN (Kipf and
Welling 2017), GAT (Veličković et al. 2018) and Graph-
SAGE (Hamilton, Ying, and Leskovec 2017), thus forming
the extended versions including DegFairGCN, DegFairGAT
and DegFairSAGE, respectively. In particular, we employ
a group of unified main parameters for all these three ex-
tensions, by setting λ = 0.0001, learning rate as 0.01 and
dropout rate as 0.5. We also uniformly tune the other pa-
rameters for them on each dataset: on Chameleon, we set
the hidden dimension of the first layer as 32, ϵ = 1 and
µ = 0.001; on Squirrel, the hidden dimension as 32, ϵ = 1
and µ = 0.0001; and on EMNLP, the hidden dimension as
16, ϵ = 0.001 and µ = 0.01. As an exception, we set the hid-
den dimension of the first layer as 16 for DegFairGAT on all
the three datasets, and deploy the self-attention mechanism
with three heads.

F Environment
We implemented the proposed DegFairGNN using Pytorch
1.6 in Python 3.6.5. All experiments were conducted on
a Linux workstation with a 6-core 3.6GHz CPU, 128GB
DDR4 memory and two RTX 2080Ti GPUs.

G Further Experiments and Analysis
G.1 Additional Fairness Settings Using Different

Base GNNs
We report the comparison of extensions with different base
GNN models (i.e., GAT and GraphSAGE) for the setting
of r = 2 with 20% Top/Bottom and r = 1 with 30%
Top/Bottom in Tables I and II, respectively. Note that, ac-
curacy evaluation is applied on the whole test set regardless
of the groups, so the accuracies reported in these two tables
are identical to those in Table 5 in the main paper. We can
observe that, across different fairness evaluation settings,
our proposed DegFairGAT and DegFairSAGE can generally
achieve superior performance than their corresponding base

Table I: With other base GNNs (r = 2, 20% Top/Bottom).

GAT DegFairGAT GraphSAGE DegFairSAGE

Chamel.
Acc. ↑ 63.15 ± 0.40 69.64 ± 0.44 53.15 ± 0.56 60.95 ± 0.84
∆DSP ↓ 8.74 ± 1.03 5.58 ± 1.45 8.92 ± 0.67 7.78 ± 1.36
∆DEO ↓ 28.58 ± 1.52 20.73 ± 2.27 29.50 ± 2.37 21.83 ± 1.65

Squirrel
Acc. ↑ 41.44 ± 0.21 45.55 ± 1.44 34.39 ± 0.62 34.63 ± 1.31
∆DSP ↓ 15.20 ± 1.16 10.89 ± 1.67 6.92 ± 0.63 3.89 ± 0.53
∆DEO ↓ 26.74 ± 1.18 20.76 ± 3.24 17.12 ± 3.28 14.25 ± 1.58

EMNLP
Acc. ↑ 70.42 ± 0.77 81.57 ± 1.14 83.96 ± 0.31 83.57 ± 0.44
∆DSP ↓ 24.04 ± 2.90 13.26 ± 7.11 54.06 ± 1.15 25.96 ± 3.55
∆DEO ↓ 7.89 ± 1.27 11.37 ± 6.09 49.31 ± 1.06 21.76 ± 3.15

Table II: With other base GNNs (r = 1, 30% Top/Bottom).

GAT DegFairGAT GraphSAGE DegFairSAGE

Chamel.
Acc. ↑ 63.15 ± 0.40 69.64 ± 0.44 53.15 ± 0.56 60.95 ± 0.84
∆DSP ↓ 5.09 ± 0.55 4.29 ± 1.16 9.27 ± 0.78 8.11 ± 0.76
∆DEO ↓ 17.68 ± 0.97 15.62 ± 1.95 24.31 ± 2.55 17.69 ± 1.76

Squirrel
Acc. ↑ 41.44 ± 0.21 45.55 ± 1.44 34.39 ± 0.62 34.63 ± 1.31
∆DSP ↓ 10.30 ± 0.82 10.03 ± 0.58 4.54 ± 0.36 3.74 ± 0.37
∆DEO ↓ 20.25 ± 0.77 17.77 ± 3.48 14.70 ± 1.11 14.54 ± 1.44

EMNLP
Acc. ↑ 70.42 ± 0.77 81.57 ± 1.14 83.96 ± 0.31 83.57 ± 0.44
∆DSP ↓ 27.58 ± 2.27 14.06 ± 4.47 50.55 ± 1.52 28.77 ± 2.88
∆DEO ↓ 13.33 ± 2.09 14.24 ± 4.55 51.84 ± 1.46 29.12 ± 2.91

GNN models in terms of degree fairness, while achieving
comparable and even better accuracy. This phenomenon fur-
ther demonstrates the generalizability of our proposed Deg-
FairGNN to different backbones in various fairness evalua-
tion settings.

G.2 Impact of Threshold K

Recall that we set the threshold K for the structural con-
trast as the mean node degree d̄ during training. In Fig. I, we
further investigate its impact on the model by varying K in
{0.25d̄, 0.5d̄, d̄, 2d̄, 4d̄}. Firstly, we observe that model ac-
curacy remains stable across different values of K, show-
ing that the choice of K has little impact on the accuracy
since K is mainly employed to modulate degree fairness.
Secondly, in fairness metrics ∆DSP and ∆DEO, DegFairGCN
generally achieves optimal performance with K = d̄, and
smaller or larger values of K tend to impair the fairness. This
demonstrates that the mean node degree is a good choice for
structural contrast in training.

G.3 Scalability

In order to evaluate the scalability of DegFairGNN when
applying to large graphs, we run DegFairGCN and base-
line FairGNN on a large dataset Amazon (Liu, Nguyen, and
Fang 2021) for comparison. In particular, we sample a set of
graphs on Amazon with graph sizes (the number of nodes)
20k, 40k, 60k, 80k, 100k and 1M, and split the nodes into
training, validation and testing set with proportion 6:2:2. We
report the training (per epoch) and inference time (ms) in Ta-
ble III. We observe that the time cost of DegFairGCN gen-
erally increases linearly as the graph sizes increase, show-
ing its scalability on large graphs. Besides, DegFairGCN can
generally cost less time than FairGNN across different graph
sizes.

0.25d 0.5d d 2d 4d
K

60

80

100
A

cc
ur

ac
y

(%
)

Chameleon
Squirrel

EMNLP

(a) Accuracy ↑

0.25d 0.5d d 2d 4d
K

5

10

15

20

∆
D
S
P

 (%
)

Chameleon
Squirrel

EMNLP

(b) ∆DSP ↓

0.25d 0.5d d 2d 4d
K

10

20

30

40

∆
D
E
O

 (%
)

Chameleon
Squirrel

EMNLP

(c) ∆DEO ↓

Figure I: Impact of threshold K.

Table III: Scalability comparison of FairGNN and Deg-
FairGCN in terms of training (per epoch) and inference time
(ms).

Graph sizes (# nodes) 20k 40k 60k 80k 100k 1M

Training FairGNN 11 42 90 OOM OOM OOM
time (ms) DegFairGCN 11 18 29 43 49 570
Inference FairGNN 9 38 80 OOM OOM OOM
time (ms) DegFairGCN 4 7 10 14 20 270

G.4 Parameter Sensitivity
In Fig. II, we further study the sensitivity of other hyperpa-
rameters including ϵ, µ and λ. We first show the impact of
parameter ϵ in Figs. II (a)-(c), and have the following ob-
servations. (1) Higher ϵ (e.g., [0.1,1.0]) might slightly boost
the accuracy, showing that modulating the neighborhood ag-
gregation can potentially enhance and denoise the node rep-
resentations. (2) The range [0.001, 0.01] is generally robust
for fairness while maintaining competitive accuracy. Next,
Figs. II (d)-(f) show the influence of parameter µ. (1) The
accuracy is generally stable with different values of µ. (2)
When µ ∈ [0.1, 1.0], both ∆DSP and ∆DEO on EMNLP gen-
erally approach 0 since this extreme setting of µ drives the
model to gradually predict the same label for all nodes on
EMNLP due to the large weight of fairness loss. Lastly, we
illustrate the impact of λ in Figs. II (g)-(i). For both ∆DSP
and ∆DEO, larger λ (e.g., 1.0) can generally promote the
fairness metrics (except ∆DEO on Chameleon), while it may
impair the accuracy. A good trade-off is λ ∈ [0.01, 0.1],
which achieves generally robust performance in both accu-
racy and fairness. Lastly, we illustrate the impact of λ in
Figs. II (g)-(i). For both ∆DSP and ∆DEO, smaller or larger
λ’s can generally promote the fairness metrics, while it may
impair the accuracy when λ is larger. A good trade-off is
λ ∈ [0.0001, 0.001], which achieves generally robust per-
formance in both accuracy and fairness.

H Additional Related Work
Graph representation learning. To overcome the high cost
of feature engineering in traditional graph mining algo-
rithms, graph embedding (Cai, Zheng, and Chang 2018; Per-
ozzi, Al-Rfou, and Skiena 2014; Tang et al. 2015; Grover
and Leskovec 2016) and graph neural networks (GNNs)
(Kipf and Welling 2017; Hamilton, Ying, and Leskovec
2017; Veličković et al. 2018; Xu et al. 2019) open up great
opportunities for representation learning on graphs, which
embed graph elements (e.g., nodes, edges, subgraphs or even
the whole graph) into low-dimensional vectors to preserve

0.0001 0.001 0.01 0.1 1.0
ε

60

80

100

A
cc

ur
ac

y
(%

)

Chameleon
Squirrel
EMNLP

(a) Accuracy ↑

0.0001 0.001 0.01 0.1 1.0
ε

20

40

60

∆
D
S
P

 (%
)

Chameleon
Squirrel
EMNLP

(b) ∆DSP ↓

0.0001 0.001 0.01 0.1 1.0
ε

20

40

60

∆
D
E
O

 (%
)

Chameleon
Squirrel
EMNLP

(c) ∆DEO ↓

0.0001 0.001 0.01 0.1 1.0
µ

60

80

A
cc

ur
ac

y
(%

)

Chameleon
Squirrel

EMNLP

(d) Accuracy↑

0.0001 0.001 0.01 0.1 1.0
µ

0

10

20

30

40

∆
D
S
P

 (%
)

Chameleon
Squirrel
EMNLP

(e) ∆DSP ↓

0.0001 0.001 0.01 0.1 1.0
µ

0

20

40

60

∆
D
E
O

 (%
)

Chameleon
Squirrel
EMNLP

(f) ∆DEO ↓

0.0001 0.001 0.01 0.1 1.0
λ

40

60

80

100

A
cc

ur
ac

y
(%

)

Chameleon
Squirrel

EMNLP

(g) Accuracy↑

0.0001 0.001 0.01 0.1 1.0
λ

0

5

10

15

20

∆
D
S
P

 (%
)

Chameleon
Squirrel

EMNLP

(h) ∆DSP ↓

0.0001 0.001 0.01 0.1 1.0
λ

0

20

40

60

∆
D
E
O

 (%
)

Chameleon
Squirrel
EMNLP

(i) ∆DEO ↓

Figure II: Influence of hyperparameters ϵ, µ and λ.

the graph structures.
Other related studies. Fairness studies for recommendation
systems usually require additional side-information (Beutel
et al. 2019), or consider multi-sided fairness arising on the
consumer side, provider side or both sides (Burke, Sonboli,
and Ordonez-Gauger 2018; Mehrotra et al. 2018). Degree
awareness (Pei et al. 2019) was proposed to mitigate the im-
pact of degree difference in the task of knowledge graph
alignment in which entities with similar degrees in knowl-
edge graphs tend to be mapped into the same region in the
embedding space. Another work (Zhang et al. 2021) inves-
tigates the problem of high variances and limited theoretical
guarantees for sampling approaches in improving the scala-
bility of GNNs. These works aim to address a different prob-
lem from ours.

References
Beutel, A.; Chen, J.; Doshi, T.; Qian, H.; Wei, L.; Wu, Y.;
Heldt, L.; Zhao, Z.; Hong, L.; Chi, E. H.; et al. 2019. Fair-
ness in recommendation ranking through pairwise compar-
isons. In KDD, 2212–2220.
Bose, A.; and Hamilton, W. 2019. Compositional fairness
constraints for graph embeddings. In ICML, 715–724.
Burke, R.; Sonboli, N.; and Ordonez-Gauger, A. 2018. Bal-
anced neighborhoods for multi-sided fairness in recommen-
dation. In FAccT, 202–214.
Cai, H.; Zheng, V. W.; and Chang, K. C.-C. 2018. A compre-
hensive survey of graph embedding: Problems, techniques,
and applications. TKDE, 1616–1637.
Dai, E.; and Wang, S. 2021. Say No to the Discrimination:
Learning Fair Graph Neural Networks with Limited Sensi-
tive Attribute Information. In WSDM, 680–688.

Grover, A.; and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In KDD, 855–864.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. In NeurIPS, 1024–
1034.
Kipf, T. N.; and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. ICLR.
Kojaku, S.; Yoon, J.; Constantino, I.; and Ahn, Y.-Y. 2021.
Residual2Vec: Debiasing graph embedding with random
graphs. In NeurIPS.
Li, P.; Wang, Y.; Zhao, H.; Hong, P.; and Liu, H. 2021. On
dyadic fairness: Exploring and mitigating bias in graph con-
nections. In ICLR.
Liu, Z.; Nguyen, T.-K.; and Fang, Y. 2021. Tail-GNN: Tail-
Node Graph Neural Networks. In KDD, 1109–1119.
Ma, J.; Chang, B.; Zhang, X.; and Mei, Q. 2021. Copu-
laGNN: Towards Integrating Representational and Correla-
tional Roles of Graphs in Graph Neural Networks. In ICLR.
Mehrotra, R.; McInerney, J.; Bouchard, H.; Lalmas, M.; and
Diaz, F. 2018. Towards a fair marketplace: Counterfactual
evaluation of the trade-off between relevance, fairness & sat-
isfaction in recommendation systems. In CIKM, 2243–2251.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In NIPS, 3111–3119.
Pei, H.; Wei, B.; Chang, K. C.-C.; Lei, Y.; and Yang, B.
2020. Geom-GCN: Geometric Graph Convolutional Net-
works. In ICLR.
Pei, S.; Yu, L.; Hoehndorf, R.; and Zhang, X. 2019. Semi-
supervised entity alignment via knowledge graph embed-
ding with awareness of degree difference. In WWW, 3130–
3136.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In KDD, 701–710.
Rahman, T. A.; Surma, B.; Backes, M.; and Zhang, Y. 2019.
Fairwalk: Towards Fair Graph Embedding. In IJCAI, 3289–
3295.
Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; and Mei, Q.
2015. Line: Large-scale information network embedding. In
WWW, 1067–1077.
Tang, X.; Yao, H.; Sun, Y.; Wang, Y.; Tang, J.; Aggarwal, C.;
Mitra, P.; and Wang, S. 2020. Investigating and Mitigating
Degree-Related Biases in Graph Convoltuional Networks.
In CIKM, 1435–1444.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2018. Graph attention networks. ICLR.
Wang, Y.; Zhao, Y.; Dong, Y.; Chen, H.; Li, J.; and Derr,
T. 2022. Improving Fairness in Graph Neural Networks via
Mitigating Sensitive Attribute Leakage. In SIGKDD.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
powerful are graph neural networks? ICLR.
Zhang, Q.; Wipf, D.; Gan, Q.; and Song, L. 2021. A biased
graph neural network sampler with near-optimal regret. In
NeurIPS.

