On Generalized Degree Fairness in Graph Neural Networks

Zemin Liu, Trung-Kien Nguyen, Yuan Fang

School of Computing and Information Systems

In Proceeding of 37th AAAI Conference on Artificial Intelligence, February 7-14, 2023

Outline

- Problem & related work
- Proposed model: DegFairGNN
- Experiments
- Conclusions

Graph Representation Learning

- Graph embedding approaches
 - DeepWalk [1], node2vec [2], ...
- Graph neural networks (GNNs) [3,4,5]

$$\mathbf{h}_{v}^{l} = \mathcal{M}(\mathbf{h}_{v}^{l-1}, \{\mathbf{h}_{i}^{l-1} : i \in \mathcal{N}_{v}\}; \theta^{l})$$

- Message passing function
- [1] Perozzi B., et al. 2014. Deepwalk: Online learning of social representations. KDD.
- [2] Grover A., et al. 2014. node2vec: Scalable feature learning for networks. KDD.
- [3] Kipf, T. N., et al. 2017. Semi-supervised classification with graph convolutional networks. ICLR.
- [4] Veličković, P., et al. 2018. Graph attention networks. ICLR.
- [5] Hamilton W L., et al. 2017. Inductive representation learning on large graphs. NeurIPS.

Fairness vs Degree Fairness in GNNs

- Fairness in GNNs
 - Source
 - Sensitive attributes (e.g., gender, age, or race)
 - Some related methods
 - Filters to debias: CFC [1]
 - Adversarial learning paradigm: [1,2]
- Degree Fairness in GNNs
 - Source
 - Neighborhood structure (degree)
 - Outcome
 - Differential node behaviors and biased outcomes
 - Goal
 - Achieve equitable outcomes for nodes of different degrees

[1] Bose, A., et al. 2019. Compositional fairness constraints for graph embeddings. In ICML, 715-724.
[2] Dai, E., et al. 2019. Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information. In WSDM, 680-688.

Degree Fairness in GNNs

- Our goal
 - Degree fairness in graph neural networks
- Non-trivial
 - Neighborhood sampling
 - Cannot address this issue
 - Information loss
 - Degree vs sensitive attributes
 - Prior works do not debias neighborhood aggregation

Problem Formulation (1): generalized degree

- Generalized degree
 - Source of degree bias
 - Neighborhood & local context
 - Local context

$$\mathcal{C}_r = \{ v' \in \mathcal{V} \mid d(v, v') \le r \}$$

- Generalized degree

$$\deg_r(v) = [\mathbf{A}^r \mathbf{1}]_v$$

Problem Formulation (2): generalized degree fairness

- Generalized degree fairness (Statistical Parity [1] and Equal Opportunity [2])
 - Generalized degree groups
 - *m* groups: $\mathcal{G}_1, \ldots, \mathcal{G}_m$

$$\mathcal{G}_i = \{ v \in \mathcal{V} \mid d_i \le \deg_r(v) < d_{i+1} \}$$

$$d_1 < d_2 < \dots < d_{m+1}$$
$$d_1 = \min_{v \in \mathcal{V}} \deg_r(v)$$
$$d_{m+1} = \max_{v \in \mathcal{V}} \deg_r(v) + 1$$

7

- Generalized degree metrics
 - Degree Statistical Parity (DSP)

$$P(\hat{y}_v = y | v \in \mathcal{G}_i) = P(\hat{y}_v = y | v \in \mathcal{G}_j)$$

• Degree Equal Opportunity (DEO)

$$P(\hat{y}_v = y | y_v = y, v \in \mathcal{G}_i) = P(\hat{y}_v = y | y_v = y, v \in \mathcal{G}_j)$$

Dwork, C., et al. 2012. Fairness through awareness. In ITCS, 214-226.
 Hardt, M., et al. 2016. Equality of Opportunity in Supervised Learning. In NeurIPS, 3315-3323.

Outline

- Problem & related work
- Proposed model: DegFairGNN
- Experiments
- Conclusions

DegFairGNN: overall framework

(a) Toy graph

(b)

(b) Structural contrast

(c) Debiasing neighborhood aggregation

(d) Overall objective

Structural Contrast

- Contrastive strategy
 - Low-degree nodes \mathcal{S}_0 and high-degree nodes \mathcal{S}_1
 - Neighborhood aggregation
 - Only access its one-hop contexts in each layer
 - Definition of the two groups

(b) Structural contrast

Debiasing Neighborhood Aggregation (1)

- Debiasing function
 - Low-degree node

$$u \in \mathcal{S}_0, \, \mathcal{D}(u; \theta_0^l) \in \mathbb{R}^{d_l}$$

- High-degree node $v \in \mathcal{S}_1, \, \mathcal{D}(v; \theta_1^l) \in \mathbb{R}^{d_l}$
- Requirement of debiasing function
 - Comprehensiveness
 - Adaptiveness

(c) Debiasing neighborhood aggregation

Debiasing Neighborhood Aggregation (2)

- Comprehensiveness
 - Context embedding

$$\mathbf{c}_{v}^{l} = \text{POOL}(\{\mathbf{h}_{u}^{l-1} \mid u \in \mathcal{C}_{r}(v)\})$$

– Debiasing function

$$\mathcal{D}(v; \theta^l_*) = f(\mathbf{c}^l_v; \theta^l_{c,*})$$

• Adaptiveness

$$\mathcal{D}(v;\theta_*^l) = (\gamma_v^l + \mathbf{1}) \odot f(\mathbf{c}_v^l;\theta_{c,*}^l) + \beta_v^l$$
$$\gamma_v^l = \phi_\gamma(\delta^l(v);\theta_\gamma^l), \quad \beta_v^l = \phi_\beta(\delta^l(v);\theta_\beta^l)$$

Degree encoding

Degree encoding

$$\begin{aligned} [\delta^l(v)]_{2i} &= \sin(\deg_1(v)/10000^{2i/d_l}) \\ [\delta^l(v)]_{2i+1} &= \cos(\deg_1(v)/10000^{2i/d_l}) \end{aligned}$$

Debiasing Neighborhood Aggregation (3)

• Modulated GNN Encoder

$$\mathbf{h}_{v}^{l} = \sigma \left(\operatorname{AGGR}(\{\mathbf{h}_{u}^{l-1} \mid u \in \mathcal{N}_{v}\}; \omega^{l}) + \epsilon \cdot \left(\underbrace{I(v \in \mathcal{S}_{0})\mathcal{D}(v; \theta_{0}^{l})}_{\text{complement low-deg. group}} + \underbrace{I(v \in \mathcal{S}_{1})\mathcal{D}(v; \theta_{1}^{l})}_{\text{distill high-deg. group}} \right) \right)$$

Control the impact

Training Constraints and Objective

- Node classification loss $\mathcal{L}_1 = -\sum_{v \in \mathcal{V}^{\text{tr}}} \sum_{y=1}^{|\mathcal{Y}|} [\mathbf{y}_v]_y \ln[\mathbf{h}_v^\ell]_y$
- Fairness loss $\mathcal{L}_2 = \left\| \frac{1}{|\mathcal{S}_0^{\text{tr}}|} \sum_{v \in \mathcal{S}_0^{\text{tr}}} \mathbf{h}_v^{\ell} \frac{1}{|\mathcal{S}_1^{\text{tr}}|} \sum_{v \in \mathcal{S}_1^{\text{tr}}} \mathbf{h}_v^{\ell} \right\|_2^2$
- Constraints on debiasing contexts

$$\mathcal{L}_{3} = \sum_{l=1}^{\ell} \left(\sum_{v \in \mathcal{S}_{0}^{\text{tr}}} \|\mathcal{D}(v; \theta_{1}^{l})\|_{2}^{2} + \sum_{v \in \mathcal{S}_{1}^{\text{tr}}} \|\mathcal{D}(v; \theta_{0}^{l})\|_{2}^{2} \right)$$

• Constraints on scaling and shifting

$$\mathcal{L}_4 = \sum_{l=1}^{\ell} \sum_{v \in \mathcal{V}^{\text{tr}}} (\|\gamma_v^l\|_2^2 + \|\beta_v^l\|_2^2)$$

• Overall loss

$$\mathcal{L} = \mathcal{L}_1 + \mu \mathcal{L}_2 + \lambda (\mathcal{L}_3 + \mathcal{L}_4)$$
 ¹⁴

Outline

- Problem & related work
- Proposed model: DegFairGNN
- Experiments
- Conclusions

Experimental setup

Datasets

Dataset	Nodes	Edges	Features	Classes
Chameleon	2,277	31,371	2,325	5 (traffic volume)
Squirrel	5,201	198,353	2,089	5 (traffic volume)
EMNLP	2,600	7,969	8	2 (citation count)

Baselines

- Degree-specific models:
 - DSGCN [4], Residual2Vec [5], Tail-GNN [6]
- Fairness-aware models:
 - FairWalk [7], CFC [8], FairGNN [9], FairAdj [10], FairVGNN [11]

Base GNN models

- GCN [1]
- GAT [2]
- GraphSAGE [3]

Kipf, T. N., et al. 2017. Semi-supervised classification with graph convolutional networks. ICLR.
 Veličković, P., et al. 2018. Graph attention networks. ICLR.
 Hamilton W L., et al. 2017. Inductive representation learning on large graphs. NeurIPS.
 Tang, X., et al. 2020. Investigating and Mitigating Degree-Related Biases in Graph Convolutional Networks. CIKM.
 Kojaku, S., et al. 2021. Residual2Vec: Debiasing graph embedding with random graphs. NeurIPS.
 Liu, Z., et al. 2021. Tail-GNN: Tail-Node Graph Neural Networks. KDD.
 Rahman, T. A., et al. 2019. Fairwalk: Towards Fair Graph Embedding. IJCAI.
 Bose, A., et al. 2019. Compositional fairness constraints for graph embeddings. In ICML, 715-724.
 Dai, E., et al. 2019. Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information. In WSDM, 680-688.
 Li, P., et al. 2021. On dyadic fairness: Exploring and mitigating bias in graph connections. ICLR.
 Wang, Y., et al. 2022. Improving Fairness in Graph Neural Networks via Mitigating Sensitive Attribute Leakage. KDD.

Experimental setup

Evaluation Metrics for fairness

$$\begin{split} \Delta_{\text{DSP}} &= \frac{1}{|\mathcal{Y}|} \sum_{y \in \mathcal{Y}} \left| P(\hat{y}_v = y | v \in \mathcal{G}_0) - \right. \\ & \left. P(\hat{y}_v = y | v \in \mathcal{G}_1) \right|, \\ \Delta_{\text{DEO}} &= \frac{1}{|\mathcal{Y}|} \sum_{y \in \mathcal{Y}} \left| P(\hat{y}_v = y | y_v = y, v \in \mathcal{G}_0) - \right. \\ & \left. P(\hat{y}_v = y | y_v = y, v \in \mathcal{G}_1) \right|. \end{split}$$

Model Accuracy and Fairness

Table 2: Comparison with baselines (r = 1, 20% Top/Bottom).

Henceforth, tabular results are in percent with standard deviation over 5 runs; the best fairness result is **bolded** and the runner-up is <u>underlined</u>.

		GCN	DSGCN	Residual2Vec	Tail-GNN	FairWalk	CFC	FairGNN	FairAdj	FairVGNN	DegFairGCN
Chamel.	$\begin{vmatrix} \text{Acc.} \uparrow \\ \Delta_{\text{DSP}} \downarrow \\ \Delta_{\text{DEO}} \downarrow \end{vmatrix}$	$ \begin{vmatrix} 62.45 \pm 0.21 \\ 9.68 \pm 1.37 \\ 36.08 \pm 2.65 \end{vmatrix} $	$ \begin{vmatrix} 63.90 \pm 1.28 \\ 8.81 \pm 1.15 \\ 25.14 \pm 2.67 \end{vmatrix} $	$\begin{array}{c} 49.04 \pm 0.01 \\ 14.52 \pm 0.69 \\ 37.31 \pm 1.99 \end{array}$	$\begin{array}{c} 66.08 \pm 0.19 \\ 8.51 \pm 1.72 \\ 26.09 \pm 3.25 \end{array}$	$ \begin{vmatrix} 56.36 \pm 0.75 \\ 8.18 \pm 0.93 \\ \underline{22.89} \pm 2.75 \end{vmatrix} $	$\begin{array}{c} 63.02 \pm 0.84 \\ 10.12 \pm 1.28 \\ 29.54 \pm 1.95 \end{array}$	$\begin{array}{c} 70.70 \pm 0.52 \\ \underline{7.33} \pm 1.09 \\ 26.83 \pm 1.95 \end{array}$	$\begin{array}{c} 51.71 \pm 1.13 \\ 9.79 \pm 1.91 \\ 27.48 \pm 2.06 \end{array}$	$\begin{array}{c} 72.32 \pm 0.50 \\ 8.86 \pm 1.11 \\ 26.02 \pm 2.39 \end{array}$	$ \begin{vmatrix} 69.91 \pm 0.19 \\ \textbf{5.85} \pm 0.32 \\ \textbf{21.60} \pm 0.71 \end{vmatrix} $
Squirrel	$\begin{vmatrix} \text{Acc.} \uparrow \\ \Delta_{\text{DSP}} \downarrow \\ \Delta_{\text{DEO}} \downarrow \end{vmatrix}$	$ \begin{vmatrix} 47.85 \pm 1.33 \\ 13.37 \pm 2.83 \\ 27.00 \pm 3.79 \end{vmatrix} $	$ \begin{vmatrix} 40.71 \pm 2.17 \\ 16.08 \pm 0.86 \\ 32.61 \pm 3.74 \end{vmatrix} $	$\begin{array}{c} 28.47 \pm 0.01 \\ 25.11 \pm 0.48 \\ 34.49 \pm 0.72 \end{array}$	$\begin{array}{c} 42.62 \pm 0.06 \\ 18.91 \pm 0.26 \\ 33.60 \pm 0.72 \end{array}$	$ \begin{vmatrix} 37.68 \pm 0.65 \\ \textbf{7.94} \pm 0.36 \\ \underline{17.12} \pm 1.50 \end{vmatrix} $	$\begin{array}{c} 45.64 \pm 2.19 \\ 12.40 \pm 0.48 \\ 21.60 \pm 2.69 \end{array}$	$\begin{array}{c} 57.29 \pm 0.77 \\ 12.96 \pm 1.03 \\ 17.62 \pm 2.40 \end{array}$	$\begin{array}{c} 35.18 \pm 1.22 \\ 16.63 \pm 1.56 \\ 27.54 \pm 1.73 \end{array}$	$\begin{array}{c} 46.97 \pm 0.48 \\ 26.67 \pm 0.52 \\ 35.80 \pm 1.76 \end{array}$	$\begin{array}{c} 59.21 \pm 0.97 \\ \underline{9.54} \pm 1.02 \\ \textbf{16.42} \pm 1.38 \end{array}$
EMNLP	$\begin{vmatrix} \text{Acc.} \uparrow \\ \Delta_{\text{DSP}} \downarrow \\ \Delta_{\text{DEO}} \downarrow \end{vmatrix}$	$\begin{vmatrix} 78.92 \pm 0.43 \\ 44.55 \pm 1.90 \\ 34.05 \pm 3.56 \end{vmatrix}$	$ \begin{vmatrix} 82.19 \pm 0.77 \\ 50.00 \pm 2.98 \\ 46.92 \pm 2.91 \end{vmatrix} $	$\begin{array}{c} 80.69 \pm 0.01 \\ \underline{12.90} \pm 0.15 \\ \underline{11.26} \pm 0.67 \end{array}$	$\begin{array}{c} 83.72 \pm 0.28 \\ 41.18 \pm 1.58 \\ 36.76 \pm 1.48 \end{array}$	$\begin{vmatrix} 82.23 \pm 0.18 \\ 33.52 \pm 1.46 \\ 30.67 \pm 1.42 \end{vmatrix}$	$\begin{array}{c} 80.15 \pm 1.13 \\ 56.60 \pm 1.95 \\ 45.21 \pm 2.27 \end{array}$	$\begin{array}{c} 86.81 \pm 0.22 \\ 58.23 \pm 1.44 \\ 51.56 \pm 1.38 \end{array}$	$\begin{array}{c} 76.50 \pm 1.55 \\ 40.38 \pm 4.64 \\ 41.89 \pm 4.78 \end{array}$	$\begin{array}{c} 84.03 \pm 0.34 \\ 43.92 \pm 1.43 \\ 40.95 \pm 1.71 \end{array}$	$ \begin{vmatrix} 79.92 \pm 0.77 \\ \textbf{12.38} \pm 3.72 \\ \textbf{8.52} \pm 2.26 \end{vmatrix} $

Table 3: Comparison to baselines (r = 2, 20% Top/Bottom).

		GCN	FairWalk	FairGNN	DegFairGCN
Chamel.	$\begin{vmatrix} \text{Acc.} \uparrow \\ \Delta_{\text{DSP}} \downarrow \\ \Delta_{\text{DEO}} \downarrow \end{vmatrix}$	$\begin{array}{c} 62.45 \pm 0.21 \\ \underline{5.96} \pm 0.89 \\ 26.92 \pm 2.09 \end{array}$	$\begin{array}{c} 56.36 \pm 0.75 \\ 10.38 \pm 0.85 \\ 25.46 \pm 1.66 \end{array}$	$\begin{array}{c} 70.70 \pm 0.52 \\ 6.70 \pm 0.32 \\ \underline{23.66} \pm 0.93 \end{array}$	$\begin{array}{c} 69.91 \pm 0.19 \\ \textbf{5.25} \pm 0.39 \\ \textbf{19.05} \pm 0.74 \end{array}$
Squirrel	$\begin{vmatrix} \text{Acc.} \uparrow \\ \Delta_{\text{DSP}} \downarrow \\ \Delta_{\text{DEO}} \downarrow \end{vmatrix}$	$\begin{array}{c} 47.85 \pm 1.33 \\ 14.61 \pm 2.63 \\ 28.62 \pm 3.89 \end{array}$	$\begin{array}{c} 37.68 \pm 0.65 \\ \underline{9.64} \pm 0.50 \\ 17.37 \pm 1.10 \end{array}$	$\begin{array}{c} 57.29 \pm 0.77 \\ 11.11 \pm 0.93 \\ \underline{16.29} \pm 2.07 \end{array}$	$\begin{array}{c} 59.21 \pm 0.97 \\ \textbf{8.26} \pm 0.57 \\ \textbf{14.95} \pm 1.22 \end{array}$
EMNLP	$\begin{vmatrix} \text{Acc.} \uparrow \\ \Delta_{\text{DSP}} \downarrow \\ \Delta_{\text{DEO}} \downarrow \end{vmatrix}$	$\begin{array}{c} 78.92 \pm 0.43 \\ 45.03 \pm 1.77 \\ 34.71 \pm 3.31 \end{array}$	$\begin{array}{c} 82.23 \pm 0.18 \\ \underline{34.80} \pm 1.26 \\ \underline{31.11} \pm 1.34 \end{array}$	$\begin{array}{c} 86.81 \pm 0.22 \\ 52.88 \pm 1.39 \\ 45.78 \pm 1.36 \end{array}$	$\begin{array}{c} 79.92 \pm 0.77 \\ \textbf{10.87} \pm 4.00 \\ \textbf{8.72} \pm 2.17 \end{array}$

Table 4: Comparison to baselines (r = 1, 30% Top/Bottom).

		GCN	FairWalk	FairGNN	DegFairGCN
Chamel.	$\begin{vmatrix} \text{Acc.} \uparrow \\ \Delta_{\text{DSP}} \downarrow \\ \Delta_{\text{DEO}} \downarrow \end{vmatrix}$		$\begin{array}{c} 56.36 \pm 0.75 \\ 8.16 \pm 0.38 \\ 16.65 \pm 1.32 \end{array}$	$\begin{array}{c} 70.70 \pm 0.52 \\ 6.92 \pm 0.29 \\ \underline{14.52} \pm 1.09 \end{array}$	
Squirrel	$\begin{vmatrix} \text{Acc.} \uparrow \\ \Delta_{\text{DSP}} \downarrow \\ \Delta_{\text{DEO}} \downarrow \end{vmatrix}$	$ \begin{vmatrix} 47.85 \pm 1.33 \\ 10.34 \pm 2.15 \\ 22.62 \pm 3.10 \end{vmatrix} $	$\begin{array}{c} 37.68 \pm 0.65 \\ \textbf{6.17} \pm 0.36 \\ \textbf{14.97} \pm 1.12 \end{array}$	$\begin{array}{c} 57.29 \pm 0.77 \\ 9.27 \pm 0.68 \\ \underline{17.42} \pm 1.11 \end{array}$	$ \begin{vmatrix} 59.21 \pm 0.97 \\ \underline{7.39} \pm 0.63 \\ 17.71 \pm 1.05 \end{vmatrix} $
EMNLP	$\begin{vmatrix} \text{Acc.} \uparrow \\ \Delta_{\text{DSP}} \downarrow \\ \Delta_{\text{DEO}} \downarrow \end{vmatrix}$	$\begin{array}{c} 78.92 \pm 0.43 \\ 42.87 \pm 1.40 \\ 37.89 \pm 3.27 \end{array}$	$\begin{array}{c} 82.23 \pm 0.18 \\ \underline{34.19} \pm 0.91 \\ \underline{34.49} \pm 0.91 \end{array}$	$\begin{array}{c} 86.81 \pm 0.22 \\ 48.25 \pm 1.97 \\ 48.83 \pm 1.97 \end{array}$	$\begin{array}{ } 79.92 \pm 0.77 \\ \textbf{14.46} \pm 3.35 \\ \textbf{10.92} \pm 2.87 \end{array}$

Model Analysis

Table 5: With other base GNNs (r = 1, 20% Top/Bottom).

		GAT	DegFairGAT	GraphSAGE	DegFairSAGE
Chamel.	$\begin{vmatrix} \text{Acc.} \uparrow \\ \Delta_{\text{DSP}} \downarrow \\ \Delta_{\text{DEO}} \downarrow \end{vmatrix}$	$ \begin{vmatrix} 63.15 \pm 0.40 \\ 9.35 \pm 1.61 \\ 29.59 \pm 1.43 \end{vmatrix} $	$\begin{array}{c} 69.64 \pm 0.44 \\ \textbf{7.88} \pm 1.30 \\ \textbf{26.12} \pm 2.06 \end{array}$	$\begin{array}{c} 53.15 \pm 0.56 \\ 10.86 \pm 0.74 \\ 29.42 \pm 1.57 \end{array}$	$\begin{array}{c} 60.95 \pm 0.84 \\ \textbf{8.22} \pm 1.22 \\ \textbf{26.40} \pm 2.32 \end{array}$
Squirrel	$\begin{vmatrix} \text{Acc.} \uparrow \\ \Delta_{\text{DSP}} \downarrow \\ \Delta_{\text{DEO}} \downarrow \end{vmatrix}$	$ \begin{vmatrix} 41.44 \pm 0.21 \\ 12.60 \pm 0.77 \\ 24.89 \pm 0.69 \end{vmatrix} $	$\begin{array}{c} 45.55 \pm 1.44 \\ \textbf{12.03} \pm 0.63 \\ \textbf{20.64} \pm 3.06 \end{array}$	$\begin{array}{c} 34.39 \pm 0.62 \\ 5.39 \pm 0.66 \\ 17.13 \pm 2.86 \end{array}$	$\begin{array}{c} 34.63 \pm 1.31 \\ \textbf{3.76} \pm 0.23 \\ \textbf{14.91} \pm 1.35 \end{array}$
EMNLP	$\begin{vmatrix} \text{Acc.} \uparrow \\ \Delta_{\text{DSP}} \downarrow \\ \Delta_{\text{DEO}} \downarrow \end{vmatrix}$	$ \begin{vmatrix} 70.42 \pm 0.77 \\ 24.40 \pm 3.06 \\ \textbf{8.36} \pm 1.29 \end{vmatrix} $	$\begin{array}{c} 81.57 \pm 1.14 \\ \textbf{14.11} \pm 6.28 \\ 12.28 \pm 6.19 \end{array}$	$\begin{array}{c} 83.96 \pm 0.31 \\ 56.33 \pm 1.12 \\ 51.71 \pm 0.88 \end{array}$	$\begin{array}{c} 83.57 \pm 0.44 \\ \textbf{28.43} \pm 3.79 \\ \textbf{24.65} \pm 3.35 \end{array}$

Additional Base GNNs

- Outperform their corresponding base GNNs

Ablation Study

- Without scaling and shifting
 - Worse accuracy and fairness
- Without structural contrast
 - Fairness generally become worse
- Without the modulation of aggregation
 - Fairness become worse in most cases

Figure 2: Ablation study on the effect of each module.

Outline

- Problem & related work
- Proposed model: DegFairGNN
- Experiments
- Conclusions

Conclusions

- Problem
 - Degree fairness in graph neural networks
- Proposed model: DegFairGNN
 - Target the root of degree bias
 - modulating the core operation of neighborhood aggregation through a structural contrast
 - Flexibly work with most modern GNNs
- Experiments

Thanks!

On Generalized Degree Fairness in Graph Neural Networks Zemin Liu, Trung-Kien Nguyen, Yuan Fang

In Proceeding of 37th AAAI Conference on Artificial Intelligence, February 7-14, 2023