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Graph Representation Learning

• Graph embedding approaches
– DeepWalk [1], node2vec [2], …

• Graph neural networks (GNNs) [3,4,5]

[1] Perozzi B., et al. 2014. Deepwalk: Online learning of social representations. KDD.

[2] Grover A., et al. 2014. node2vec: Scalable feature learning for networks. KDD.

[3] Kipf, T. N., et al. 2017. Semi-supervised classification with graph convolutional networks. ICLR.

[4] Veličković, P., et al. 2018. Graph attention networks. ICLR.

[5] Hamilton W L., et al. 2017. Inductive representation learning on large graphs. NeurIPS.

Message passing function
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Fairness vs Degree Fairness in GNNs

• Fairness in GNNs
– Source

• Sensitive attributes (e.g., gender, age, or race)

– Some related methods
• Filters to debias: CFC [1]

• Adversarial learning paradigm: [1,2]

• Degree Fairness in GNNs
– Source

• Neighborhood structure (degree)

– Outcome
• Differential node behaviors and biased outcomes

– Goal
• Achieve equitable outcomes for nodes of different degrees
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[1] Bose, A., et al. 2019. Compositional fairness constraints for graph embeddings. In ICML, 715-724.

[2] Dai, E., et al. 2019. Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information. In 

WSDM, 680-688.
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Degree Fairness in GNNs

• Our goal

– Degree fairness in graph neural networks

• Non-trivial

– Neighborhood sampling

• Cannot address this issue

• Information loss

– Degree vs sensitive attributes

• Prior works do not debias neighborhood aggregation
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Problem Formulation (1): generalized degree

• Generalized degree

– Source of degree bias

• Neighborhood & local context

– Local context

– Generalized degree
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Problem Formulation (2): generalized degree fairness

• Generalized degree fairness (Statistical Parity [1] and Equal Opportunity [2])

– Generalized degree groups

• m groups:

– Generalized degree metrics

• Degree Statistical Parity (DSP)

• Degree Equal Opportunity (DEO)

7[1] Dwork, C., et al. 2012. Fairness through awareness. In ITCS, 214-226.

[2] Hardt, M., et al. 2016. Equality of Opportunity in Supervised Learning. In NeurIPS, 3315-3323.
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DegFairGNN: overall framework
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Structural Contrast

• Contrastive strategy

– Low-degree nodes and high-degree nodes

– Neighborhood aggregation

• Only access its one-hop contexts in each layer

– Definition of the two groups

threshold

10



SMU Classification: Restricted

Debiasing Neighborhood Aggregation (1)

• Debiasing function

– Low-degree node

– High-degree node

• Requirement of debiasing function

– Comprehensiveness

– Adaptiveness
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Debiasing Neighborhood Aggregation (2)
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• Comprehensiveness
– Context embedding

– Debiasing function

• Adaptiveness

– Degree encoding
Degree encoding



SMU Classification: Restricted

Debiasing Neighborhood Aggregation (3)

• Modulated GNN Encoder

Control the impact



SMU Classification: Restricted

Training Constraints and Objective

• Node classification loss

• Constraints on debiasing contexts

• Constraints on scaling and shifting
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• Fairness loss

• Overall loss
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Experimental setup

Baselines

• Degree-specific models: 

– DSGCN [4], Residual2Vec [5], Tail-GNN [6]

• Fairness-aware models:

– FairWalk [7], CFC [8], FairGNN [9], FairAdj [10],

FairVGNN [11]

[1] Kipf, T. N., et al. 2017. Semi-supervised classification with graph convolutional networks. ICLR.

[2] Veličković, P., et al. 2018. Graph attention networks. ICLR.

[3] Hamilton W L., et al. 2017. Inductive representation learning on large graphs. NeurIPS.

[4] Tang, X., et al. 2020. Investigating and Mitigating Degree-Related Biases in Graph Convoltuional Networks. CIKM.

[5] Kojaku, S., et al. 2021. Residual2Vec: Debiasing graph embedding with random graphs. NeurIPS.

[6] Liu, Z., et al. 2021. Tail-GNN: Tail-Node Graph Neural Networks. KDD.

[7] Rahman, T. A., et al. 2019. Fairwalk: Towards Fair Graph Embedding. IJCAI.

[8] Bose, A., et al. 2019. Compositional fairness constraints for graph embeddings. In ICML, 715-724.

[9] Dai, E., et al. 2019. Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute 

Information. In WSDM, 680-688.

[10] Li, P., et al. 2021. On dyadic fairness: Exploring and mitigating bias in graph connections. ICLR.

[11] Wang, Y., et al. 2022. Improving Fairness in Graph Neural Networks via Mitigating Sensitive Attribute Leakage. KDD.
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Datasets

Base GNN models
• GCN [1]

• GAT [2]

• GraphSAGE [3]
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Experimental setup
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Evaluation Metrics for fairness
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Model Accuracy and Fairness
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Model Analysis

• Additional Base GNNs
– Outperform their corresponding base GNNs

• Ablation Study
– Without scaling and shifting

• Worse accuracy and fairness

– Without structural contrast

• Fairness generally become worse

– Without the modulation of aggregation

• Fairness become worse in most cases
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Conclusions

• Problem

– Degree fairness in graph neural networks

• Proposed model: DegFairGNN
– Target the root of degree bias

• modulating the core operation of neighborhood aggregation through a structural contrast

– Flexibly work with most modern GNNs

• Experiments
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Thanks!

On Generalized Degree Fairness in Graph Neural Networks

Zemin Liu, Trung-Kien Nguyen, Yuan Fang

In Proceeding of 37th AAAI Conference on Artificial Intelligence, February 7-14, 2023
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Paper, code, data… 

www.yfang.site 

http://www.yfang.site/
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