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Conclusion
▪ Problem

o Degree fairness in graph neural networks

▪ Proposed model: DegFairGNN

o Target the root of degree bias

o Flexibly work with most modern GNNs

▪ Experiements

o Extensive experiments on three benchmark datasets shows promising 

results on both accuracy and fairness metrics
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• Base GNN models

• GCN [1]

• GAT [2]

• GraphSAGE [3]

• Baselines

• Degree-specific models: DSGCN [4],

Residual2Vec [5], Tail-GNN [6]

• Fairness-aware models: FairWalk [7], CFC [8],

FairGNN [9], FairAdj [10], FairVGNN [11]

• (1) No scale and shift: worse in 

accuracy and fairness

• (2) No constrast: fairness generally

becomes worse

• (3) No modulation: fairness 

becomes worse in most cases
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Structural Contrast

Adaptiveness

Comprehensiveness

Low-degree group:

High-degree group:

Modulated GNN Encoder

Debiasing Function

Context Embedding

Node Classification Loss

Fairness Loss

Constraints on debiasing contexts

Constraints on scaling and shifting

Overall Loss

Degree Fairness in GNNs
• Source: Neighborhood structure (degree)

• Outcome: Differential node behaviors and biased outcomes

• Goal: Achieve equitable outcomes for nodes of different degrees

Generalized degree
• Source of degree bias: Neighborhood and local context

• Local context:

• Generalized degree

Generalized degree fairness
• Groups: 

• Metrics

Degree Statistical Parity:
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