

School of **Computing and Information Systems**

Motivation

Problem

Degree Fairness in GNNs

- Source: Neighborhood structure (degree)
- Outcome: Differential node behaviors and biased outcomes
- Goal: Achieve equitable outcomes for nodes of different degrees

Problem Formulation

Generalized degree

- Source of degree bias: Neighborhood and local context
- Local context: $\mathcal{C}_r = \{ v' \in \mathcal{V} \mid d(v, v') \le r \}$
- Generalized degree $\deg_r(v) = [\mathbf{A}^r \mathbf{1}]_v$

Generalized degree fairness

- $\mathcal{G}_i = \{ v \in \mathcal{V} \mid d_i \le \deg_r(v) < d_{i+1} \}$ • Groups:
- Metrics

Degree Statistical Parity: $P(\hat{y}_v = y | v \in \mathcal{G}_i) = P(\hat{y}_v = y | v \in \mathcal{G}_j)$

Degree Equal Opportunity: $P(\hat{y}_v = y | y_v = y, v \in \mathcal{G}_i) = P(\hat{y}_v = y | y_v = y, v \in \mathcal{G}_j)$

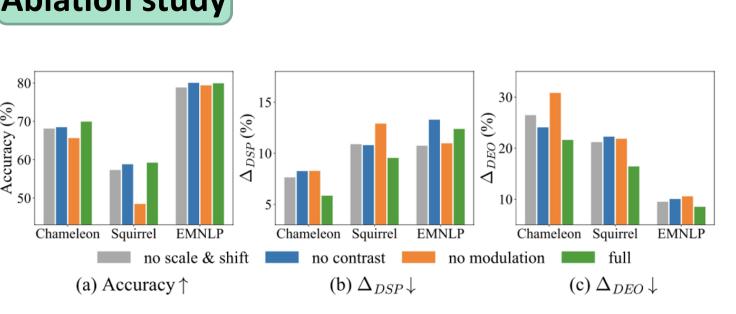
Experiments

Datasets

Dataset	Nodes	Edges	Features	Classes
Chameleon	2,277	31,371	2,325	5 (traffic volume)
Squirrel	5,201	198,353	2,089	5 (traffic volume)
EMNLP	2,600	7,969	8	2 (citation count)

• Base GNN models • **Baselines**

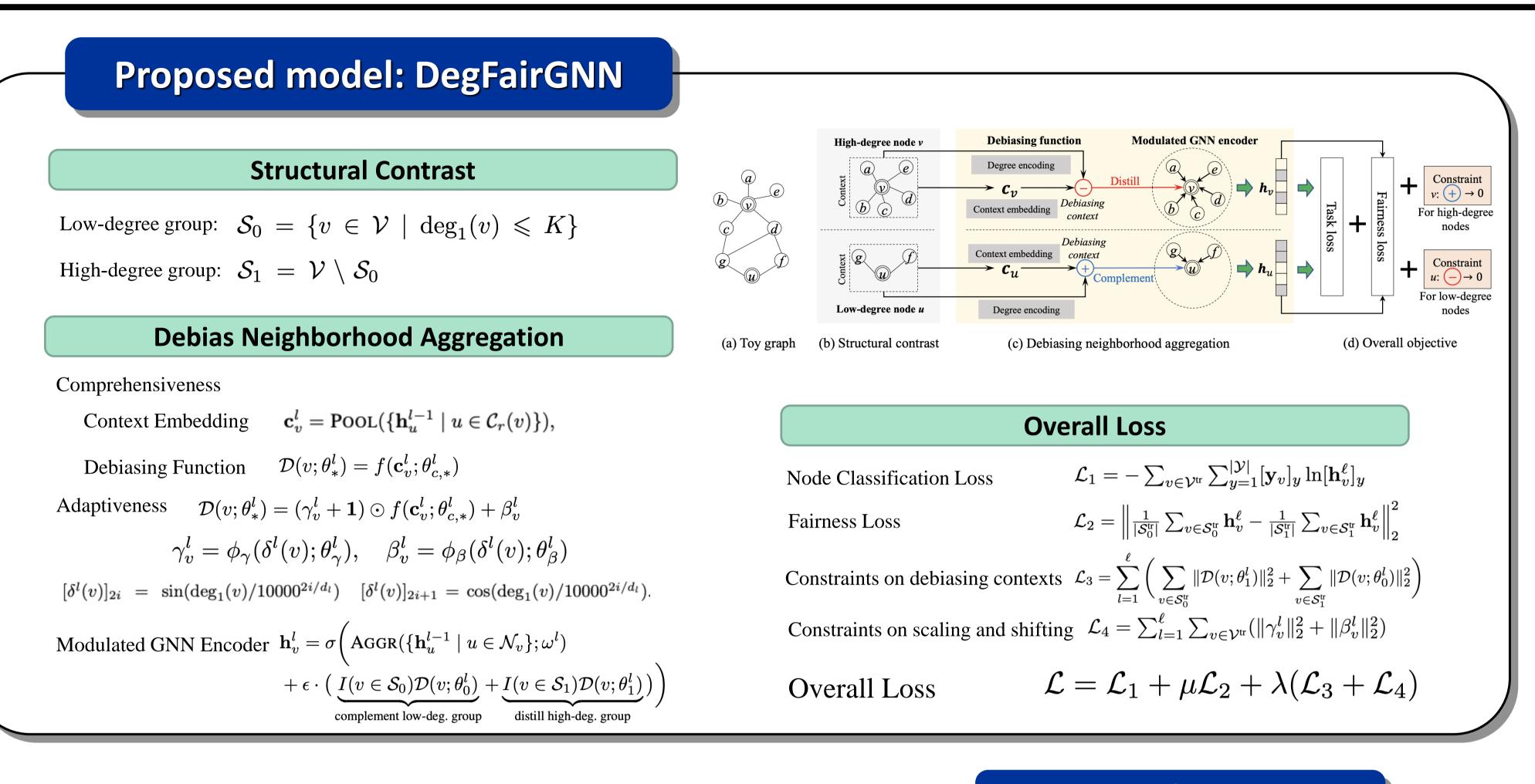
- GCN [1]
- GAT [2]
- GraphSAGE [3]
- Degree-specific models: DSGCN [4], Residual2Vec [5], Tail-GNN [6]
- Fairness-aware models: FairWalk [7], CFC [8], FairGNN [9], FairAdj [10], FairVGNN [11]


Metrics

 $\Delta_{\text{DSP}} = \frac{1}{|\mathcal{Y}|} \sum_{y \in \mathcal{Y}} \left| P(\hat{y}_v = y | v \in \mathcal{G}_0) - \right|$ $P(\hat{y}_v = y | v \in \mathcal{G}_1) |,$ $\Delta_{\text{DEO}} = \frac{1}{|\mathcal{Y}|} \sum_{y \in \mathcal{Y}} \left| P(\hat{y}_v = y | y_v = y, v \in \mathcal{G}_0) - \right|$ $P(\hat{y}_v = y | y_v = y, v \in \mathcal{G}_1) |.$

Main resul

Table 2: Comparison with baselines ($r = 1, 20\%$ Top/Bottom). Henceforth, tabular results are in percent with standard deviation over 5 runs; the best fairness result is bolded and the runner-up is <u>underlined</u> .												
		GCN	DSGCN	Residual2Vec	Tail-GNN	FairWalk	CFC	FairGNN	FairAdj	FairVGNN	DegFairGCN	
Chamel.				$\begin{array}{c} 49.04 \pm 0.01 \\ 14.52 \pm 0.69 \\ 37.31 \pm 1.99 \end{array}$								
Squirrel	$\begin{array}{c c} \text{Acc.} \uparrow \\ \Delta_{\text{DSP}} \downarrow \\ \Delta_{\text{DEO}} \downarrow \end{array}$	$ \begin{vmatrix} 47.85 \pm 1.33 \\ 13.37 \pm 2.83 \\ 27.00 \pm 3.79 \end{vmatrix} $	$\begin{vmatrix} 40.71 \pm 2.17 \\ 16.08 \pm 0.86 \\ 32.61 \pm 3.74 \end{vmatrix}$	$\begin{array}{c} 28.47 \pm 0.01 \\ 25.11 \pm 0.48 \\ 34.49 \pm 0.72 \end{array}$	$\begin{array}{c} 42.62\pm 0.06\\ 18.91\pm 0.26\\ 33.60\pm 0.72\end{array}$	$\begin{array}{c} 37.68 \pm 0.65 \\ \textbf{7.94} \pm 0.36 \\ \underline{17.12} \pm 1.50 \end{array}$	$\begin{array}{c} 45.64 \pm 2.19 \\ 12.40 \pm 0.48 \\ 21.60 \pm 2.69 \end{array}$	$\begin{array}{c} 57.29 \pm 0.77 \\ 12.96 \pm 1.03 \\ 17.62 \pm 2.40 \end{array}$	$\begin{array}{c} 35.18 \pm 1.22 \\ 16.63 \pm 1.56 \\ 27.54 \pm 1.73 \end{array}$	$\begin{array}{c} 46.97 \pm 0.48 \\ 26.67 \pm 0.52 \\ 35.80 \pm 1.76 \end{array}$	$\begin{array}{c} 59.21 \pm 0.97 \\ \underline{9.54} \pm 1.02 \\ \textbf{16.42} \pm 1.38 \end{array}$	
EMNLP	$\Delta_{\text{DSP}}\downarrow$	$\begin{vmatrix} 78.92 \pm 0.43 \\ 44.55 \pm 1.90 \\ 34.05 \pm 3.56 \end{vmatrix}$	50.00 ± 2.98	$\begin{array}{c} 80.69 \pm 0.01 \\ \underline{12.90} \pm 0.15 \\ \underline{11.26} \pm 0.67 \end{array}$	41.18 ± 1.58	33.52 ± 1.46	56.60 ± 1.95	58.23 ± 1.44	40.38 ± 4.64	43.92 ± 1.43	$\textbf{12.38} \pm 3.72$	


Ablation study

On Generalized Degree Fairness in Graph Neural Networks

Zemin Liu, Trung-Kien Nguyen, Yuan Fang

In Proceeding of 37th AAAI Conference on Artificial Intelligence, February 7-14, 2023

- (1) No scale and shift: worse in accuracy and fairness
- (2) No constrast: fairness generally becomes worse
- (3) No modulation: fairness becomes worse in most cases

- Problem
- Networks. CIKM. Leakage. KDD.

Acknowledgments

Conclusion

• Degree fairness in graph neural networks

Proposed model: DegFairGNN

- Target the root of degree bias
- Flexibly work with most modern GNNs

Experiements

• Extensive experiments on three benchmark datasets shows promising results on both accuracy and fairness metrics

References

- [1] Kipf, T. N., et al. 2017. Semi-supervised classification with graph convolutional networks. ICLR. [2] Veličković, P., et al. 2018. Graph attention networks. ICLR.
- [3] Hamilton W L., et al. 2017. Inductive representation learning on large graphs. NeurIPS.
- [4] Tang, X., et al. 2020. Investigating and Mitigating Degree-Related Biases in Graph Convoltuional
- [5] Kojaku, S., et al. 2021. Residual2Vec: Debiasing graph embedding with random graphs. NeurIPS. [6] Liu, Z., et al. 2021. Tail-GNN: Tail-Node Graph Neural Networks. KDD.
- [7] Rahman, T. A., et al. 2019. Fairwalk: Towards Fair Graph Embedding. IJCAI.
- [8] Bose, A., et al. 2019. Compositional fairness constraints for graph embeddings. In ICML, 715-724. [9] Dai, E., et al. 2019. Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information. In WSDM, 680-688.
- [10] Li, P., et al. 2021. On dyadic fairness: Exploring and mitigating bias in graph connections. ICLR. [11] Wang, Y., et al. 2022. Improving Fairness in Graph Neural Networks via Mitigating Sensitive Attribute
- This research is supported by the Agency for Science, Technology and Research (A*STAR) under its AME Programmatic Funds (Grant No. A20H6b0151).