Learning to Count Isomorphisms with Graph Neural Networks
(Technical Appendices)

Xingtong Yu,'* Zemin Liu,”* Yuan Fang,’” Xinming Zhang'"

! University of Science and Technology of China, China
2 National University of Singapore, Singapore
3 Singapore Management University, Singapore
yxt95 @mail.ustc.edu.cn, zeminliu@nus.edu.sg, yfang @smu.edu.sg, xinming @ustc.edu.cn

A Algorithm and Complexity Analysis

Algorithm. We present the algorithm for training of Count-
GNN in Alg. 1. In line 1, we initial all the parameters, as
well as objective £. In lines 3-13, we accumulate the loss
for the given training tuples. In particular, in lines 4-8, we
conduct the recursive edge-centric aggregation. In lines 5-7,
we calculate the edge-centric representation for each edge.
Then, in lines 9 and 10, we form the graph representations
by aggregating all the inclusive edge-centric representations
for query graph and input graph, respectively. In line 11, a
counter module is employed to predict the number of sub-
graphs of G; which are isomorphic to Q;. In line 12, we ac-
cumulate the loss. In line 14, we form the overall objective.
Finally, in line 15 we optimize the model by minimizing ob-
jective L.

Complexity analysis. The edge-centric aggregation in-
creases the computation cost. Here, given a tuple (Q, G, n),
we split Count-GNN into two parts for complexity analysis,
i.e., edge-centric aggregation, and query-conditioned graph
modulation. (1) Edge-centric aggregation. Supposing the
average degree on Q and G is d. In each edge-centric ag-
gregation layer, each edge would access its d neighboring
edges for aggregation, thus involving complexity O(d). For
query graph Q with a total of K layers, the complexity for
the edge representation learning is O(d¥ - |Eg]). Similarly,
the complexity for the edge representation learning of in-
put graph G is O(d¥ - |Eg|). (2) Query-conditioned graph
modulation. For query graph Q, the calculation of graph
representation involves complexity of O(|Eg|). For input
graph Q, it first calculates the query-conditioned modulation
for all edges with a complexity of O(|Eg|); then the calcu-
lation of graph representation has complexity of O(|Eg|).
The prediction w.r.t. the calculated representation of query
graph and input graph has complexity of O(1). In sum-
mary, the prediction for tuple (Q,G,n) has complexity of
O(d" - |Eg| +d" - |Eg| + |Eg| + 2| Egl).

*Co-first authors with equal contribution. Part of the work was
done while at Singapore Management University.

Corresponding authors.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

B Proofs

We present the proofs of the theoretical results in Section 4.5
of the main paper.

Lemma 1 (Generalization). Count-GNN can be reduced to
a node-centric GNN, i.e., Count-GNN can be regarded as a
generalization of the latter. O

Proof. Without loss of generality, we consider directed
graphs here, where an edge on an undirected graph can be
treated as two directed edges in opposite directions. We also
assume the following generic form of node-centric GNN, in
which the node embedding in layer [is given by

hy, = o(W' (b, " + AGGR({hi™'[(i,u) € E}))), (¥)

where messages from the neighboring nodes of « in the pre-
vious layer are aggregated into AGGR({h!™!|(i,u) € E}),
which is further combined with hL_l, the self-information
of the target node u in the previous layer. W' represents
the weight matrix in layer [to further map the aggregated
messages from layer [— 1 into the new representation of
u in layer [. Note that different choices of the aggregation
function, AGGR(+), will materialize different node-centric
GNNe .

Given a directed edge e = (u,v), in the first layer of
Count-GNN, we concatenate the features of the edge and
its two end nodes to form the initial embedding of edge e,

ie., h?u o = Xu || Xy | %0 € R%. To reduce Count-

GNN into a node-centric GNN, for each edge (u, v), in the
first layer we skip the features of the edge and the end node
v, and only employ «’s feature vector to form the initial em-

bedding, i.e., h?u v = Xu Subsequently, it can be shown

that in any layer [, the embedding of each edge e = (u,v),
ie., hl<u V) is equivalent to the embedding of its start node

u, i.e., hl(ﬂ-v) = h!,. We show the equivalence by induction

as follows.

First, we already have the base case h”

(u,v)

a node-centric GNN the initial embedding of node u, hg, is

simply the input features x,,. We regard this as layer 0.
Second, we need to show the inductive step, i.e., given that

in layer [— 1, hi;l,l}) = h!~!, we can derive hl(uﬂ)) = h}

=hY, since in

in layer /. To obtain the edge representation hl<u) in layer

Algorithm 1: MODEL TRAINING FOR COUNT-GNN

Input: Training tuples 7 = {(Qs, Gi, ns)|t = 1,2, ...}, total layers number K, hyper-parameters A, fi.

QOutput: Model parameters O.
1: © < parameters initialization, £ < 0;
2: while not converged do

3 for each triple (Q;,Gi,n;) € T do

4: for each layer I € {1,..., K} do

5: for each directed edge (u,v) € Eg, or Eg, do
6: h{, .y < o(W'h{;} +U'h_} +b');
7 end for

8: end for

9: hg, + o0(Q - AGGR({h.|e € Eg,});

10: hg + (G - AGGR({h.|e € Eg, });

11: #(Qi,G:) + RELU(w ' MarcH(hg,, h§?) + b);
12: L+ L+17(Q:,Gi) — nils

13: end for

14: £<—£+)\‘£FILM+/A'H@H§;
15: Update © by minimize £;

16: end while

17: return ©.

> Training iteration

> Edge-centric aggregation, Eq. (1)

> Query graph representation, Eq. (3)
> Input graph representation, Eq. (7)
> Counter, Eq. (8)

> Loss accumulation

> Overall objective, Eq. (9)

[, we start by aggregating (u,v)’s adjacent edges following
Eq. (2) of the main paper, which gives
h{ .y = AGGR({hi; , |(i,u) € E})
= AGGR({h!7|(i,u) € E}).

We further apply Eq. (1) to generate the edge representa-
tion in layer [as

hlu,v> :U(Wlhl_1> —|—Ulhl<_1> —|—bl)

(u,v U

= o(W'h!"! + U'AGGr({h!7!|(i,u) € E}) + bl)
By constraining W' = U and fixing b’ = 0, we have
h, . =oc(W'(h!"! + AcGrR({h! " |(i,u) € E}))).

(u,v)
If we choose the same Aggr(-) as in Eq. (*), we get hl(u,v> =
h!, where h!, is given by the node-centric GNN layer in
Eq. (%).

Since the base case and inductive step both hold, we have
h{, ,, = hi, for any layer /. Recall that the base case is true
if, for each edge, we remove the edge features and do not
concatenate the features of its end node. Therefore, we are
able to reduce Count-GNN into a node-centric GNN, which
means we can regard Count-GNN as a generalization of the
latter. O

Theorem 1 (Expressiveness). Count-GNN is more power-
ful than node-centric GNNs, which means (i) for any two
non-isomorphic graphs that can be distinguished by a node-
centric GNN, they can also be distinguished by Count-GNN;
and (ii) there exists two non-isomorphic graphs that can
be distinguished by Count-GNN but not by a node-centric
GNN. O

Proof. Assuming node-centric GNNs of the form in Eq. (¥),
statement (i) immediately follows from Lemma 1. Hence,

@/@[\o] h
[0,1,0] [0,0,1] [0,0,1]
(a) Graph G, (b) Graph G,

Figure I: Example graphs for Theorem 1.

we only need to show (ii), which is an existential statement
that can be proven by finding an example.

The example is given in Fig. I, which consists of two
non-isomorphic graphs that we need to differentiate. For in-
stance, graph G; has three nodes, i.e., a, b and ¢, and each
node has its feature vector, e.g., node a has feature vector
[1,0,0]. The expressiveness of GNNs determines its ability
in differentiating different graph structures. In the follow-
ing, we show that a node-centric GNN cannot differentiate
Gy and G while our edge-centric Count-GNN can discrim-
inate these two graphs. We assume both GNNs employ a
mean aggregator function to aggregate the embeddings of
neighboring nodes (or edges) using only one layer, and both
utilize a mean readout function, i.e., generating the graph
representation by averaging the node (or edge) embeddings
in the graph. For the ease of presentation, instead of sum-
ming the self-information and the aggregated neighboring
information, we apply concatenation to fuse them.

In Tables I and II, we illustrate the calculation of node em-
beddings and graph embeddings using a node-centric GNN
on Gy and Go, respectively. Here || is a notation for concate-
nation. For example, to calculate the output embedding of
node a on graph Gi, we first find the mean of its neigh-
bors’ embeddings, i.e., node b with [0, 1, 0] and node ¢ with
[0,0, 1], and obtain [0.0,0.5,0.5]. It is then concatenated
with a’s self-embedding [1,0,0] to obtain the output em-
bedding of a, ie., [0.0,0.5,0.5 || 1.0,0.0,0.0]. It is simi-

Table I: Node-centric em- Table II: Node-centric em-

beddings of graph G . beddings of graph G,.
| Embeddings | embeddings

a [0.0,0.5,0.5 || 1.0,0.0,0.0] a [0.0,0.5,0.5 || 1.0, 0.0, 0.0]

b [1.0,0.0,0.0 || 0.0, 1.0, 0.0] b [1.0,0.0,0.0 || 0.0, 1.0, 0.0]

c [1.0,0.0,0.0 || 0.0,0.0, 1.0] c [1.0,0.0, 0.0 || 0.0, 0.0, 1.0]
d [0.0,0.5,0.5 || 1.0,0.0,0.0]

Gi | 10.67,0.17,0.17]]033,0.33,0.33] ¢ [10,00.00] 00, 10, 0.0]
f [1.0,0.0, 0.0 || 0.0, 0.0, 1.0]

Gy | [0.67,0.17,0.17 || 0.33, 0.33, 0.33]

Table III: Edge-centric embeddings of graph G;.

| embeddings

[0.0, 0.0, 1.0, 1.0, 0.0, 0.0 || 1.0, 0.0, 0.0, 0.0, 1.0, 0.0]
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0 || 0.0, 1.0, 0.0, 1.0, 0.0, 0.0]
(a,c) [0.0, 1.0, 0.0, 1.0, 0.0, 0.0 || 1.0, 0.0, 0.0, 0.0, 0.0, 1.0]
(c,a) [0.0, 0.0, 0.0, 0.0, 0.0, 0.0 || 0.0, 0.0, 1.0, 1.0, 0.0, 0.0]

Gi]10.00,0.25, 0.25, 0.50, 0.00, 0.00 || 0.50, 0.25, 0.25, 0.50, 0.25, 0.25]

(a,b)
(b,a)

larly done for other nodes in both graphs. Finally, the graph
embedding is obtained by taking the mean of the node em-
beddings in each graph. As shown in Tables I and II, the two
non-isomorphic graphs has identical graph embeddings pro-
duced by the node-centric GNN, which means they cannot
be differentiated by the node-centric GNN.

In Tables III and IV, we further illustrate the calculation
of edge embeddings and graph embeddings using Count-
GNN on the two graphs. Given a directed edge, we first
initialize its embedding by concatenating the features of
its start and end node with its own features. Since in our
example the edges have no input features, we skip them
in the concatenation (equivalently we can also pad ze-
ros). For instance, for the edge (d,e) in Go, its initial em-
bedding is h?d7€> = [1.0,0.0,0.0,0.0,1.0,0.0], by con-
catenating d’s feature vector [1,0,0] and e’s feature vec-
tor [0,1,0]. Similar to node-centric GNN, given a target
edge, here we first aggregate its neighboring edges with
a mean aggregator to obtain the neighboring embedding,
which is then further concatenated with its self-embedding
to obtain the output embedding. Again, we take the edge
(d,e) on graph Gy as an example. We first aggregate
the embeddings of its preceding edges which incident on
node d, i.e., (b,d), (c,d) and (f,d), thus obtaining the

Table IV: Edge-centric embeddings of graph Gs.

| embeddings
(a, b) | 10.00, 0.00, 1.00, 1.00, 0.00, 0.00 || 1.00, 0.00, 0.00, 0.00, 1.00, 0.00]
(b, a) | [1.00, 0.00, 0.00, 0.00, 1.00, 0.00 || 0.00, 1.00, 0.00, 1.00, 0.00, 0.00]
(a, ¢) | [0.00, 1.00, 0.00, 1.00, 0.00, 0.00 || 1.00, 0.00, 0.00, 0.00, 0.00, 1.00]
(c,a) | [1.00, 0.00, 0.00, 0.00, 0.00, 1.00 || 0.00, 0.00, 1.00, 1.00, 0.00, 0.00]
(d, b) | [0.00, 0.33, 0.67, 1.00, 0.00, 0.00 || 1.00, 0.00, 0.00, 0.00, 1.00, 0.00]
(b, d) | [1.00, 0.00, 0.00, 0.00, 1.00, 0.00 || 0.00, 1.00, 0.00, 1.00, 0.00, 0.00]
(d, ¢) | [0.00, 0.67, 0.33, 1.00, 0.00, 0.00 || 1.00, 0.00, 0.00, 0.00, 0.00, 1.00]
(¢, d)y | [1.00, 0.00, 0.00, 0.00, 0.00, 1.00 || 0.00, 0.00, 1.00, 1.00, 0.00, 0.00]
(d,e) | [0.00, 0.33, 0.67, 1.00, 0.00, 0.00 || 1.00, 0.00, 0.00, 0.00, 1.00, 0.00]
(e, d) | [0.00, 0.00, 0.00, 0.00, 0.00, 0.00 || 0.00, 1.00, 0.00, 1.00, 0.00, 0.00]
(d, f) | [0.00, 0.67, 0.33, 1.00, 0.00, 0.00 || 1.00, 0.00, 0.00, 0.00, 0.00, 1.00]
(f,d) | [0.00, 0.00, 0.00, 0.00, 0.00, 0.00 || 0.00, 0.00, 1.00, 1.00, 0.00, 0.00]

G2 |10.33,0.25,0.25,0.50,0.17, 0.17 || 0.50, 0.25, 0.25, 0.50, 0.25, 0.25]

Table V: Parameters for the data generation of SMALL and
LARGE.

| Parameters | SMALL | LARGE
Vol {3,4,8} {3.4,8, 16}
|Eg| {2.4,8} {2.4,8,16}
Query graph Q |Lol {2,4,8} {2,4,8,16}
L) {2,4,8) {2,4,8,16}

Vol | {8.16.32, 64} | {64, 128,256,512}
|Eg| | {8.16,...256} | {64, 128, ..., 2048}
Input graph &G | 7) (4.8, 16} {16, 32, 64}
), {4.8. 16} {16, 32, 64}

neighboring embedding [0.00, 0.33,0.67,1.00,0.00, 0.00].
Therefore, the output edge embedding of (d,e) is [0.00,
0.33, 0.67, 1.00, 0.00, 0.00 | 1.00, 0.00, 0.00, 0.00,
1.00, 0.00] after further concatenating with its initial self-
embedding. Note that for edges without any preceding edge,
e.g., {e,d), we pad its neighboring embedding with zeros,
[0.0,0.0,0.0,0.0,0.0,0.0]. Finally, the graph embedding is
obtained by averaging all the edge embeddings in each
graph. From Tables III and IV we can observe that, the graph
embeddings of G; and G, calculated by Count-GNN are dif-
ferent, which demonstrates that the two graphs can be dis-
tinguished by Count-GNN. Hence, the existential statement
in (ii) is valid and the proof can be concluded. L]

C Details of Datasets

Data generation. We resort to the data generators in work
(Liu et al. 2020) to generate the four datasets (for MUTAG
and OGB-PPA, only the query graphs), by using the same
parameter settings. The detailed settings in data generation
for SMALL and LARGE are illustrated in Table V. In par-
ticular, when to generate one query graph or input graph,
we first randomly sample the size parameters from the cor-
responding sets in Table V, to constrain the generation of
this graph. Note that, with generally larger parameter sizes,
the dataset LARGE would have larger individual graph sizes
than dataset SMALL, as illustrated in Table 1.

Graph selection for OGB-PPA. The original dataset OGB-
PPA consists of 158,100 graphs. However, a large fraction
of graphs in OGB-PPA have no isomorphisms to the gen-
erated query graphs, and this extreme dataset distribution
may impair the training of GNN-based models. Therefore,
we sample 6,000 graphs from the original OGB-PPA and en-
sure their averaged subgraph isomorphism counting is above
10 for usage.

Query selection for secondary setting in experiments. Let
N and E denote the number of nodes and directed edges,
respectively; for dataset SMALL, we randomly select three
query graphs in the size of (N3, E3), (N4, E4) and (N8, ES),
respectively; for dataset LARGE, we randomly select three
query graphs in the size of (N4, E4), (N8, ES8), and (N16,
E16), respectively; for dataset MUTAG, we randomly select
three query graphs in the size of (N3, E2), (N4, E3) and (N4,
E3), respectively.

D Details and Settings of Baselines

We compare Count-GNN with the state-of-the-art ap-
proaches from two main categories.

(1) Conventional GNNs, including GCN (Kipf and Welling
2017), GAT (Velickovi¢ et al. 2018), GraphSAGE (Hamil-
ton, Ying, and Leskovec 2017), DPGCNN (Monti et al.
2018), GIN (Xu et al. 2019) and DiffPool (Ying et al. 2018).
They usually capitalize on node-centric message passing,
followed by a readout function to obtain the whole-graph
representation.

* GCN (Kipf and Welling 2017): GCN usually resorts to
mean-pooling based node-centric neighborhood aggrega-
tion to receive messages from the neighboring nodes for
node representation learning.

* GAT (Velickovi¢ et al. 2018): GAT also depends on node-
centric neighborhood aggregation for node representation
learning, while it can assign different weights to neighbors
to reweight their contributions.

* GraphSAGE (Hamilton, Ying, and Leskovec 2017):
GraphSAGE has a similar neighborhood aggregation
mechanism with GCN, while it focuses more on the in-
formation from the node itself.

e DPGCNN (Monti et al. 2018): DPGCNN is also a node-
centric GNN models, and employs a similar neighborhood
aggregator with GAT, while it also takes edge topology
into account when calculating the neighbors’ weights.

* GIN (Xu et al. 2019): GIN employs a SUM aggregator to
replace the mean-pooling method in GCN to aggregate all
the messages from neighboring nodes, which is demon-
strated to be more powerful to capture the graph struc-
tures.

* DiffPool (Ying et al. 2018): DiffPool depends on a GNN
framework to further build its specific aggregation mech-
anism, by clustering nodes hierarchically to form the
whole-graph representation.

(2) GNN-based isomorphism counting models, including
four variants proposed by (Liu et al. 2020), namely RGCN-
DN, RGCN-Sum, RGIN-DN, RGIN-Sum, as well as LRP
(Zhengdao et al. 2020) and DMPNN-LRP (Liu and Song
2022). They are purposely designed GNNs for subgraph iso-
morphism counting, relying on different GNNs (e.g., RGCN
(Schlichtkrull et al. 2018), RGIN (Xu et al. 2019), or local
relational pooling (Zhengdao et al. 2020)) for node repre-
sentation learning, followed by a specialized readout suited
for isomorphism matching, e.g., DiamNet (Liu et al. 2020).
In particular, the two variants RGCN-DN and RGIN-DN
utilize DiamNet, whereas RGCN-Sum and RGIN-Sum uti-
lize the simple sum-pooling. Based on previous work (Liu
et al. 2020; Zhengdao et al. 2020), DMPNN (Liu and Song
2022) also leverage edge-centric aggregation via dual graph.
DMPNN-LRP (Liu and Song 2022) adds local relational
pooling behind dual message passing for node representa-
tion learning compared with DMPNN.

Model settings. To achieve the optimal performance, we
tune the hyper-parameters for all the baselines according
to the proposed settings in literature. In particular, for con-
ventional GNN models including GCN (Kipf and Welling

2017), GAT (Velickovi¢ et al. 2018), GraphSAGE (Hamil-
ton, Ying, and Leskovec 2017), DPGCNN (Monti et al.
2018), GIN (Xu et al. 2019) and DiffPool (Ying et al. 2018),
we set the number of total layers as 3, hidden dimension as
128, and dropout rate as 0.2. In particular, for GAT, we use a
self-attention mechanism with 4 heads; for GraphSAGE, we
use the mean-pooling as the aggregator; for DPGCNN, we
use 4 heads on the dual convolution layer and set the output
dimension as 8 for each head. For DiffPool, we set the ratio
of nodes’ number in consecutive layers as 0.1. For GNN-
based isomorphism counting models, we follow the hyper-
parameter settings in their original papers, with which the
models can achieve the optimal performance. In particular,
for RGCN-SUM, RGCN-DM, RGIN-SUM ,RGIN-DM and
DMPNN-LRP we set the number of layers as 3, and the hid-
den dimension as 128.

E Settings of Count-GNN

We tune several hyper-parameters for Count-GNN to
achieve its optimal performance. In particular, we employ
a Count-GNN with a total of 3 layers. Besides, on SMALL
and LARGE datasets, we set the hidden dimension as 24,
due to the fact that Count-GNN performs well even with
low hidden dimensions, though it usually performs better
with higher dimension which also costs more time. To find a
balance between the accuracy and time cost, we choose this
moderate dimension. On MUTAG, we set the hidden dimen-
sion as 12. On OGB-PPA, we set the hidden dimension as
24. In addition, we set the hyper-parameter A for weighting
the FiLM factors in Eq. (9) as 0.0001.

F Further Experiments and Analysis

In addition to the experiments in the main paper, in this sec-
tion we present further experimental results and analysis for
model evaluation.

Parameters Sensitivity. We study the sensitivity of two im-
portant hyper-parameters on SMALL dataset.

In Fig. II(a), we increase the total number of GNN layers
K for edge-centric aggregation, to check its influence on the
performance. As K increases, the performance in terms of
MAE and Q-error generally become better, only with one
exception on Q-error when K = 4. This shows a phenomena
that the increase of layers may facilitate the exploitation of
long-range structural information, which might further help
the model to achieve a clearer view of the graph structure.

In Fig. II(b), we show the sensitivity of parameter A,
which weights the regularizer on the FiLM factors in Eq. (9).
We observe that A is relative sensitive to the performance,
and A = 0.01 may result in an inferior performance. Interval
[le-5, 1e-3] might be a good range for superior performance
of subgraph isomorphism counting.

Comparison with Different Training Sizes. To evalu-
ate the performance tendency of Count-GNN with differ-
ent training sizes, we conduct an experiment by increas-
ing the number of training triplets from 2,000 to 10,000,
then to 20,000 on dataset SMALL. A baseline RGIN-SUM
(Liu et al. 2020) is also employed for comparison, which

1.5 1.6

—e— MAE
10 1.4 10 —&— Q-error 1.5
m S m 148
<9 135 £ 9 5
= & = 13d

—e— MAE 1.2 12
8| —— Qerror 8 :

T2 3 4 3 11

1e-05 0.0001 0.001 0.01 0.1
K A

(a) Sensitivity of K | (b) Sensitivity of A |

Figure II: Parameters sensitivity on dataset SMALL.

—e— RGIN-SUM
—&— Count-GNN

—e— RGIN-SUM
—&— Q-error

2k 4k 6k 8k 10k 20k ok)
training triples # training triples

(a) MAE | (b) Q-error |
Figure III: Comparison with different training sizes.

2k 4k 6k 8 10k 20k

is proved to be competitive in the results of Table (2).
Figs. IlI(a) and III(b) show the results of MAE and Q-error,
respectively. We have the following observations. First, with
different training sizes, the proposed model Count-GNN can
consistently outperform baseline RGIN-SUM. The only ex-
ceptions lie in MAE with 20k and Q-error with 2k. This
demonstrates that the performance of Count-GNN for sub-
graph isomorphism counting is stably superior to the base-
lines with different sizes of labeled data. Only when labeled
data is too scarce or too sufficient its performance might
be surpassed by the competitive baselines. Second, as the
number of training triplets increases, both MAE and Q-error
have a tendency of decrease, showing that more labeled data
would generally boost the model performance.

Scalability study. We

investigate the scala- 60
bility of Count-GNN
on the dataset OGB-
PPA, which contains
graphs with the largest
average number of
edges. For both train- 0
ing and testing, we first
randomly sample 10
query graphs. Next, we
construct five groups
of input graphs, where
each group contains 10 input graphs of similar size in terms
of number of edges. The average number of edges per graph
in the five group ranges between 500 and 2500. We illustrate
both the training and inference time (in ms) for each group
in Fig. IV. Note that the time costs reported here are much
smaller than the numbers in Tables 2 and 3, as there are
only 10 query/input graphs per group. Both training and
inference time increase linearly w.r.t. the number of edges in

—8— Training time/epoch
—&— Inference time

Time (ms)
I3 P
=] (=]

A
500 1000 1500 2000 250
Graph size (# edges)

Figure IV: Scalability study.

the graph. The linear growth demonstrates that Count-GNN
is capable of scaling to larger and denser graphs.

G Additional Related Work

Graph representation learning. Graph representation
learning (Perozzi, Al-Rfou, and Skiena 2014; Grover and
Leskovec 2016; Tang et al. 2015) usually capitalizes on sub-
structures sampling on graph to represent the local view of
graph structures, thus an encoder can be further employed to
embed nodes into low-dimensional representations, in which
the graph structures are preserved. More recently, graph neu-
ral networks (GNNs) (Kipf and Welling 2017; Hamilton,
Ying, and Leskovec 2017; Velickovié et al. 2018; Xu et al.
2019) arise as a powerful family of representation learning
approaches, which rely on the key operator of neighborhood
aggregation to pass messages recursively for node represen-
tation learning, thus both the structure and content informa-
tion can be preserved simultaneously.

Other related studies. Graph similarity search (Bai et al.
2019; Li et al. 2019) addresses a related but distinct problem
of evaluating the similarity between two graphs. Some re-
cent studies (Wang, Yan, and Yang 2019; Wang et al. 2021;
Bai et al. 2021) also attempt to combine the traditional mod-
els and deep learning models. Subgraph similarity search
(Yuan et al. 2012) is another similar yet different task, which
aims to calculate whether a target graph approximately con-
tains a query graph. Many of them capitalize on Subgraph
Edit Distance (SED) to calculate the similarity between the
target and query graphs (Bai et al. 2020; Zhang et al. 2021).
However, both of the prior two search methods cannot be di-
rectly employed to cope with the problem of subgraph iso-
morphism counting due to the difference in problem. Object
detection (Redmon et al. 2016; Zhao et al. 2019), which is
intrinsically similar to subgraph isomorphism counting on
graph, is a popular topic in the field of computer vision.
However, due to the divergent data characteristics between
graph and visual data, object detection approaches cannot be
applied to solve subgraph isomorphism counting on graphs.
Separately, GSN (Bouritsas et al. 2020) employs a topology-
aware message passing scheme, in which substructure iso-
morphism counts are used as structural features to enhance
the expressive power of GNNs. That is, it simply applies an
existing algorithm for subgraph isomorphism counting and
leverages the counts as additional input, but does not address
the problem of subgraph isomorphism counting itself.

References

Bai, Y.; Ding, H.; Bian, S.; Chen, T.; Sun, Y.; and Wang,
W. 2019. Simgnn: A neural network approach to fast graph
similarity computation. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining,
384-392.

Bai, Y.; Ding, H.; Gu, K.; Sun, Y.; and Wang, W. 2020.
Learning-based efficient graph similarity computation via
multi-scale convolutional set matching. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34,
3219-3226.

Bai, Y.; Xu, D.; Sun, Y.; and Wang, W. 2021. GLSearch:
Maximum Common Subgraph Detection via Learning to
Search. In International Conference on Machine Learning,

588-598. PMLR.

Bouritsas, G.; Frasca, F.; Zafeiriou, S.; and Bronstein,
M. M. 2020. Improving graph neural network expressiv-
ity via subgraph isomorphism counting. arXiv preprint
arXiv:2006.09252.

Grover, A.; and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In KDD, 855-864.

Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. In NIPS, 1024
1034.

Kipf, T. N.; and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. ICLR.

Li, Y.; Gu, C.; Dullien, T.; Vinyals, O.; and Kohli, P. 2019.
Graph matching networks for learning the similarity of
graph structured objects. In International conference on ma-
chine learning, 3835-3845. PMLR.

Liu, X.; Pan, H.; He, M.; Song, Y.; Jiang, X.; and Shang, L.
2020. Neural subgraph isomorphism counting. In Proceed-
ings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 1959—1969.

Liu, X.; and Song, Y. 2022. Graph convolutional networks
with dual message passing for subgraph isomorphism count-
ing and matching. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, 7594-7602.

Monti, F.; Shchur, O.; Bojchevski, A.; Litany, O.;
Giinnemann, S.; and Bronstein, M. M. 2018. Dual-
primal graph convolutional networks. arXiv preprint
arXiv:1806.00770.

Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. DeepWalk:
Online learning of social representations. In KDD, 701-710.

Redmon, J.; Divvala, S.; Girshick, R.; and Farhadi, A. 2016.
You only look once: Unified, real-time object detection. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 779-788.

Schlichtkrull, M.; Kipf, T. N.; Bloem, P.; Van Den Berg, R.;
Titov, L.; and Welling, M. 2018. Modeling relational data
with graph convolutional networks. In European semantic
web conference, 593-607. Springer.

Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; and Mei, Q.
2015. Line: Large-scale information network embedding. In
WWW, 1067-1077.

Veli¢kovié, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P; and Bengio, Y. 2018. Graph attention networks. /CLR.
Wang, R.; Yan, J.; and Yang, X. 2019. Learning combi-
natorial embedding networks for deep graph matching. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 3056-3065.

Wang, R.; Zhang, T.; Yu, T.; Yan, J.; and Yang, X. 2021.
Combinatorial learning of graph edit distance via dynamic
embedding. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 5241-5250.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
powerful are graph neural networks? ICLR.

Ying, Z.; You, J.; Morris, C.; Ren, X.; Hamilton, W.; and
Leskovec, J. 2018. Hierarchical Graph Representation
Learning with Differentiable Pooling. Advances in Neural
Information Processing Systems, 31: 4800—4810.

Yuan, Y.; Wang, G.; Chen, L.; and Wang, H. 2012. Efficient
Subgraph Similarity Search on Large Probabilistic Graph
Databases. Proceedings of the VLDB Endowment, 5(9).
Zhang, Z.; Bu, J.; Ester, M.; Li, Z.; Yao, C.; Yu, Z.; and
Wang, C. 2021. H2mn: Graph similarity learning with hier-
archical hypergraph matching networks. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discov-
ery & Data Mining, 2274-2284.

Zhao, Z.-Q.; Zheng, P.; Xu, S.-t.; and Wu, X. 2019. Ob-
ject detection with deep learning: A review. I[EEE trans-
actions on neural networks and learning systems, 30(11):
3212-3232.

Zhengdao, C.; Lei, C.; Soledad, V.; and Bruna, J. 2020. Can
Graph Neural Networks Count Substructures? Advances in
neural information processing systems.

