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02 Related Work

Exact Database Approximate Database

Methods[1][2][3] Methods[4] GNN Methods[5][6]

Search-Based Sampling-Based GNN+Counter

Exact Results Approximate Results Approximate Results

Excessive Computation

Cost Large Computation Cost Little Computation Cost

[1] Ullmann, J. R. 1976. An algorithm for subgraph isomorphism. JACM.

[2] Cordella, L. P. et al. 2004. A (sub) graph isomorphism algorithm for matching large graphs. PAMI.

[3] Carletti, V. et al.2017. Challenging the time complexity of exact subgraph isomorphism for huge and dense graphs with VF3. PAMI.
[4] Bressan, M. et al. 2021. Faster motif counting via succinct color coding and adaptive sampling. ACM Trans Knowl| Discov Data.

[5] Liu, X. et al. 2020. Neural subgraph isomorphism counting. KDD.
[6] Zhengdao, C. et al. 2020. Can Graph Neural Networks Count Substructures? NeurlPS.
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02 Related Work

Shortage of General GNN-based Isomorphism Counting Models

Node Centric Fixed Graph Representation

Isomorphism
Counting focus on Hard to capture
topology interaction among
information nodes

Distinct structures Fixed graph
of queries representation




03 Contribution

Count-GNN

Edge-Centric Aggregating Query-Conditioned Graph

GNN Modulation

Experiments on Four Benchmark Datasets
8x~26x speedups over exact methods
3.1x~6.5x speedups over GNN methods
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Proposed Model:
Count-GNN
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Overall-Framework
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Edge-Centric Aggregation

hﬂ

w,v) = Xy || K{'u._-u} || X, € Rdu

h-‘u__,u} — J(W'Eh";{;__lﬂ} 1+ U"hf{____i} +b')

h{",, = AGGR({h{; ., |(i,u) € E})

4+ X,. encoded nodes or edges into input features
4+ || : concatenation operator

. . . :
(a) Edge-centric aggregation + hy,,,y: message on edge (u, v) in the l-th layer

+ hf:lb: message aggregated from the preceding edges of
(u, v)

4+ AGGR: aggregation operator

+ WLULDbL learnable parameter
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Query graph representation

Iho = o(Q - AGGR({h, (s, v) € Eo})) |
hiuo) = (V) +1) © gy + Bl
Y(u,v) = U(nyh(u’,u) + Uf},hQ + b,},)
Buwy = 0(Wghyy vy +Ughg + bg)

hg =o0(G- AGGR({B<U,U> [(u,v) € Eg}))

4+ Q: encoded nodes or edges into input features

+ Yy + By FiLM factors for scaling and shifting
(b) Modulation conditioned on queries * ©: Hadamard product

+ Wy, Uy,WB, UB: learnable weight metrices

+ by, bg: learnable bias vectors
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Counter Module and Overall Objective

Counter Module Overall Objective

7(Q,G) = RELU(w ' MatcH(hg, hg) + b) 7] > 1(Qi, Gi) — nal + AMlrm +1]|O|13
(Q:,Gi,n;)ET

EFiLM = Z Z HfY(u,fu) H% -+ Hﬁ(u,fu) H%

(Qi,Gi,m:)ET (u,v)EEg,

MATCH(x,y) =FCL(x ||y [x -y || x©Yy)

+ MATCH(, -): outputs the matchability between
its arguments |
+ w, b: learnable weight vector and bias i+ ground truth

n
. L - regularizer on the FiLM factors
+ FCL: full connected layer I © 115: learnable weight vector and bias




Theoretical Analysis of Count-GNN

Lemma 1 (Generalization). Count-GNN can be reduced to
a node-centric GNN, i.e., Count-GNN can be regarded as a
generalization of the latter:

Theorem 1 (Expressiveness). Count-GNN is more power-
ful than node-centric GNNs, which means (i) for any two
non-isomorphic graphs that can be distinguished by a node-
centric GNN, they can also be distinguished by Count-GNN;
and (ii) there exists two non-isomorphic graphs that can
be distinguished by Count-GNN but not by a node-centric
GNN.
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Experiments
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Datasets & Baselines

e Datasets | SMALL LARGE MUTAG OGB-PPA

# Queries 75 122 24 12
# Graphs 6,790 3,240 188 6,000
# Triples 448,140 395,280 4,512 57,940
Avg(|Val) 5.20 8.43 3.50 4.50
Avg(|Egl) 6.80 12.23 2.50 4.75
Avg(|Vg)) 3262 239.94 17.93 152.75
Avg(|Egl) 76.34 559.68 39.58 1968.29
Avg(Counts) 14.83 34.42 17.76 13.83
Max(|L|) 16 64 7 8
Max(|L'|) 16 64 4 1

- Baselines Conventional GNNs:
GCN , GAT, DPGCNN, GIN, DiffPool
GNN-based isomorphism counting models:
RGCN-DN, RGCN-Sum, RGIN-DN, RGIN-Sum([2], LRP, DMPNN-LRP([3]
Exact Apporaches:
VF2, Peregrine[1]

[1] Jamshidi, K. et al. 2020. Peregrine: a pattern-aware graph mining system. EuroSys.
[2] Liu, X. et al. 2020. Neural subgraph isomorphism counting. KDD.
[3] Liu, X.; and Song, Y. 2022. Graph convolutional networks with dual message passing for subgraph isomorphism counting and matching. AAAI.
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Methods

MAE |

SMALL
Q-error |

Time/s |

MAE |

LARGE
Q-error |

Time/s |

MUTAG

MAE | Q-error] Time/s |

MAE |

OGB-PPA
Q-error |

Time/s |

GCN

GraphSAGE

GAT
DPGCNN
DiffPool
GIN

4805
40+£27
22+£07
6.8 £ 0.7
48 £ 26
26£05

2.1 £0.1
25+08
20£0.5
29+£0.2
2.1+04
2.1 £0.1

7.94+0.2
7.0 = 0.1
143403
21.7+04
7.0 + 0.1
7.1+ 0.0

33.0£04
338+ 1.6
373 £5.2
39.8 £3.7
349+ 1.4
359+£06

35+ 1.
3.1 £0.
6.0 £ 1.
54+£1.
3.8 0.7
48 0.

29.8 + 0.7
275+ 13
59.4 + 0.7
64.8 + 0.9
325407
335+ 06

199 +9.7
139+28
30.8 £ 6.7
27.5+25
6.4+03
213+ 1.0

RGCN-Sum

RGCN-DN
RGIN-Sum
RGIN-DN

DMPNN-LRP

12+ 6.1
6.6+ 23
0.7+ 03
1.6 +02
9.1+ 0.2

37+1.2
32413
20402
2.4 400
1.5+0.1

132+ 0.1
48.1 0.2
122+ 0.0
497+ 1.8
324+ 14

809 £263 63L£1.3
73.7+£292 9.1+42
332+£22 42+13
325+19 43+£20
281 +13 34£15

61.8 0.2
105.0 = 0.4
614+ 1.0
1040 £ 1.5
184.2 + 1.8

8.0+ 0.8
73408
10.8 + 0.9
8.6+ 19
54418

42+ 15
47 +08
6.0 £0.3
49+ 0.6
25+02
56 £0.7

0.88 = 0.02
0.88 £0.02
091 £ 0.01
1.54 £ 0.01
0.86 £ 0.00
0.41 +£0.01

1.5+ 0.1
2602

0.89 & 0.01
1.19 + 0.04
1.9+ 0.1 045+0.02
33408 0.73+£0.03
1.8+ 1.0 0.13+0.05

36.8 14
325+£45
358+24
384+ 1.2
359+ 4.7
346+ 14

345+ 136
57.1 £15.7
29.1+ 1.7
358+ 64
25.6 £49

21+£04
25+0.5
22+£0.6
23+£03
27+0.3
25+£05

47+0.8
50+ 1.3
12+0.6
44+ 1.1
1.1+1.3

125+03
11.1 £0.1
304 +£0.8
19.4 +0.7
154422
123 +£04

33.0£0.2
312 0.1
21.0£1.2
288 +0.3
63.0 £0.6

Count-GNN

8.5+ 0.0

1.4 + 0.1

7.9 £0.3

309 £43 25+0.5

592+ 1.7

4.2 + 0.1

1.8 + 0.0] 0.02 = 0.0

28.7+3.9

1.0+ 0.2

18.1 + 0.6

VE2
Peregrine

0

1

724 +£20

0492 +2.7

0 1

9270.5 +5.9

904.2 £ 45

0

1 1.30 = 0.04
- 0.2 +0.03

0

1

5836.3 + 4.8
450.1 £3.9

* Observations
e Count-GNN achieves 65x ~ 324x speedups over the classical VF2, 8x ~ 26x speedups over Peregrine
e Count-GNN is more efficient than other GNN-based isomorphism counting models
e Count-GNN is more accurate than conviential GNN models by at least 30% improvements in most

cases.
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Ablation Study & Parameter Sensitivity

* Ablation study

Table 5: Ablation study on Count-GNN * Count-GNN\E:replaces the edge-centric aggregation
' ' with the node-centric GIN

_— SMALL T ARGE UTAG CoudntI -GNN\N: rheplaces Ithe guery lcondltl%ned 5
ethods | \iAE Qeerror |MAE Q-error | MAE Q-error modulation with a simple sumpooling as the readout

for the input graph
Count-GNN\E | 11.3 207 [3358 496 |18.63 592
Count-GNN\M | 8.66 146 |29.65 334 | 441 182 Count-GNN\E has the lowest accuracy

Count-GNN | 8.54 141 (3091 246 |4.22 1.76 Count-GNN\M performs better than Count-GNN\E
Full model Count-GNN achieves the best performance

* Parameters sensitivity

— As K increases, the performance in terms of MAE and Q-error
generally become better, only with one exception on Q-error
when K =4

— A =0.01 may result in an inferior performance. Interval [1e-5,

b2 ;{ 45 1e-050.0001 O-g\(“ 001 0.1 1le-3] might be a good range for superior performance of
subgraph isomorphism counting.

(a) Sensitivity of K | (b) Sensitivity of A |

Figure II: Parameters sensitivity on dataset SMALL.
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Couclusions
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Conclusions

* Problem
* Subgraph isomorphic counting

* Proposed-Model: Count-GNN

* Edge-centric message passing

* Query-conditioned graph modulation

* Experiment

* Count-GNN achieves significant speedups over exact methods

* Count-GNN is more efficient than other GNN-based isomorphism counting
models

* Count-GNN is more accurate than conviential GNN models by at least 30%
Improvements in most cases.
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Thanks!

Paper, data & code available at https://xingtongyu.netlify.app/

Xingtong Yu’, Zemin Liu™ Yuan Fang’, Xinming Zhang'
Learning to Count Isomorphisms with Graph Neural Networks
In Proceeding of 371" AAAI Conference on Artificial Intelligence, February 7-14, 2023
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