

Learning to Count Isomorphisms with Graph Neural Networks

Xingtong Yu^{1*}, Zemin Liu^{2*,} Yuan Fang^{3†}, Xinming Zhang ^{1†}

¹ University of Science and Technology of China, China
² National University of Singapore, Singapore
³ Singapore Management University, Singapore

In Proceeding of 37th AAAI Conference on Artificial Intelligence, February 7-14, 2023

* Co-first author* Corresponding author

Outline

- 1.Introduction
- 2 .Proposed Model: Count-GNN
- 3.Experiments
- 4.Conclusions

PART 01 Introduction

Introduction

01 Isomorphism Counting

Subgraph Isomorphisms Counting

02 Related Work

r	Exact Database Methods[1][2][3]	Approximate Database Methods[4]	GNN Methods[5][6]		
	Search-Based	Sampling-Based	GNN+Counter		
Exact Results		Approximate Results	Approximate Results		
Ex	cessive Computation Cost	Large Computation Cost	Little Computation Cost		

[1] Ullmann, J. R. 1976. An algorithm for subgraph isomorphism. JACM.

[2] Cordella, L. P. et al. 2004. A (sub) graph isomorphism algorithm for matching large graphs. PAMI.

[3] Carletti, V. et al.2017. Challenging the time complexity of exact subgraph isomorphism for huge and dense graphs with VF3. PAMI.

[4] Bressan, M. et al. 2021. Faster motif counting via succinct color coding and adaptive sampling. ACM Trans Knowl Discov Data.

[5] Liu, X. et al. 2020. Neural subgraph isomorphism counting. KDD.

[6] Zhengdao, C. et al. 2020. Can Graph Neural Networks Count Substructures? NeurIPS.

Shortage of General GNN-based Isomorphism Counting Models

Node CentricFixed Graph RepresentationIsomorphism
Counting focus on
topology
informationHard to capture
interaction among
nodesDistinct structures
of queriesFixed graph
representation

Count-GNN

Edge-Centric Aggregating GNN Query-Conditioned Graph Modulation

Experiments on Four Benchmark Datasets 8x~26x speedups over exact methods 3.1x~6.5x speedups over GNN methods

PART 02 Proposed Model: Count-GNN

Overall-Framework

Edge-Centric Aggregation

(a) Edge-centric aggregation

$$\begin{aligned} \mathbf{h}_{\langle u,v\rangle}^{0} &= \mathbf{x}_{u} \parallel \mathbf{x}_{\langle u,v\rangle} \parallel \mathbf{x}_{v} \in \mathbb{R}^{d_{0}} \\ \mathbf{h}_{\langle u,v\rangle}^{l} &= \sigma(\mathbf{W}^{l}\mathbf{h}_{\langle u,v\rangle}^{l-1} + \mathbf{U}^{l}\mathbf{h}_{\langle \cdot,u\rangle}^{l-1} + \mathbf{b}^{l}), \\ \mathbf{h}_{\langle \cdot,u\rangle}^{l-1} &= \mathrm{AGGR}(\{\mathbf{h}_{\langle i,u\rangle}^{l-1} | \langle i,u\rangle \in E\}) \end{aligned}$$

- \bullet **x**_{*}: encoded nodes or edges into input features
- ✦ ||: concatenation operator
- + $\mathbf{h}_{\langle u,v \rangle}^{l}$: message on edge $\langle u, v \rangle$ in the *l*-th layer
- $\mathbf{h}_{\langle \cdot, u \rangle}^{l-1}$: message aggregated from the preceding edges of $\langle u, v \rangle$
- ✦ AGGR: aggregation operator
- ✤ W^l,U^l,b^l: learnable parameter

Query graph representation

(b) Modulation conditioned on queries

$$\begin{aligned} \mathbf{h}_{\mathcal{Q}} &= \sigma(\mathbf{Q} \cdot \operatorname{AGGR}(\{\mathbf{h}_{\langle u, v \rangle} | \langle u, v \rangle \in E_{\mathcal{Q}}\})) \\ \tilde{\mathbf{h}}_{\langle u, v \rangle} &= (\gamma_{\langle u, v \rangle} + \mathbf{1}) \odot \mathbf{h}_{\langle u, v \rangle} + \beta_{\langle u, v \rangle} \\ \gamma_{\langle u, v \rangle} &= \sigma(\mathbf{W}_{\gamma} \mathbf{h}_{\langle u, v \rangle} + \mathbf{U}_{\gamma} \mathbf{h}_{\mathcal{Q}} + \mathbf{b}_{\gamma}) \\ \beta_{\langle u, v \rangle} &= \sigma(\mathbf{W}_{\beta} \mathbf{h}_{\langle u, v \rangle} + \mathbf{U}_{\beta} \mathbf{h}_{\mathcal{Q}} + \mathbf{b}_{\beta}) \\ \mathbf{h}_{\mathcal{G}}^{\mathcal{Q}} &= \sigma(\mathbf{G} \cdot \operatorname{AGGR}(\{\tilde{\mathbf{h}}_{\langle u, v \rangle} | \langle u, v \rangle \in E_{\mathcal{G}}\})) \end{aligned}$$

- ✤ Q: encoded nodes or edges into input features
- + $\gamma_{\langle u,v \rangle}$, $\beta_{\langle u,v \rangle}$: FiLM factors for scaling and shifting
- ♦ ①: Hadamard product
- $W_{\gamma}, U_{\gamma}, W_{\beta}, U_{\beta}$: learnable weight metrices
- + $\mathbf{b}_{\mathbf{y}}$, $\mathbf{b}_{\mathbf{\beta}}$: learnable bias vectors

Counter Module and Overall Objective

Counter Module

Overall Objective

 $\frac{1}{|\mathcal{T}|} \sum_{(\mathcal{Q}_i, \mathcal{G}_i, n_i) \in \mathcal{T}} |\hat{n}(\mathcal{Q}_i, \mathcal{G}_i) - n_i| + \lambda \mathcal{L}_{\text{FiLM}} + \mu \|\Theta\|_2^2$ $\mathcal{L}_{\text{FiLM}} = \sum_{i=1}^{n} \sum_{(u,v) \in \mathcal{T}} \sum_{(u,v) \in \mathcal{T}} \|\gamma_{\langle u,v \rangle}\|_2^2 + \|\beta_{\langle u,v \rangle}\|_2^2$

$$\hat{n}(\mathcal{Q}, \mathcal{G}) = \operatorname{ReLU}(\mathbf{w}^{\top} \operatorname{MATCH}(\mathbf{h}_{\mathcal{Q}}, \mathbf{h}_{\mathcal{G}}^{\mathcal{Q}}) + b)$$

$$Match(\mathbf{x}, \mathbf{y}) = FCL(\mathbf{x} \parallel \mathbf{y} \parallel \mathbf{x} - \mathbf{y} \parallel \mathbf{x} \odot \mathbf{y})$$

- ★ MATCH(·, ·): outputs the matchability between its arguments
- ✤ w, b: learnable weight vector and bias
- ✦ FCL: full connected layer

- n_i : ground truth
- L_{FiLM} : regularizer on the FiLM factors

 $(\mathcal{Q}_i, \mathcal{G}_i, n_i) \in \mathcal{T} \langle u, v \rangle \in E_{\mathcal{G}_i}$

• $\| \Theta \|_2^2$: learnable weight vector and bias

Theoretical Analysis of Count-GNN

Lemma 1 (Generalization). *Count-GNN can be reduced to a node-centric GNN, i.e., Count-GNN can be regarded as a generalization of the latter.*

Theorem 1 (Expressiveness). Count-GNN is more powerful than node-centric GNNs, which means (i) for any two non-isomorphic graphs that can be distinguished by a nodecentric GNN, they can also be distinguished by Count-GNN; and (ii) there exists two non-isomorphic graphs that can be distinguished by Count-GNN but not by a node-centric GNN.

PART 03 Experiments

Datasets & Baselines

Datasets		SMALL	LARGE	MUTAG	OGB-PPA
	# Queries	75	122	24	12
	# Graphs	6,790	3,240	188	6,000
	# Triples	448,140	395,280	4,512	57,940
	$\operatorname{Avg}(V_{\mathcal{Q}})$	5.20	8.43	3.50	4.50
	$\operatorname{Avg}(E_{\mathcal{Q}})$	6.80	12.23	2.50	4.75
	$Avg(V_{\mathcal{G}})$	32.62	239.94	17.93	152.75
	$Avg(E_{\mathcal{G}})$	76.34	559.68	39.58	1968.29
	Avg(Counts)	14.83	34.42	17.76	13.83
	Max(L)	16	64	7	8
	Max(L')	16	64	4	1

• **Baselines** Conventional GNNs:

GCN, GAT, DPGCNN, GIN, DiffPool

GNN-based isomorphism counting models:

RGCN-DN, RGCN-Sum, RGIN-DN, RGIN-Sum[2], LRP, DMPNN-LRP[3]

Exact Apporaches:

VF2, Peregrine[1]

[1] Jamshidi, K. et al. 2020. Peregrine: a pattern-aware graph mining system. EuroSys.

[2] Liu, X. et al. 2020. Neural subgraph isomorphism counting. KDD.

[3] Liu, X.; and Song, Y. 2022. Graph convolutional networks with dual message passing for subgraph isomorphism counting and matching. AAAI.

Empricial Results

Methods	SMALL			LARGE			MUTAG			OGB-PPA		
	MAE↓	Q-error↓	Time/s↓	$ $ MAE \downarrow	Q-error↓	Tîme/s ↓	MAE↓	Q-error↓	Time/s↓	$ $ MAE \downarrow	Q-error ↓	Time/s ↓
GCN	14.8 ± 0.5	2.1 ± 0.1	7.9 ± 0.2	33.0 ± 0.4	3.5 ± 1.0	29.8 ± 0.7	19.9 ± 9.7	4.2 ± 1.5	0.88 ± 0.02	36.8 ± 1.4	2.1 ± 0.4	12.5 ± 0.3
GraphSAGE	14.0 ± 2.7	2.5 ± 0.8	7.0 ± 0.1	33.8 ± 1.6	3.1 ± 0.4	$\overline{27.5} \pm 1.3$	13.9 ± 2.8	4.7 ± 0.8	0.88 ± 0.02	32.5 ± 4.5	2.5 ± 0.5	11.1 ± 0.1
GAT	12.2 ± 0.7	2.0 ± 0.5	14.3 ± 0.3	37.3 ± 5.2	6.0 ± 1.2	59.4 ± 0.7	30.8 ± 6.7	6.0 ± 0.3	0.91 ± 0.01	35.8 ± 2.4	2.2 ± 0.6	30.4 ± 0.8
DPGCNN	16.8 ± 0.7	2.9 ± 0.2	21.7 ± 0.4	39.8 ± 3.7	5.4 ± 1.6	64.8 ± 0.9	27.5 ± 2.5	4.9 ± 0.6	1.54 ± 0.01	38.4 ± 1.2	2.3 ± 0.3	19.4 ± 0.7
DiffPool	14.8 ± 2.6	2.1 ± 0.4	7.0 ± 0.1	34.9 ± 1.4	3.8 ± 0.7	32.5 ± 0.7	6.4 ± 0.3	2.5 ± 0.2	0.86 ± 0.00	35.9 ± 4.7	2.7 ± 0.3	15.4 ± 2.2
GIN	12.6 ± 0.5	2.1 ± 0.1	7.1 ± 0.0	35.9 ± 0.6	4.8 ± 0.2	33.5 ± 0.6	21.3 ± 1.0	5.6 ± 0.7	0.41 ± 0.01	34.6 ± 1.4	2.5 ± 0.5	12.3 ± 0.4
RGCN-Sum	24.2 ± 6.1	3.7 ± 1.2	13.2 ± 0.1	80.9 ± 26.3	6.3 ± 1.3	61.8 ± 0.2	8.0 ± 0.8	1.5 ± 0.1	0.89 ± 0.01	34.5 ± 13.6	4.7 ± 0.8	33.0 ± 0.2
RGCN-DN	16.6 ± 2.3	3.2 ± 1.3	48.1 ± 0.2	73.7 ± 29.2	9.1 ± 4.2	105.0 ± 0.4	7.3 ± 0.8	2.6 ± 0.2	1.19 ± 0.04	57.1 ± 15.7	5.0 ± 1.3	31.2 ± 0.1
RGIN-Sum	10.7 ± 0.3	2.0 ± 0.2	12.2 ± 0.0	33.2 ± 2.2	4.2 ± 1.3	61.4 ± 1.0	10.8 ± 0.9	1.9 ± 0.1	0.45 ± 0.02	29.1 ± 1.7	1.2 ± 0.6	21.0 ± 1.2
RGIN-DN	11.6 ± 0.2	2.4 ± 0.0	49.7 ± 1.8	32.5 ± 1.9	4.3 ± 2.0	104.0 ± 1.5	8.6 ± 1.9	3.3 ± 0.8	0.73 ± 0.03	35.8 ± 6.4	4.4 ± 1.1	28.8 ± 0.3
DMPNN-LRP	9.1 ± 0.2	1.5 ± 0.1	32.4 ± 1.4	28.1 ± 1.3	3.4 ± 1.5	184.2 ± 1.8	5.4 ± 1.8	$\underline{1.8} \pm 1.0$	0.13 ± 0.05	25.6 ± 4.9	1.1 ± 1.3	63.0 ± 0.6
Count-GNN	8.5 ± 0.0	$\textbf{1.4}\pm0.1$	7.9 ± 0.3	30.9 ± 4.3	$\textbf{2.5}\pm0.5$	59.2 ± 1.7	4.2 ± 0.1	1.8 ± 0.0	$\textbf{0.02} \pm 0.00$	28.7 ± 3.9	$\textbf{1.0}\pm0.2$	18.1 ± 0.6
VF2	0	1	1049.2 ± 2.7	0	1	9270.5 ± 5.9	0	1	1.30 ± 0.04	0	1	5836.3 ± 4.8
Peregrine	-	-	72.4 ± 2.0	-	-	904.2 ± 4.5	-	-	0.2 ± 0.03	-	-	450.1 ± 3.9

• Observations

- Count-GNN achieves 65x ~ 324x speedups over the classical VF2, 8x ~ 26x speedups over Peregrine
- Count-GNN is more efficient than other GNN-based isomorphism counting models
- Count-GNN is more accurate than conviential GNN models by at least 30% improvements in most cases.

Ablation Study & Parameter Sensitivity

Table 5: Ablation study on Count-GNN.

Mathada	SM	ALL	LA	RGE	MUTAG		
wiethous	MAE	Q-error	MAE	Q-error	MAE	Q-error	
Count-GNN\E	11.3	2.07	33.58	4.96	18.63	5.92	
Count-GNN\M	8.66	1.46	29.65	3.34	4.41	1.82	
Count-GNN	8.54	1.41	30.91	2.46	4.22	1.76	

Figure II: Parameters sensitivity on dataset SMALL.

Ablation study

- Count-GNN\E:replaces the edge-centric aggregation with the node-centric GIN
- Count-GNN\N:replaces the query-conditioned modulation with a simple sumpooling as the readout for the input graph
- Count-GNN\E has the lowest accuracy
- Count-GNN\M performs better than Count-GNN\E
- Full model Count-GNN achieves the best performance

Parameters sensitivity

- As K increases, the performance in terms of MAE and Q-error generally become better, only with one exception on Q-error when K = 4
- λ = 0.01 may result in an inferior performance. Interval [1e-5, 1e-3] might be a good range for superior performance of subgraph isomorphism counting.

PART 04 Couclusions

Conclusions

Problem

• Subgraph isomorphic counting

Proposed-Model: Count-GNN

- Edge-centric message passing
- Query-conditioned graph modulation

• Experiment

- Count-GNN achieves significant speedups over exact methods
- Count-GNN is more efficient than other GNN-based isomorphism counting models
- Count-GNN is more accurate than conviential GNN models by at least 30% improvements in most cases.

Thanks!

Paper, data & code available at https://xingtongyu.netlify.app/

Xingtong Yu^{*}, Zemin Liu^{*,} Yuan Fang⁺, Xinming Zhang⁺ Learning to Count Isomorphisms with Graph Neural Networks In Proceeding of 37th AAAI Conference on Artificial Intelligence, February 7-14, 2023